
Benchmarking OpenCL, OpenACC, OpenMP, and CUDA:
Programming Productivity, Performance, and Energy

Consumption∗

Suejb Memeti
Linnaeus University

Växjö, Sweden 351 95
suejb.memeti@lnu.se

Lu Li
Linköping University

Linköping, Sweden 581 83
lu.li@liu.se

Sabri Pllana
Linnaeus University

Växjö, Sweden 351 95
sabri.pllana@lnu.se

Joanna Kołodziej
NASK

Warsaw, Poland 01 045
jokolodziej@pk.edu.pl

Christoph Kessler
Linköping University

Linköping, Sweden 581 83
christoph.kessler@liu.se

ABSTRACT
Many modern parallel computing systems are heterogeneous at
their node level. Such nodes may comprise general purpose CPUs
and accelerators (such as, GPU, or Intel Xeon Phi) that provide
high performance with suitable energy-consumption characteris-
tics. However, exploiting the available performance of heteroge-
neous architectures may be challenging. There are various parallel
programming frameworks (such as, OpenMP, OpenCL, OpenACC,
CUDA) and selecting the one that is suitable for a target context is
not straightforward. In this paper, we study empirically the charac-
teristics of OpenMP, OpenACC, OpenCL, and CUDA with respect
to programming productivity, performance, and energy. To eval-
uate the programming productivity we use our homegrown tool
CodeStat, which enables us to determine the percentage of code
lines required to parallelize the code using a speci�c framework.
We use our tools MeterPU and x-MeterPU to evaluate the energy
consumption and the performance. Experiments are conducted us-
ing the industry-standard SPEC benchmark suite and the Rodinia
benchmark suite for accelerated computing on heterogeneous sys-
tems that combine Intel Xeon E5 Processors with a GPU accelerator
or an Intel Xeon Phi co-processor.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Computer systems organization → Heterogeneous
(hybrid) systems; • Hardware → Power and energy;

∗This article is based upon work from COST Action IC1406 High-Performance Mod-
elling and Simulation for Big Data Applications (cHiPSet), supported by COST (Euro-
pean Cooperation in Science and Technology).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ARMS-CC’17, July 28, 2017, Washington, DC, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5116-4/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3110355.3110356

KEYWORDS
OpenCL; OpenACC; OpenMP; CUDA; Programming productivity;
Performance; Energy consumption

1 INTRODUCTION
Modern parallel computing systems may comprise multi-core and
many-core processors at their node level. Multi-core processors may
have two or more cores, and usually run at a higher frequency than
many-core processors. While multi-core processors are suitable for
general-purpose tasks, many-core processors (such as the Intel Xeon
Phi [4] or GPU [13]) comprise a larger number of lower frequency
cores that perform well on speci�c tasks.

Due to their di�erent characteristics, engineers often combine
multi-core and many-core processors to create the so-called het-
erogeneous nodes that may, if carefully utilized, result in high
performance and energy e�ciency. Yan et al. [21] highlight the im-
portance of e�cient node-level execution of parallel programs also
for future large-scale computing systems [1, 5]. However, utilizing
the available resources of these systems to the highest possible
extent require advanced knowledge of vastly di�erent parallel com-
puting architectures and programming frameworks [10, 19].

Some of the widely used parallel programming frameworks
for heterogeneous systems include OpenACC [20], OpenCL [17],
OpenMP [14], and NVIDIA CUDA [12]. The challenge for the pro-
gram developer is to choose one from many available parallel pro-
gramming frameworks that ful�lls in the speci�c context the goals
with respect to programming productivity, performance, and energy
consumption. Existing work has systematically studied the litera-
ture about GPU-accelerated systems [11], compared programming
productivity of OpenACC and CUDA using a group of students
to parallelize sequential codes [8], or used kernels for comparing
execution time of OpenCL and CUDA-based implementations.

In this paper, we benchmark four well-known programming
frameworks for heterogeneous systems: OpenMP, OpenACC, Open-
CL, and CUDA. In addition to the industry-standard benchmark
suite SPEC Accel [6], we use the popular Rodinia [3] benchmark
suite to evaluate programing productivity, energy e�ciency, and
performance. We use our tool developed for this study CodeStat to
quantify the programming e�ort for parallelizing benchmark suites

Session: Clouds Resource Management and Execution Environment ARMS-CC’17, July 28, 2017, Washington, DC, USA

1

under study. Furthermore, we developed x-MeterPU that is an ex-
tension of MeterPU, which enables us to measure the performance
and energy consumption on systems that are accelerated with the
Intel Xeon Phi and GPU. We present and discuss results obtained
on two heterogeneous computing systems: Emil that comprises two
Intel Xeon E5 processors and one Intel Xeon Phi co-processor, and
Ida that has two Intel Xeon E5 processors and one GTX Titan X
GPU.

