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Abstract—The Message Passing Interface (MPI) is the de
facto communication standard for distributed-memory High-
Performance Computing (HPC) systems. Ultra-low latency com-
munication in HPC is difficult to achieve because of MPI
processing requirements, in particular matching requests and
messages done by traversing the corresponding queues. Many
researchers have addressed this issue by redesigning queues or
by offloading them to hardware accelerators. However, state-of-
art software approaches cannot free CPUs “from the misery”
and hardware approaches either lack scalability or still leave
substantial room for further improvement.

With the emergence of numerous tightly coupled CPU-FPGA
computing architectures, offload of MPI functionality to user-
controlled hardware is now becoming viable; we find it productive
to revisit hardware approaches. To maintain the generality
necessary to support MPI while preventing high resource uti-
lization, we design our MPI queue processing offload based
on a recent analysis of performance characteristics in HPC
applications. We propose a novel, two-level message queue design:
a content addressable memory (CAM) coupled with a resource-
saving hardware linked-list. We also propose an optimization
that maintains high speed in the cases when the queue is long.
To test our design, we create an SOC-based testbed consisting of
softcore processors and hardware implementations of the MPI
communication stacks. Even while using only a small fraction
of the Stratix-V logic, our design can be one to two orders of
magnitude faster than two well-known hardware designs.

Index Terms—MPI, message matching, message queue, FPGA
communication processing, offload, middleware acceleration

I. INTRODUCTION

Internode communication in non-trivial computer systems
requires, from first principles, certain actions that are well
understood and form the basis of communication protocols.
A key problem of computer architectures is to consider how
to accelerate the required semantics (e.g., message matching).
The Message Passing Interface (MPI) [1], as the dominant
scalable parallel programming model, provides communica-
tion APIs with well-defined syntax and semantics, but does not
mandate protocols (just API behaviors). Accelerating commu-
nication protocols amounts to improving the performance of
MPI by choosing implementations that outperform software-
only solutions. MPI’s point-to-point message-matching re-
quirements are quite general and so imply significant overhead,
particularly on the receiver side.

MPI provides rich point-to-point communication primitives
and collective communications that are process-group-scoped.
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These operations are widely used in HPC applications; they
also take a large number of CPU instructions. Raffenetti et
al. [2] analyze the MPI implementation MPICH and show that
the average instruction count of 253 for an MPI_Isend call.
For MPI_Irecv, the software path is similar. However, the
number discussed is just the instruction count for posting a
non-blocking send or receive request; it does not include the
instructions for data send or receive processing. For instance,
receive operations can consume a significant number of cycles
for message-matching.

Message matching in MPI has drawn much of attention and
has been called as “a misery” [3]. Why is it slow? First of all,
MPI provides general matching criteria based on source, tag,
wildcards, and the communicator. To address this requirement,
MPI implementations such as MPICH and Open MPI use
two major types of queues for receive operations. The posted
receive queue (PRQ) is used for storing the unresolved posted
receive requests, and the unexpected message queue (UMQ)
is used for storing the arrived but not requested messages.
These queues are usually implemented as linked lists. During
the matching process, the linked lists are traversed for the
match between a request and a message. Depending on the
application and network behavior, the position of the matched
element can vary, and each traversal can take O(n) time, thus
causing performance degradation.

Various approaches have been proposed to address the
performance of message matching in the PRQ and UMQ. Soft-
ware approaches seek to improve matching performance by
breaking down the linked-list into smaller ones; this approach,
however, provides limited speedup. Moreover, CPUs are still
not free from the so-called misery. Another set of solutions is
offloading message passing to an embedded processor on the
Network Interface Controller (NIC); this reduces load on the
host, but is still a CPU. Specialized hardware designs have
also been proposed, but they either lack scalability or leave
substantial room for performance improvement.

The thesis of this paper is this: As adding FPGAs to
HPC clusters and their use for MPI is a growing trend [4]–
[6], making full use of the reconfigurability and the degrees
of design freedom of the FPGAs concomitantly becomes a
cost-efficient choice. As part of the program to offload MPI
functionality, we accelerate MPI message matching using pre-
existing FPGAs in the cluster.

