
WLCSSCuda: A CUDA Accelerated Template
Matching Method for Gesture Recognition

Mathias Ciliberto
m.ciliberto@sussex.ac.uk

Wearable Technologies Lab,
University of Sussex

Brighton, UK

Daniel Roggen
d.roggen@ieee.org

Wearable Technologies Lab,
University of Sussex

Brighton, UK

ABSTRACT
Template matching methods can benefit from multi-cores ar-
chitecture in order to parallelise and accelerate the matching
of multiple templates. We present WLCSSCuda: a GPU ac-
celerated implementation of the Warping Longest Common
Subsequence (WLCSS) pattern recognition algorithm. We
evaluate our method on 4 NVIDIA GPUs and 4 multi-cores
CPUs. We observe a 67-times speedup for the GPU imple-
mentation in the best case against the multithreaded CPU
implementation.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms.

KEYWORDS
WLCSS; CUDA; GPU acceleration; Template Matching
ACM Reference Format:
Mathias Ciliberto and Daniel Roggen. 2019. WLCSSCuda: A CUDA
Accelerated Template Matching Method for Gesture Recognition.
In Proceedings of the 2019 International Symposium on Wearable
Computers (ISWC ’19), September 9–13, 2019, London, United King-
dom. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3341163.3347718

1 INTRODUCTION
Template Matching Methods (TMM) have been successfully
applied in activity recognition [2]. They compute a matching
score between one or more templates and a stream of sensor
data. Therefore, they can benefit from multi-core architec-
tures in order to improve their speed of execution. They can
take advantage of such architectures when multiple tem-
plates must be simultaneously compared to an incoming

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ISWC ’19, September 9–13, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6870-4/19/09.
https://doi.org/10.1145/3341163.3347718

sensor signal as well as during training when multiple in-
stances of the TMMmust be run in order to evaluate different
parameter sets. WLCSSCuda is a GPU accelerated implemen-
tation of Warping Longest Common Subsequence (WLCSS)
using CUDA. This is a framework developed by NVIDIA for
general purpose processing on GPUs (GPGPU) [3]. In the
past, GPUs have been used to accelerate other TMMs, such
as Dynamic Time Warping [5] and Longest Common Subse-
quence [6]. However, to the best of our knowledge, this is the
first GPU implementation of WLCSS. WLCSSCuda allows to
execute multiple instances of the TMM simultaneously. We
compare this approach with a multi-core CPU implementa-
tion of WLCSS and show an drastic speedup in the matching
score computation.

2 WARPING LONGEST COMMON SUBSEQUENCE
Warping Longest Common Subsequence (WLCSS) is a TMM
suitable for continuous pattern recognition - such as spot-
ting complex gestures - which is more robust than Dynamic
Time Warping to noisy sensor data [2]. It computes a match-
ing score (Mi , j) between a template (T) and a stream (S) by
adding a reward (R) every time a sample i from S matches
with a sample j from T within an acceptance threshold (ϵ).
Otherwise, it decrementsMi , j by a penalty (P) proportional
to the mismatch.
Optimising WLCSS parameters requires an exhaustive

grid search for R, P , ϵ , which benefits from computational
speedups.

3 WLCSSCUDA
WLCSSCuda is our GPU implementation of WLCSS built
using CUDA. Thanks to the high number of cores in modern
GPUs, it is possible execute tasks, called kernels, with a
high level of parallelization. CUDA abstracts the physical
structure of the GPU in a grid of blocks. Each block can be
addressed using a 1D, 2D, or 3D index. A block is a unit made
by several threads that can be computed in parallel or serially
on a GPU core. A 3D indexing is provided for the thread too.
The scheduling of the threads’ execution is transparent to
the user. The number of maximum blocks and maximum
threads per block depends on the GPU.

https://doi.org/10.1145/3341163.3347718
https://doi.org/10.1145/3341163.3347718
https://doi.org/10.1145/3341163.3347718

ISWC ’19, September 9–13, 2019, London, United Kingdom Mathias Ciliberto and Daniel Roggen

p
0

S
0

S
1

S
K-1

T
0

T
1

p
1

p
R-1

p
0

p
1

p
R-1

p
0

p
1

p
R-1

p
0

p
1

p
R-1

p
0

p
1

p
R-1

p
0

p
1

p
R-1

...