The major contributions of this paper include (1) development
of measurement tools CodeStat and x-MeterPU for accelerated
systems with Intel Xeon Phi and GPU; (2) empirical study of four
widely used frameworks for programming heterogeneous systems
OpenCL, OpenACC, OpenMP, and CUDA; (3) joint consideration of
programming productivity, performance, and energy consumption.

The rest of this paper is structured as follows. Section 2 describes
our approach, tools and infrastructure for benchmarking programs
developed with OpenMP, OpenCL, OpenACC, and CUDA. Results
of the experimental evaluation using SPEC and Rodinia benchmark
suites are described in Section 3. Section 4 discusses the related
work. We conclude the paper in Section 5.

2 OUR METHODOLOGY AND TOOLS
In this section, we describe our approach and tools that we have de-
veloped for benchmarking parallel frameworks for heterogeneous
systems. Our approach is based on using industry-standard bench-
mark suites for evaluation of parallelization e�ort, performance,
and energy consumption. Figure 1 depicts our infrastructure for
evaluation of parallel programming languages for accelerated sys-
tems that includes measurement tools CodeStat and x-MeterPU,
benchmark suites Rodinia and SPEC Accel, and heterogeneous
systems Ida and Emil.

Figure 1: An overview of our infrastructure for evaluation
of parallel programming languages for accelerated systems.

Table 1 summarizes major features of parallel languages that are
considered in our study: OpenMP [14], OpenACC [20], OpenCL
[17], and CUDA [12]. OpenMP and OpenACC are largely imple-
mented as compiler directives for C, C++, and FORTRAN, which sig-
ni�cantly hide architecture details from the programmer. OpenCL
and CUDA are implemented as software libraries for C and C++

and expose the programmer to low-level architectural details. With
respect to the parallelism support, all of the considered frameworks
support data parallelism and asynchronous task parallelism. While
OpenMP and OpenCL provide parallelization patterns for both host
multi-core CPUs and many-core accelerated devices, OpenACC and
CUDA support parallelization means only for accelerators such as
NVIDIA GPUs [21].

Table 1: Major features of OpenACC, OpenMP, OpenCL, and
CUDA.

OpenACC OpenMP OpenCL CUDA

Parallelism

- data parallelism
- asynchronous
task parallelism
- device only

- data parallelism
- asynchronous
task parallelism
- host and device

- data parallelism
- asynchronous
task parallelism
- host and device

- data parallelism
- asynchronous
task parallelism
- device only

Architecture
abstraction

- memory hierar-
chy
- explicit data
mapping and
movement

- memory hierar-
chy
- data and compu-
tation binding
- explicit data
mapping and
movement

- memory hierar-
chy
- explicit data
mapping and
movement

- memory hierar-
chy
- explicit data
mapping and
movement

Synchroni-
zation

- reduction
- join

- barrier
- reduction
- join

- barrier;
- reduction - barrier

Framework
imple-
mentation

compiler direc-
tives for C/C++
and Fortran

compiler direc-
tives for C/C++
and Fortran

C/C++ exten-
sions

C/C++ exten-
sions

2.1 CodeStat - A tool for quantifying the
parallelization e�ort

To quantify the programming e�ort required to parallelize a code,
we have developed our tool, named CodeStat 2. CodeStat takes as
input a con�guration �le and the source code. The con�guration
�le contains a list of valid �le extensions (such as, .c, .cpp, .cu, .cl,
...), and a list of framework speci�c method calls, or compiler direc-
tives (such as, #pragma omp, proc_bind, or omp_set_num_threads
in OpenMP).

CodeStat analyzes the code by looking for framework speci�c
code-statements provided in the con�guration �le, and provides as
output the total number of lines of code (LOC) and the number of
LOC written in OpenMP, OpenCL, OpenACC, or CUDA.

The con�guration �les for OpenMP, OpenCL, OpenACC, and
CUDA are provided by CodeStat. Other programming frameworks
can be supported by simply creating a new con�guration �le and
adding the framework speci�c code-statements to the list. The list
of statements for a given programming language is usually provided
in the corresponding documentation or reference guides.

2.2 x-MeterPU - A tool for performance and
energy consumption measurement

To measure the execution time and the energy consumption of
the GPU accelerated systems we use MeterPU [9]. MeterPU is
a C++ software package that implements its generic yet simple
measurement API. MeterPU allows easy measurement for di�erent
metrics (e.g., time, energy) on di�erent hardware components (e.g.
CPU, DRAM, GPU). Utilizing the template and meta-programming

2https://github.com/suejb/CodeStat

Session: Clouds Resource Management and Execution Environment ARMS-CC’17, July 28, 2017, Washington, DC, USA

2

https://github.com/suejb/CodeStat

features of C++, MeterPU’s overhead is quite low and unnoticeable.
It enables easy modeling and tuning for energy, besides it also allows
for smooth transition for legacy tuning software (e.g. SkePU[9])
from time optimization to energy optimization if some assumptions
used for time modeling are not violated for energy modeling.