The contributions of this paper are: (1) We are the first to
explore hardware MPI message queues on FPGAs, and the first
to offload MPI message matching with both UMQ and PRQ
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on FPGA hardware. (2) Among the hardware MPI message
matching designs, we are the only thus far to test the hardware
designs by running the implementation on FPGAs instead of
running simulations using CPUs. (3) We propose a novel two-
level queue design for the UMQ and PRQ, which targets both
speed and scalability. (4) We propose and implement an SOC
design on Stratix-V FPGAs as the testbed. We test our design
with two benchmarks and show performance improvement
over two baselines [7], [8]. Our design outperforms both
baselines by one to two orders of magnitude using about 10%
of the on-chip logic resources.

II. RELATED WORK

Improving MPI message matching performance has been
much studied. Software approaches usually break down one
linked list into multiple linked lists, each of which is entered
through either hashing or indexes [3], [9]. To free up the
CPU, message matching has been offloaded to the embedded
processor on the NIC [10], [11]; but this approach does little
to improve matching performance.

Offloading message matching using specialized hardware
has been proposed using an associative list processing unit
(ALPU) [7]; it provides a constant matching latency when the
queue length fits in the ALPU, but consumes logic and does
not have good scalability. They later proposed a microcoded
processor that trades off performance for flexibility [12].
Mattheakis and Papaefstathiou [8] proposed a resource-saving
ASIC design: the hash-based MPI processor. However, the
performance gain is limited since it follows the same methods
as used in software hash-based linked-lists.

Prior work on offloading MPI to FPGAs put little emphasis
on message queues, while mostly concentrating on collective
operations [13]–[15]. Saldaña et al. [16] use softcore proces-
sors to handle MPI primitives, including the matching process.
Huang et al. [17] do not have PRQs in their design.

In distinction from the related work, we are, to the best
of our knowledge, the first to explore hardware MPI message
queues (UMQ and PRQ) on FPGAs, and the first to support
nonblocking MPI operations with hardware stacks on FPGAs.

III. DESIGN AND IMPLEMENTATION

We consider message matching offload and use results from
HPC queue analysis to evaluate queue design choices. We
then describe a design based on two-level queues and discuss
optimizations.

A. Message matching offloading

We design a hardware receive engine to perform message
matching (Fig. 1). The PRQ stores the unresolved posted
receive requests while the UMQ contains the headers of the
unexpected messages and the data addresses (rather than the
data); data is held in a separately. A completion unit (Comp
Unit) keeps track of the number of completed requests.

When there is a receive request from the CPU side, e.g., an
MPI_Irecv, the dataflow follows the red arrows in Fig. 1.
The command finite state machine (FSM) polls for requests

Fig. 1. Receive engine with message matching. Requests from the CPU flow
along the red arrow; messages from the network flow along the blue arrow.

from the CPU and triggers the data matching FSM. The FSM
in turn tries to find a matched message header from the UMQ.
If none is found, the data finding FSM inserts the request into
the PRQ. Otherwise it signals the Comp Unit and the data
address contained in the matched entry is used to read the
data memory. Finally, the output of the memory is moved
to the CPU. If the request is a blocking request, such as an
MPI_Recv, the PRQ and Comp Unit are bypassed and the
receive call returns after finding a match.

Now following the blue arrows, a newly arrived packet
from the network triggers the request matching FSM to find
a matched request from the PRQ. When a match is found,
the request matching FSM removes the request from the PRQ
and signals the Comp Unit. The received data is moved to the
CPU. Otherwise the request matching FSM stores the data in
data memory and performs an insert into the UMQ.

Non-blocking operations must test completion; blocking
operations need not. When there is a wait call from the CPU
testing completion, we pass the request count with it. The
command FSM reads the counter in the Comp Unit, and waits
until the counter threshold is reached.

B. Design choices of queues based on HPC queue analysis

Klenk and Fröning [18] have analyzed exascale proxy ap-
plication traces, made available by the Department of Energy
(DOE), to find characteristics of queue length and traversal
depth. These results indicate that both the UMQ and the PRQ
lengths are smaller than 128 elements in 50% of the various
execution points measured, and smaller than 512 in 75%.
Therefore, for both UMQ and PRQ, a small but fast storage
unit is ideal for most applications. Meanwhile, they also show
that the queue length can sometimes be much larger: a few
thousand or even longer. Therefore, secondary storage unit is
also needed that can be triggered in less common cases.