...

...

...

...

p
0

p
1

p
R-1

p
0

p
1

p
R-1

...

S
2

k

q

r

p
0

p
1

p
R-1

p
0

p
1

p
R-1

p
0

p
1

p
R-1

...

p
0

p
1

p
R-1

T
Q-1

Figure 1: WLCSSCuda structure: blocks are represented in
yellow. A template Tq and a stream Sk are assigned to each
block. A set of parameters pr is assigned to each thread, dis-
played in blue.

WLCSSCuda structures the computation using a 2D grid
for the blocks and 1D structure for the threads, as shown in
Figure 1: a single template/stream pair is assigned to each
block. Then, within that block, a thread is used for every pa-
rameters set. During initialization, all the templates, streams
and parameters are transferred to the GPU memory. Then,
each kernel computes the pointer to the templates, stream
and WLCSS parameters in memory using respectively the
indexes q and k for the blocks, and r for the threads. Each
triad template/stream/parameters is used by only one kernel
which is executed by a single thread. Finally, when the match-
ing scores are computed, they are transferred from the GPU
memory back to the main memory. WLCSSCuda computes
the entire score between the template and the stream.

WLCSSCuda is developed in C++ with a Python wrapper
for loading the data and reading the results.

4 EVALUATION
We evaluated to which extent WLCSSCuda could accelerate
multiple template matching, taking into account the time
required to transfer the data to/from the GPU, which has
been demonstrated to be a bottleneck in CUDA applications
[1]. We compared the execution of WLCSSCuda on 4 GPUs
and a multithreaded WLCSS on 4 CPUs (see Table 1). We
simulates 4 test scenarios in which a different number of
streams, templates and WLCSS parameters were employed
(Table 2). We reported the average of 10 executions. The CPU
implementation of WLCSS uses all the available threads in
the CPU to run always the maximum number of possible
WLCSS simultaneously.

We used OPPORTUNITY Dataset [4] as source of tem-
plates and streams, selecting a random subset of gestures for
each test, to make them more realistic. The average length
of the templates (and streams) is 98 samples, with a standard
deviation of ± 46. The same subset of gestures was used for
WLCSSCuda and the CPU implementation in each test.

GPU Model CUDA cores Cores Frequency Memory

GTX 1080 Ti 3584 1645 MHz 11 GB GDDR5X
GTX 1050 Ti 768 1418 MHz 4 GB GDDR5
GTX 970 1664 1317 MHz 4 GB GDDR5
Titan XP 3840 1582 MHz 12 GB GDDR5X

CPU Model Frequency (Max Turbo) # of Cores # of Threads

AMD Ryzen 1900X 3.8 GHz (4 GHz) 8 16
Intel i7-8750H 2.2 GHz (4.1 GHz) 6 12
Intel i7-4770K 3.5 GHz (3.9 GHz) 4 8
Intel i7-6700 3.4 GHz (4.0 GHz) 4 8

Table 1: CPU and GPU tested. For more details about the
GPUs and CPUs (AMD and Intel), visit respectively 1, 2, 3

Test # Templates (Q) # Streams (K) # Params. sets (R) Tot. WLCSS

a 10 1000 10 100000
b 20 2000 10 400000
c 50 5000 10 2500000
d 100 10000 10 10000000

Table 2: The number of templates, streams, parameters sets
and the total number of WLCSS computation is shown, for
each test scenario.