To measure the execution time and the energy consumption of
the Intel Xeon Phi, we have developed a variant named x-MeterPU
3. x-MeterPU supports energy measurements for both native and
o�oad programming models of Intel Xeon Phi. It is able to auto-
matically detect the execution environment, therefore a single API
function is used for measurements for both native and o�oad ap-
plications. To measure the energy of o�oad-based applications, we
use the micsmc utility, whereas the micras tool is used to measure
the energy of the native-based applications.

The use of x-MeterPU is very simple. The start() and stop() meth-
ods are used to enclose code regions to be measured. The get_value()
method is used to retrieve the energy consumption (in Joules). In
addition to the total energy consumption, x-MeterPU returns a log
�le containing all the power data with exact timestamps, which
enables the production of various plots.

3 EVALUATION
In this section, we experimentally evaluate the selected parallel
programming frameworks using various benchmark applications
and architectures. We describe (1): the experimentation environ-
ment, including hardware con�guration, benchmark applications,
and evaluation metrics; and (2) the comparison results of OpenMP,
OpenACC, OpenCL, and CUDA with respect to programming pro-
ductivity, performance, and energy consumption.

3.1 Experimentation Environment
In this section, we describe the experimentation environment used
to evaluate the selected parallel programming frameworks on het-
erogeneous systems. We describe the hardware con�guration, the
considered benchmark applications, and the evaluation metrics.

3.1.1 Hardware Configuration. For experimental evaluation of
the selected parallel programming frameworks, we use two hetero-
geneous single-node systems.

Emil is a heterogeneous system that consists of two Intel Xeon
E5-2695 v2 general purpose CPUs on the host, and one Intel Xeon
Phi 7120P co-processing device. In total, the host is composed of
24 cores, each CPU has 12 cores that support two threads per core
(known as logical cores) that amounts to a total of 48 threads. The
Xeon Phi device has 61 cores running at 1.2 GHz base frequency,
four hardware threads per core, which amounts to a total of 244
threads. One of the cores is used by the lightweight Linux operating
system installed on the device.

Ida is a heterogeneous system that consists of two Intel Xeon E5-
2650 v4 general purpose CPUs on the host, and one GeForce GTX
Titan X GPU. Similar to Emil, Ida has 24 cores and 48 threads on the
host, whereas the GPU device has 24 Streaming Multiprocessors
(SM), and in total 3072 CUDA cores running at base frequency of 1
GHz. The major features of Emil and Ida are listed in table 2.

3https://github.com/suejb/x-MeterPU

Table 2: The system con�guration details for Emil and Ida.

Ida Emil

Specs Intel Xeon E5 GeForce GPU Intel Xeon E5 Intel Xeon Phi

Type E5-2650 v4 GTX Titan X E5-2695 v2 7120P
Core Frequency 2.2 - 2.9 GHz 1 - 1.1 GHz 2.4 - 3.2 GHz 1.2 - 1.3 GHz
of Cores 12 3072 12 61
of Threads 24 / 24 244
Cache 30 MB / 30 MB 30.5 MB
Mem. Bandwidth 76.8 GB/s 336.5 GB/s 59.7 GB/s 352 GB/s
Memory 384 GB 12 GB 128 GB 16 GB
TDP 105 W 250 W 115 W 300 W

3.1.2 Benchmark Applications. In this paper we have considered
a number of di�erent applications from the SPEC Accel [16] and
Rodinia [15] benchmark suites. The Standard Performance Evalu-
ation Corporation (SPEC) Accel benchmark suite focuses on the
performance of compute intensive parallel computing applications
using accelerated systems. It provides a number of applications for
OpenCL and OpenACC. Similarly, the Rodinia benchmark suite
provides a number of di�erent applications for OpenMP, OpenCL,
and CUDA.

While SPEC Accel provides in total 19 OpenCL and 15 OpenACC
applications, we have selected only 14 OpenCL and 3 OpenACC
applications, whereas Rodinia provides 25 applications, however we
have selected only 19 of them to use for experimentation (see table
3). The inclusion criteria during the selection process of applications
are: (1) the need to have at least two implementations of the same
application in di�erent programming frameworks, or benchmark
suites, and (2) applications that are compilable in our systems. Table
3 lists the considered applications from the SPEC Accel and Rodinia
benchmark suite used for performance comparison of the selected
parallel programming frameworks.

BFS, CFD, HotSpot, LUD, and NW are implemented using OpenCL,
OpenMP and CUDA. The OpenCL implementation is provided by
both SPEC Accel and Rodinia benchmark suites. No OpenACC
implementation is provided by SPEC Accel for these applications.
B+Tree, GE, HW, Kmeans, LavaMD, and SRAD are implemented
using OpenCL and CUDA. While the OpenCL implementation is
provided by both benchmarks, the CUDA implementation is pro-
vided by Rodinia. BP, k-NN, Leukocyte, Myocyte, PathFinder, PF,
and SC are implemented using OpenCL and CUDA, and their im-
plementations are provided by the Rodinia benchmark suite.