In MPI, wildcard matching may be required when a pro-
grammer specifies a receive request’s source or tag as Any.
We profile the NAS parallel benchmarks [19] and the Mantevo
HPC proxy application suite [20] and find very few such
instances. Only miniFE, HPCCG, and miniXyce in Mantevo
have one or two receive requests with source rank wildcards
and no tag wildcards are used. Furthermore, the wildcard
receives can be potentially replaced by specifying the source
rank. Therefore in this work, we do not provide wildcard

192



Fig. 2. Two level unexpected message queue(UMQ).

support. While such instances remain rare they can be handled
elsewhere with little overall performance loss.

C. Two-level queue

We propose a two-level queue design based on the queue
characteristics of HPC applications (Fig. 2). The first level is
a content addressable memory (CAM) that can find a match in
a single cycle; the second level is a resource-saving hardware
linked-list. The CAM has a depth of 256 which is sufficient
for most cases. Otherwise the linked-list with a capacity of
32,768 entries is used. As slots are freed up in the CAM,
entries are replenished from the linked-list. Both levels have
a counter unit to facilitate data movement. The counter units
input the queue status to a data mover unit. Transfer takes one
cycle for the linked-list, during which any insertion into the
linked-list is stalled. Details are given in the next subsections.

1) First-level: Content Addressable Memory (CAM):
CAMs are widely used in routers for network packet classifica-
tion in the form of ternary CAM (TCAM). Here we eliminate
wildcards and so implement CAMs instead of TCAMs. Xilinx
and Altera both have CAM IPs designed based on RAM and/or
shift registers. The throughput of these IPs is high but the
insertion latency can be as high as 16 cycles.

We implement the CAM with one cycle of latency for both
insertion and matching. As shown in Fig. 2, each entry has
a valid bit, a 64-bit header, and a 32-bit address field. In the
UMQ design, this 32-bit field is the address to the memory
where the received data is temporarily stored. In the PRQ
design, this field is the destination address in the CPU memory.
The CAM counter unit keeps track of the valid fields and
exposes the first empty entry for insertion. For matching, the
CAM searches the request in parallel against all the header
fields of the entries and produces the match as the result.

2) Second-level: hardware linked-list: The hardware
linked-list (Fig. 2) is inspired by that in the hash-based MPI
processor [8]. PRQ and UMQ are both mapped to an MPI
buffer that is implemented with a single SRAM. It represents
the empty entries as a free list. Each entry of the MPI buffer
contains the source ID, tag bits, data address, and the next
element’s index. Each list has a register pair for storing head
and tail. Search and insert requests of the two queues are
processed sequentially via a list manager. A problem is that
requests can arrive simultaneously from both processor and
network. Moreover, queues need to process both traversals
and insertions. Therefore when there are simultaneous read
and write requests, to one or both queues, this serialization
creates congestion and throttles performance.

Our linked-list is similar but we address the serialization
problem by implementing it with two dual-ported BRAMs
where each queue has two ports. With this modification,
the design can handle simultaneously accesses and perform
the operations in parallel. We also extend each entry with a
communicator ID field.

When inserting an unexpected message into the linked-list
of a UMQ, the linked-list first uses the head register in the
free queue (freeQ) as an address to access the RAM, writes
the new header value and the data address to the entry, and
updates the freeQ head with the next pointer value returned by
the RAM. Meanwhile, the next pointer field of the UMQ tail
entry is updated with the inserted entry’s index; the UMQ tail
register is also updated. When searching, the linked-list reads
the UMQ head register and starts traversing based on the next
pointer value while comparing with the header field. When a
match is found, a deletion in the UMQ and a push back to
the freeQ are performed.

D. Optimized two-level queue

The length and search depth of the queue can each be as
high as a few thousand. Since search time increases linearly,
this is too expensive; we therefore split the second-level
linked-list into n smaller linked-lists. Insertion is done using
a round-robin arbiter; searching is performed in parallel. The
data mover moves an entry to the CAM from a single linked-
list using a round-robin policy. By reducing the linked-list
lengths to 1/n of the length and enabling parallel searching,
the search latency in the linked-list for the last entry is also
1/n of the original case. In our experiments we configure n to
be 4 or 64. We refer to these two designs as Parallel-two-level
and Parallel-two-level-64.