Platform / Test a b c d

Titan XP 0.49 ± 0.04 1.53 ± 0.15 9.66 ± 0.61 38.29 ± 1.87
GTX 1080 Ti 0.55 ± 0.07 1.98 ± 0.14 12.77 ± 1.51 51.38 ± 6.22
GTX 1050 Ti 0.79 ± 0.13 2.92 ± 0.26 18.15 ± 0.67 72.04 ± 3.59
GTX 970 0.91 ± 0.16 4.00 ± 0.67 18.97 ± 0.86 70.74 ± 3.69

AMD 1900X 8.29 ± 0.89 32.27 ± 1.74 231.75 ± 31.59 932.69 ± 86.19
i7-8750H 17.50 ± 2.57 81.23 ± 5.30 555.26 ± 15.39 2140.20 ± 141.37
i7-6700 20.35 ± 1.07 80.18 ± 8.28 523.05 ± 34.30 2008.19 ± 81.33
i7-4770K 22.78 ± 3.20 99.62 ± 10.00 647.21 ± 45.91 2452.15 ± 170.12

Improvement 10-46 times 8-65 times 12-67 times 13-64 times

Table 3: Results of WLCSS running on the 4 GPUs and the
4 CPUs. The values are in seconds and they are averaged
across multiple running. The improvements are computed
respectively between the best CPU against the worst GPU,
and viceversa.

Table 3 shows the average time for each test for every
CPU and GPU. For WLCSSCuda, all the values include the
time to the transfer of data to/from the GPU memory. As we
expected, the GPUs are faster in every scenario we evaluated.
Moreover, it is possible to notice how WLCSSCuda scales
better when the number of instances increase. Testd requires
100 times more evaluations than test a; the GPUs take on
average only 85 times the time required by test a while the
CPUs take 110 times more than a, on average, across all the
different models.

1https://www.nvidia.com/en-gb/
2https://www.amd.com/en/products/ryzen-threadripper
3https://ark.intel.com

https://www.nvidia.com/en-gb/
https://www.amd.com/en/products/ryzen-threadripper
https://ark.intel.com

WLCSSCuda: A CUDA Accelerated Template Matching Method for Gesture Recognition ISWC ’19, September 9–13, 2019, London, United Kingdom

5 DISCUSSION AND CONCLUSION
We presented WLCSSCuda, a GPU accelerate multiple TMM.
We demonstrated that WLCSSCuda can drastically increase
the computation of multiple template matching, with an
increase of 67 times in the best case compared to a multi-
threaded CPU approach. However, there is still room for
improvement: we plan to evaluate different organizations
of data in order to better use the block/thread CUDA struc-
ture. Moreover, we aim to make WLCSSCuda automatically
adapting such structure according with the number of tem-
plates/streams/parameters sets in order to increase the per-
formance even further. Finally, WLCSSCuda is available as
open source software at the address
https://github.com/sussexwearlab/WLCSSCuda.

ACKNOWLEDGMENTS
This studywas partly funded through the FFG project #5766494
"MinIAttention: Attention Management in Minimal Invasive
Surgery".We also thank NVIDIA for their Titan XP donation.

REFERENCES
[1] Chris Gregg and Kim Hazelwood. 2011. Where is the data? Why you

cannot debate CPU vs. GPU performance without the answer. In Inter-
national Symposium on Performance Analysis of Systems and Software.
IEEE.

[2] Long Van Nguyen-Dinh et al. 2012. Improving online gesture recogni-
tion with template matching methods in accelerometer data. Interna-
tional Conference on Intelligent Systems Design and Applications (2012).

[3] Nvidia. 2019. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit
Retrieved on April 26, 2019 from https://developer.nvidia.com/cuda-
toolkit.

[4] Daniel Roggen et al. 2010. Collecting complex activity datasets in highly
rich networked sensor environments. In International Conference on
Networked Sensing Systems. IEEE.

[5] Doruk Sart et al. 2010. Accelerating dynamic time warping subsequence
search with GPUs and FPGAs. In International Conference on Data
Mining. IEEE.

[6] Jiaoyun Yang et al. 2010. An efficient parallel algorithm for longest
common subsequence problem on GPUs. In Proceedings of the World
Congress on Engineering, Vol. 1.

https://github.com/sussexwearlab/WLCSSCuda
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

	Abstract
	1 Introduction
	2 Warping Longest Common Subsequence
	3 WLCSSCuda
	4 Evaluation
	5 Discussion and Conclusion
	Acknowledgments
	References