Additional information and implementation details for each of
the considered benchmark applications are available at the docu-
mentation web-pages of SPEC Accel [16] and Rodinia [15].

3.2 Evaluation Metrics
In this section, we discuss the evaluation metrics considered for
comparison of the selected parallel programming frameworks, in-
cluding the required programming e�ort, the performance, and the
energy e�ciency.

3.2.1 Programming Productivity. To quantitatively evaluate the
programming e�ort required to parallelize a program, we use our
tool named CodeStat (see Section 2.1). We use CodeStat to determine
the total lines of code LOCtotal and the fraction of lines of code
LOCpar written in OpenCL, OpenACC, OpenMP, or CUDA for a
given application. We de�ne the parallelization e�ort as follows,

Session: Clouds Resource Management and Execution Environment ARMS-CC’17, July 28, 2017, Washington, DC, USA

3

https://github.com/suejb/x-MeterPU

Table 3: The considered applications from the SPEC Accel
and the Rodinia benchmark suites.

SPEC Accel Rodinia

Application Domain OpenCL OpenACC OpenMP OpenCL CUDA

LBM Fluid Dynamics x x
MRI-Q Medicine x x
Stencil Thermodynamics x x
BFS Graph Algorithms x x x x
CFD Fluid Dynamics x x x x
HotSpot Physics Simulation x x x x
LUD Linear Algebra x x x x
NW Bioinformatics x x x
B+Tree Search x x x
GE Linear Algebra x x x
Heartwall Medical Imaging x x x
Kmeans Data Mining x x x
LavaMD Molecular Dynamics x x x
SRAD Image Processing x x x
BP Pattern Recognition x x
k-NN Data Mining x x
Myocyte Biological Simulation x x
PF Medical Imaging x x
SC Data Mining x x

E f f ortpar [%] = 100 ∗ LOCpar /LOCtotal (1)

3.2.2 Performance and Energy Consumption. We use the execu-
tion time (T) and the Energy (E) to express the performance and
energy consumption. T is de�ned as the total amount of time that
an application needs from the start till the end of the execution,
whereas E is de�ned as the total amount of energy consumed by the
system (including host CPUs and accelerators) from the beginning
until the end of the execution.

The data for the execution time and the energy consumption
are collected using the x-MeterPU tool (see Section 2.2). To collect
such data, a wrapper class �le was created. The control �ow of
this class is as follows: (1) start the time and energy counters; (2)
synchronously execute the benchmark commands; and (3) stop the
time and energy counters and calculate the total execution time
and system energy consumption.

3.3 Results
In this section, we compare OpenMP, OpenACC, OpenCL, and
CUDA with respect to (1) programming productivity, and (2) per-
formance and energy consumption.

3.3.1 Programming Productivity. Table 4 shows the paralleliza-
tion e�ort as percentage of code lines written in OpenCL, OpenACC,
OpenMP, or CUDA that are required to parallelize various applica-
tions of Rodinia and SPEC Accel benchmark suites. We use Equation
1 in Section 3.2.1 to calculate the percentage of code lines.

Result 1: Programming with OpenCL requires signi�cantly more ef-
fort than programming with OpenACC for the SPEC Accel benchmark
suite.

Based on the available OpenCL and OpenACC code for LBM,MRI-
Q, and Stencil from the SPEC Accel benchmark suite, we observe
that on average OpenACC requires about 6.7× less programming
e�ort compared to OpenCL.

Result 2: Programming with OpenCL on average requires about
two times more e�ort than programming with CUDA for the Rodinia
benchmark suite.

Table 4: Programming e�ort required to parallelize the code
is expressed as percentage (see Equation 1) of code lineswrit-
ten in OpenCL, OpenACC, OpenMP, or CUDA. The remain-
ing code lines are written in general-purpose C/C++.

SPEC Accel Rodinia

OpenCL[%] OpenACC[%] OpenMP[%] OpenCL[%] CUDA[%]

LBM 3.21 0.87
MRI-Q 5.70 0.64
Stencil 4.70 0.61
BFS 6.95 4.86 9.07 12.50
CFD 5.83 2.53 9.00 8.08
HotSpot 4.75 2.67 13.18 8.20
LUD 5.78 2.30 9.72 7.82
NW 6.56 18.34 8.85
B+Tree 4.89 6.79 4.51
GE 9.63 14.21 9.76
Heartwall 5.34 6.74 3.97
Kmeans 2.80 2.67 2.17
LavaMD 4.61 9.24 7.74
SRAD 7.81 13.00 10.28
BP 12.21 5.95
k-NN 15.83 5.07
Myocyte 8.25 1.21
PF 17.83 9.47
SC 5.81 2.66

With respect to the comparison between OpenCL and CUDA
using the applications in the Rodinia benchmark suite, except of
the BFS implementation, on average CUDA requires 2× less pro-
gramming e�ort than OpenCL.