IV. EXPERIMENTAL SETUP

A. Testbed

To test the message matching hardware, we implement an
SOC on a Altera Stratix-V 5SGSMD8 FPGA with hardware
support for MPI point-to-point communication and using Al-
tera tools for development (including Qsys for system inte-
gration). The SOC has three major components (Fig. 3). The
CPU is a softcore 32-bit NIOS II IP [21], [22]; its peripherals
are a JTAG UART, a phase lock loop (PLL), a performance
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Fig. 3. Message matching testbed: MPI on SOC.

counter, and a 0.5MB on-chip memory. We wrap the MPI send
and receive engines as two custom instruction slaves [23], and
connect them to the custom instruction master port of the Nios
II processor. The MPI engines use an eager protocol. We use
the Altera Interlaken PHY IP to connect our MPI hardware
with the Multi-gigabit Transceivers (MGTs). In our testbed
four FPGAs are connected via the MGTs [4], [24].

After Qsys generates the system, we integrate the system
into the overall Quartus II project. After compilation, the
system is downloaded to the Stratix-V 5SGSMD8 FPGA. We
port the benchmark code with the Nios II IDE. The NIOS II
processor offloads the MPI operations in the benchmarks to
the hardware design via custom instructions.

B. Baselines and benchmarks

We test our design with two benchmarks, and compare the
performance results with two other similar hardware designs.

There is no hardware message matching design that com-
bines state-of-art performance and scalability. For the cases
where queue length is smaller than 1K, we compare our result
with the 256-entry associative list processing unit (ALPU)
result [7]. When the queue is larger, we compare with the
64-bucket, hash-based MPI processor [8]. It splits the single
linked-list by hashing into 64 buckets based on source rank.

The baseline results are based on simulation. It is notewor-
thy that the ALPU simulates the network latency as 200ns,
which is the same as our average network time via tightly
connected MGTs. However, the hash-based MPI processor
has not accounted for network time; therefore, for comparison
we connect our MPI send and receive engines and use the
loopback results.

The Preposted Latency Benchmark [25] is used by the
ALPU; this benchmark is a standard for measuring the match-
ing performance of MPI queues. The key idea is as follows:
for testing the matching latency at depth N of the PRQ, it
preposts N−1 eager non-blocking receive requests in the PRQ
and then posts the latency measure request for matching. A
wait call tests the completion of the receive.

Another important performance metric is time to unload
when the queue is filled. We use an extension of the pre-
posted latency benchmark introduced in the hash-based MPI
processor [8]. After preposting N eager non-blocking receive

Fig. 4. Growth of latency of three posted request queue (PRQ) designs
(logarithmic). The ALPU has 256 entries [7], the Two-level has one secondary
linked-list, and the Parallel-two-level has 4 parallel linked-lists.

requests, the benchmark dequeues the last element in the queue
until the queue is empty. A wait call with a request count of
N is used to finish.

V. RESULTS AND ANALYSIS

A. Performance results

1) The preposted latency benchmark: With various queue
lengths, we measure the average matching latency of the last
entry in the queue. The results are shown in Fig. 4. From these
results, we make the following observations.
• When the three designs are in the constant-time region,

ALPU takes about 1 µs longer than our queue; this is
because in the ALPU system, the offload happens twice:
from the CPU, to NIC processor, and to the ALPU.

• When the traversal time dominates the latency, we out-
perform; e.g., when the preposed request count is 1000,
our Parallel-two-level queue is 22x faster than ALPU.

• When the queue length is bigger than the CAM capacity
(256), the traversal time of our designs increases linearly
with the queue depth. This is because traversing the
linked-list takes 3 cycles per element.

2) The unloading latency benchmark: We test the latency
of emptying a queue; results are shown in Fig. 5.

When the queue length is below 256, then all of our designs
outperform the hash-based MPI processor. When the queue
length is 500 and 1,000, the hash-based MPI processor out-
performs the two-level and the Parallel-two-level designs with
hashing into 64 buckets. This hashing enables the possibility
of reducing the traversal depth to 1/64, but there is bias when
messages’ source ranks are not evenly distributed. Our parallel
linked-list resolves this bias, thus the speed benefits are shown
when the queue lengths are 10,000 and 30,000. Furthermore,
Parallel-two-level-64’s performance is sustained at one order
of magnitude over the hash-based MPI processor.