Result 3: Programming with OpenMP requires less e�ort than pro-
gramming with OpenCL and CUDA.

Based on the data collected for OpenMP, OpenCL, and CUDA
implementations of BFS, CFD, HotSpot, and LUD from the Rodinia
benchmark suite, we observe that on average OpenMP requires
3.6× less programming e�ort compared to OpenCL, and about 3.1×
less programming e�ort compared to CUDA.

Result 4: The human factor can impact the fraction of code lines to
parallelize the code.

We observe that the human factor signi�cantly impacts the frac-
tion of lines of code used to parallelize the code. For example, the
OpenCL implementation of BFS on the SPEC Accel benchmark
suite comprise 6.95% OpenCL speci�c lines of code, whereas the
implementation on the Rodinia comprise 9.07% OpenCL speci�c
lines of code. Di�erences in the required programming e�ort can
be observed also for CFD, HotSpot, LUD, NW, B+Tree, GE, Heartwall,
Kmeans, LavaMD, and SRAD.

3.3.2 Performance and Energy. Figures 2, 3, and 4 depict the
execution times and energy consumption for various applications
of SPEC Accel and Rodinia benchmark suites on Emil and Ida.

Result 5: The performance and energy consumption behavior of
OpenCL and CUDA are application dependent. For the Rodinia bench-
mark suite, for some applications OpenCL performs better, however
there are several applications where CUDA performs better.

Figure 2 depicts the execution time and energy consumption
of the OpenCL and CUDA implementations of NW, B+Tree, GE,
Heartwall, Kmeans, LavaMD, SRAD, BP, k-NN, Myocyte, PF, and SC
from the Rodinia benchmark suite on the GPU-accelerated system
Ida. Results show that the OpenCL implementation of seven out of
12 applications, including NW, GE, LavaMD, SRAD, BP, k-NN, and SC
perform better than their corresponding CUDA implementations.

Session: Clouds Resource Management and Execution Environment ARMS-CC’17, July 28, 2017, Washington, DC, USA

4

0,52

0,99

0
0,2
0,4
0,6
0,8

1
1,2

OpenCL CUDA

NW

Ti
m

e
[s

]

1,83 1,74

0

0,5

1

1,5

2

OpenCL CUDA

B+Tree

Ti
m

e
[s

]

15,90

21,98

0
5

10
15
20
25

OpenCL CUDA

GE

Ti
m

e
[s

]

3,02

1,24

0

1

2

3

4

OpenCL CUDA

Heartwall

Ti
m

e
[s

]

0,20 0,22

0
0,05
0,1

0,15
0,2

0,25

OpenCL CUDA

BP

Ti
m

e
[s

]

37,51 38,53

0
10
20
30
40
50

OpenCL CUDA

SRAD
Ti

m
e

[s
]

5,55

52,57

0
10
20
30
40
50
60

OpenCL CUDA

LavaMD

Ti
m

e
[s

]

21,25

3,36

0
5

10
15
20
25

OpenCL CUDA

Kmeans

Ti
m

e
[s

]

0,19 0,21

0
0,05
0,1

0,15
0,2

0,25

OpenCL CUDA

k-NN

Ti
m

e
[s

]

0,68
0,57

0

0,2

0,4

0,6

0,8

OpenCL CUDA

Myocyte

Ti
m

e
[s

]

14,63

8,41

0

5

10

15

20

OpenCL CUDA

PF

Ti
m

e
[s

]

4,19
5,31

0
1
2
3
4
5
6

OpenCL CUDA

SC

Ti
m

e
[s

]
(a) Time

189

286

0

100

200

300

OpenCL CUDA

NW

En
er

gy
 [J

]

CPU GPU 457
363

0
100
200
300
400
500

OpenCL CUDA

B+Tree

En
er

gy
 [J

]

3237
4405

0
1000
2000
3000
4000
5000

OpenCL CUDA

GE

En
er

gy
 [J

]

682

338

0
200
400
600
800

OpenCL CUDA

Heartwall

En
er

gy
 [J

]

105 113

0
20
40
60
80

100
120

OpenCL CUDA

BP

En
er

gy
 [J

]

11634 12500

0

5000

10000

15000

OpenCL CUDA

SRAD

En
er

gy
 [J

]

1423

9172

0
2000
4000
6000
8000

10000

OpenCL CUDA

LavaMD

En
er

gy
 [J

]

3798

644

0
1000
2000
3000
4000

OpenCL CUDA

Kmeans

En
er

gy
 [J

]

115 120

0

50

100

150

OpenCL CUDA

k-NN

En
er

gy
 [J

]

196 188

0
50

100
150
200
250

OpenCL CUDA

Myocyte

En
er

gy
 [J

]

2931

1776

0

1000

2000

3000

4000

OpenCL CUDA

PF

En
er

gy
 [J

]

917
1137

0
200
400
600
800

1000
1200

OpenCL CUDA

SC

En
er

gy
 [J

]

(b) Energy Consumption

Figure 2: A comparison of OpenCL and CUDA with re-
spect to (a) execution time and (b) energy consumption. Re-
sults are obtained for various applications from the Rodinia
benchmark suite (Table 3) on the GPU-accelerated system
Ida (Table 2).

While for most of the applications, including B+Tree, GE, SRAD,
BP, k-NN, Myocyte, and SC, the performance of OpenCL and CUDA
is comparable, for some applications such as NW and LavaMD there
is a large performance di�erence where OpenCL performs better
than CUDA, whereas for Heartwall, Kmeans, and PF the CUDA
implementations perform better than their OpenCL counterparts
do.

Result 6: Less execution time results with less energy consumption.
Figure 2 shows that, for all implementations of application bench-

marks, those that had lower execution time had lower energy con-
sumption. For instance, the OpenCL implementation of NW is
faster and consumes less energy than the corresponding CUDA
implementation.

Result 7: OpenMP implementations of CFD, HotSpot, and LUD
executed on Emil, perform signi�cantly slower than the corresponding
OpenCL and CUDA implementations executed on Ida.

Figure 3 depicts the comparison of OpenMP, OpenCL, and CUDA
with respect to the execution time and energy consumption using
the Rodinia benchmark suite. Figure 3a shows the execution time of
CFD, HotSpot, and LUD applications. The OpenMP implementation

18,20

3,44 3,73
6,46

3,53 3,71

24,56

4,86 4,16

0
5

10
15
20
25
30

O
M

P-
Em

il

O
C

L-
Id

a

C
U

D
A-

Id
a

O
M

P-
Em

il

O
C

L-
Id

a

C
U

D
A-

Id
a

O
M

P-
Em

il

O
C

L-
Id

a

C
U

D
A-

Id
a

CFD Hotspot LUD

Ti
m

e
[s

]

(a) Time

4325

762 818 1138 666

3369

5793

1750 1495

0
1000
2000
3000
4000
5000
6000
7000

O
M

P-
Em

il

O
C

L-
Id

a

C
U

D
A-

Id
a

O
M

P-
Em

il

O
C

L-
Id

a

C
U

D
A-

Id
a

O
M

P-
Em

il

O
C

L-
Id

a

C
U

D
A-

Id
a

CFD Hotspot LUD

En
er

gy
 [J

]

CPU Accelerator

(b) Energy Consumption

Figure 3: A comparison of OpenMP, OpenCL, and CUDA
with respect to (a) execution time and (b) energy consump-
tion using the Rodinia benchmark suite (Table 3). OpenMP
(OMP) versions of CFD, HotSpot, LUD are executed on the
Intel Xeon Phi accelerated system Emil (Table 2), whereas
OpenCL (OCL) and CUDA versions of CFD, HotSpot, LUD
are executed on the GPU-accelerated system Ida.

15,67

82,40

11,12

224,79

32,29 31,61

0

50

100

150

200

250

OCL ACC OCL ACC OCL ACC

LBM MRI-Q Stencil

Ti
m

e
[s

]

(a) Time

3092

17319

3417

70523

10776 10561

0

20000

40000

60000

80000

OCL ACC OCL ACC OCL ACC

LBM MRI-Q Stencil

En
er

gy
 [J

]

CPU GPU

(b) Energy Consumption

Figure 4: A comparison of OpenCL and OpenACC with re-
spect to (a) execution time and (b) energy consumption.
Results are obtained using LBM, MRI-Q, and Stencil from
the SPEC Accel benchmark suite (Table 3) on the GPU-
accelerated system Ida (Table 2).

of these applications is executed on the Intel Xeon Phi accelerated
system Emil, whereas the OpenCL and CUDA versions are exe-
cuted on the GPU accelerated system Ida. We may observe that
the OpenCL and CUDA versions execution time are comparable,
whereas the OpenMP implementation is signi�cantly slower. Please
note that the host CPUs of Emil are Intel Xeon E5-2695 v2, whereas
the host CPUs of Ida are of type E5-2650 v4. Furthermore, the Intel
Xeon Phi 7120P co-processor on Emil is the �rst generation of the
Intel Xeon Phi architecture (known as Knights Corner).

Result 8: OpenCL performs better than OpenACC for the SPEC
Accel benchmark suite on Ida.

Figure 4 depicts the comparison of OpenCL and OpenACC with
respect to execution time and energy consumption using LBM,
MRI-Q, and Stencil from the SPEC Accel benchmark suite on the
GPU-accelerated system Ida. We may observe that the OpenCL
implementation of LBM and MRI-Q is signi�cantly faster than
the corresponding OpenACC implementation, whereas for the im-
plementations of Stencil the results are comparable. However, ac-
cording to the results showed in Table 4 writing code for OpenCL
demands signi�cantly greater e�ort than writing OpenACC code.