B. Resource and frequency results

We synthesize the designs using Quartus II. Resource uti-
lization is shown in Table I. The maximum frequency of MPI
hardware with the Two-level, Parallel-two-level, and Parallel-
two-level-64 queues are 321.3 MHz, 234 MHz, and 168 MHz
respectively. The frequency decreases as the parallelism of
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Fig. 5. The latency to unload queues with various posted request queue (PRQ)
lengths. The hash-based MPI Processor has 64 hashing destination buckets [8].
The Parallel-two-level-bucket64 has 64 parallel linked-lists.

TABLE I
RESOURCE UTILIZATION OF DESIGN COMPONENTS

Components ALMs BRAMs Registers

CPU 2151(<1%) 0.5MB 2596

Network hardware 6009(2.3%) 38.11KB 9404

MPI
hardware

Two-level 21372(8.1%) 1.125MB 2816
Parallel-two-level 21418(8.2%) 1.125MB 2862
Parallel-two-level-64 21491(8.2%) 1.125MB 2934

the linked-list increases; this is because of the addition of an
arbiter and a multiplexer.

C. Portability and scalability

For systems where the CPU and the FPGA are connected via
PCIe, QPI, UPI, or Xilinx CCIX, our MPI hardware designs
are portable. For instance, in a system where an X86 processor
and an FPGA are connected by PCIe, our MPI hardware can
be attached to the host CPU via PCIe IPs. The latency from
user space to the FPGA hardware via PCIe-gen2 is 3.54 µs
to 26.88 µs [26]; this latency is in addition to the matching
latency reported.

The UMQ and the PRQ have a capacity of 33,024 entries
each, which is sufficient to cover all the cases including
on with 10,684 ranks [18]. Since FPGAs are configurable
and the designs parameterized, the MPI hardware is scalable
applications with up to one million processes.

VI. CONCLUSION

We address MPI message matching latency by offloading
MPI to FPGA hardware. We propose and prototype a novel
message matching design with two-level queues: a high-speed
CAM and a scalable hardware linked-list. We implement an
SOC on the Stratix-V FPGA as a testbed and evaluate our
message matching designs with two standard benchmarks. As
compared against two leading hardware designs, we provide
one to two orders of magnitude speedup while consuming only
a small part of the FPGA’s resources.

Accelerating MPI middleware is essential for HPC sys-
tems. Future research includes enabling and demonstrating
proxy application performance improvement based on message
matching offload, and providing further support for offloading
multiple MPI ranks per FPGA. We also plan to support the
proposed persistent operations [27] for MPI-4.
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[18] B. Klenk and H. Fröning, “An Overview of MPI Characteristics of
Exascale Proxy Applications,” ISC, vol. 10266, pp. 217–236, 2017.

[19] T. Tabe and Q. Stout, “The use of the MPI communication library in
the NAS parallel benchmarks,” Techincal Report, pp. 1–16, 1999.

[20] M. A. Heroux et al., “Improving performance via mini-applications,”
Sandia National Laboratories, Tech. Rep. SAND2009-5574, vol. 3, 2009.

[21] Altera, “Generic Nios II Booting Methods User Guide Hardware Ab-
straction Layer,” 2016.

[22] Q. Xiong and M. Herbordt, “Bonded Force Computations on FPGAs,”
in Proc. IEEE Symp. Field Prog. Custom Computing Machines, 2017.

[23] Altera, “Nios II custom instruction user guide,” Altera, vol. 95134, no.
408, p. 46, 2017.

[24] J. Sheng, C. Yang, and M. Herbordt, “High Performance Dynamic
Communication on Reconfigurable Clusters,” in Proc. IEEE Conf. Field
Prog. Logic and Applications, 2018.

[25] K. D. Underwood and R. Brightwell, “The impact of MPI queue usage
on message latency,” Proceedings of the International Conference on
Parallel Processing, pp. 152–160, 2004.

[26] J. Gong, T. Wang, J. Chen, H. Wu, F. Ye, S. Lu, and J. Cong, “An
efficient and flexible host-FPGA PCIe communication library,” Proc.
IEEE Conf. Field Prog. Logic and Applications, 2014.

[27] A. Skjellum, “Persistent Point-to-point-channels for the ‘point-to-point
communication chapter’; ticket #88,” 2018.

195