Session: Clouds Resource Management and Execution Environment ARMS-CC’17, July 28, 2017, Washington, DC, USA

5

4 RELATEDWORK
In this section, we highlight examples of research that addresses
programming aspects of heterogeneous computing systems and
position this paper with respect to the related work.

Su et al. [18] compare the performance of OpenCL and CUDA
using �ve kernels: Sobel �lter, Gaussian �lter, median �lter, motion
estimation, and disparity estimation. The execution time of CUDA-
based implementations was 3.8% – 5.4% faster than the OpenCL-
based implementations.

Kessler et al. [7] study three approaches for programmability
and performance portability for heterogeneous computing systems:
SkePU skeleton programming library, StarPU runtime system, and
O�oad C++ language extension. Authors reason about the advan-
tages of each of these approaches and propose how they could be
integrated together in the context of the PEPPHER project [2] to
achieve programmability and performance portability.

Mittal and Vetter [11] provide a comprehensive coverage of
literature for GPU-accelerated computing systems. In this context,
the authors survey the literature about runtime systems, algorithms,
programming languages, compilers, and applications.

Li et al. [8] study empirically the programmer productivity in
the context of OpenACC with CUDA. The study that involved 28
students at undergraduate and graduate level was performed at
Auburn University in 2016. The students received the sequential
code of two programs and they had to parallelize them using both
CUDA and OpenACC. From 28 students, only a fraction was able to
complete properly the assignments using CUDA and OpenACC. The
authors conclude that OpenACC enables programmers to shorten
the program development time compared to CUDA. However, the
programs developed with CUDA execute faster than their OpenACC
counterparts do.

This paper complements the related research with an empirical
study of four widely used frameworks for programming heteroge-
neous systems: OpenCL, OpenACC, OpenMP, and CUDA. Using
de-facto standard benchmark suites SPEC and Rodinia we study
the productivity, performance, and energy consumption. Our mea-
surement tools CodeStat and x-MeterPU that we developed for this
study enable us to address systems accelerated with Intel Xeon Phi
and GPU.

5 SUMMARY
We have presented a study of productivity, performance, and en-
ergy for OpenMP, OpenACC, OpenCL, and CUDA. For comparison
we used the SPEC Accel and Rodinia benchmark suites on two
heterogeneous computing systems: Emil that comprises two Intel
Xeon E5 processors and one Intel Xeon Phi co-processor, and Ida
that has two Intel Xeon E5 processors and one GTX Titan X GPU.
Our major observations include: (1) programming with OpenCL re-
quires signi�cantly more e�ort than programming with OpenACC
for SPEC Accel benchmark suite; (2) programming with OpenCL
on average requires about two times more e�ort than programming
with CUDA for Rodinia benchmark suite; (3) the human factor can
impact the fraction of code lines to parallelize the code; (4) less exe-
cution time results with less energy consumption; and (5) OpenCL
performs better than OpenACC for SPEC Accel benchmark suite
on Ida.

Future work will address new architectures of Intel Xeon Phi
and NVIDIA GPU. Beside Rodinia and SPEC benchmarks we plan
to use real-world applications.

REFERENCES
[1] Erika Abraham, Costas Bekas, Ivona Brandic, Samir Genaim, Einar Broch Johnsen,

Ivan Kondov, Sabri Pllana, and A. Achim Streit. 2015. Preparing HPC Applications
for Exascale: Challenges and Recommendations. In 18th International Conference
on Network-Based Information Systems (NBiS). 401–406. https://doi.org/10.1109/
NBiS.2015.61

[2] Siegfried Benkner, Sabri Pllana, Jesper Larsson Tra�, Philippas Tsigas, Uwe Dolin-
sky, Cedric Augonnet, Beverly Bachmayer, Christoph Kessler, David Moloney,
and Vitaly Osipov. 2011. PEPPHER: E�cient and Productive Usage of Hybrid
Computing Systems. Micro, IEEE 31, 5 (Sept 2011), 28–41.

[3] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Shea�er, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC 2009. IEEE, 44–54.

[4] George Chrysos. 2014. Intel® Xeon Phi™ Coprocessor-the Architecture. Intel
Whitepaper (2014).

[5] Daniel Grzonka, Agnieszka Jakobik, Joanna Kolodziej, and Sabri Pllana. 2017.
Using a multi-agent system and arti�cial intelligence for monitoring and improv-
ing the cloud performance and security. Future Generation Computer Systems
(2017). https://doi.org/10.1016/j.future.2017.05.046

[6] Guido Juckeland, William Brantley, Sunita Chandrasekaran, Barbara Chapman,
Shuai Che, Mathew Colgrove, Huiyu Feng, Alexander Grund, Robert Henschel,
Wen-Mei W Hwu, et al. 2014. SPEC ACCEL: a standard application suite for
measuring hardware accelerator performance. In International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance Computer
Systems. Springer, 46–67.

[7] Christoph Kessler, Usman Dastgeer, Samuel Thibault, Raymond Namyst, Andrew
Richards, Uwe Dolinsky, Siegfried Benkner, Jesper Larsson Tra�, and Sabri Pllana.
2012. Programmability and performance portability aspects of heterogeneous
multi-/manycore systems. In 2012 Design, Automation Test in Europe Conference
Exhibition (DATE). 1403–1408. https://doi.org/10.1109/DATE.2012.6176582

[8] Xuechao Li, Po-Chou Shih, Je�rey Overbey, Cheryl Seals, and Alvin Lim. 2016.
Comparing programmer productivity in OpenACC and CUDA: an empirical
investigation. International Journal of Computer Science, Engineering and Appli-
cations (IJCSEA) 6, 5 (2016), 1–15. https://doi.org/10.5121/ijcsea.2016.6501

[9] Lu Li and Christoph Kessler. 2016. MeterPU: A Generic Measurement Abstraction
API Enabling Energy-tuned Skeleton Backend Selection. Journal of Supercom-
puting (2016), 1–16. https://doi.org/10.1007/s11227-016-1792-x

[10] Suejb Memeti and Sabri Pllana. 2015. Accelerating DNA Sequence Analysis Using
Intel(R) Xeon Phi(TM). In 2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 3. 222–227.

[11] Sparsh Mittal and Je�rey S Vetter. 2015. A survey of cpu-gpu heterogeneous
computing techniques. ACM Computing Surveys (CSUR) 47, 4 (2015), 69.

[12] NVIDIA. 2016. CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/. (September 2016). Accessed: 2017-03-06.

[13] NVIDIA. 2017. What is GPU-Accelerated Computing? http://www.nvidia.com/
object/what-is-gpu-computing.html. (April 2017). Accessed: 2017-04-03.

[14] OpenMP. 2013. OpenMP 4.0 Speci�cations. http://www.openmp.org/
speci�cations/. (July 2013). Accessed: 2017-03-10.

[15] Rodinia. 2015. Rodinia:Accelerating Compute-Intensive Applications with
Accelerators. (December 2015). http://www.cs.virginia.edu/~skadron/wiki/
rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_
with_Accelerators Last accessed: 10 April 2017.

[16] SPEC. 2017. SPEC ACCEL: Read Me First. https://www.spec.org/accel/docs/
readme1st.html#Q11. (February 2017). Accessed: 2017-04-10.

[17] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems. Computing in science
& engineering 12, 1-3 (2010), 66–73.

[18] Ching-Lung Su, Po-Yu Chen, Chun-Chieh Lan, Long-Sheng Huang, and Kuo-
Hsuan Wu. 2012. Overview and comparison of OpenCL and CUDA technology
for GPGPU. In 2012 IEEE Asia Paci�c Conference on Circuits and Systems. 448–451.
https://doi.org/10.1109/APCCAS.2012.6419068

[19] Andre Viebke and Sabri Pllana. 2015. The Potential of the Intel (R) Xeon Phi for
Supervised Deep Learning. In 2015 IEEE 17th International Conference on High
Performance Computing and Communications. 758–765. https://doi.org/10.1109/
HPCC-CSS-ICESS.2015.45

[20] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. 2012.
OpenACC: First Experiences with Real-world Applications. In Proceedings of the
18th International Conference on Parallel Processing (Euro-Par’12). Springer-Verlag,
Berlin, Heidelberg, 859–870.

[21] Yonghong Yan, Barbara M. Chapman, and Michael Wong. 2015. A comparison
of heterogeneous and manycore programming models. https://goo.gl/81A4iV.
(March 2015). Accessed: 2017-03-31.

Session: Clouds Resource Management and Execution Environment ARMS-CC’17, July 28, 2017, Washington, DC, USA

6

https://doi.org/10.1109/NBiS.2015.61
https://doi.org/10.1109/NBiS.2015.61
https://doi.org/10.1016/j.future.2017.05.046
https://doi.org/10.1109/DATE.2012.6176582
https://doi.org/10.5121/ijcsea.2016.6501
https://doi.org/10.1007/s11227-016-1792-x
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.openmp.org/specifications/
http://www.openmp.org/specifications/
http://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
http://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
http://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
https://www.spec.org/accel/docs/readme1st.html#Q11
https://www.spec.org/accel/docs/readme1st.html#Q11
https://doi.org/10.1109/APCCAS.2012.6419068
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.45
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.45
https://goo.gl/81A4iV

	Abstract
	1 Introduction
	2 Our Methodology and Tools
	2.1 CodeStat - A tool for quantifying the parallelization effort
	2.2 x-MeterPU - A tool for performance and energy consumption measurement

	3 Evaluation
	3.1 Experimentation Environment
	3.2 Evaluation Metrics
	3.3 Results

	4 Related Work
	5 Summary
	References

