
The Journal of Systems and Software 155 (2019) 130–144

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

In Practice

Genetic algorithm based test data generation for MPI parallel

programs with blocking communication

Tian Tian

a , Dunwei Gong

b , ∗, Fei-Ching Kuo

c , 1 , Huai Liu

c

a School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, PR China
b School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China
c Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia

a r t i c l e i n f o

Article history:

Received 21 April 2017

Revised 25 March 2019

Accepted 11 April 2019

Available online 12 April 2019

Keywords:

Parallel program

Blocking communication

Path coverage

Test data

Genetic algorithm

a b s t r a c t

Parallel computing is one of mainstream techniques for high-performance computation in which MPI

parallel programs have gained more and more attention. Genetic algorithms (GAs) have been widely em-

ployed in automated test data generation, leading to a major family of search-based software testing

techniques. However, previous GA-based methods have limitations when testing MPI parallel programs

with blocking communication. In this paper, we focus on the path coverage problem for MPI parallel

programs with blocking communication, and formulate the problem as an optimization problem with

its decision variable being the program input and the execution order of sending nodes. In addition, we

develop target amending strategies for candidates when solving the problem using genetic algorithms.

The proposed method is evaluated and compared with several state-of-the-art methods through a se-

ries of controlled experiments on five typical programs. The experimental results show that the proposed

method can effectively and efficiently generate test data for path coverage.

© 2019 Elsevier Inc. All rights reserved.

o

i

t

e

n

n

a

t

b

a

o

a

b

t

e

P

c

s

g
1. Introduction

A parallel program consists of two or more processes, which run

in parallel and interact with each other according to the mecha-

nisms of communication and synchronization, to solve scientific or

engineering problems. Concurrency is the property differentiating

the parallel program from the serial program, in which operations

are executed in a fixed sequence.

M essage- P assing I nterface (MPI) is a communication middle-

ware through which programmers can establish communication

among processes in a multiprocessor system. It is one of the most

important and widely used parallel programming libraries due to

its excellent compatibility and efficiency (Snir et al., 1998). In MPI,

sending and receiving messages are crucial for passing messages

between two processes. A process that sends a message is regarded

as the sender , and the one that receives the message is considered

as the receiver.

When sender and/or message tags are unspecified in receiving

functions, and more than one process tends to send a message

to the same receiver simultaneously, and the sending operations
∗ Corresponding author.

E-mail address: dwgong@vip.163.com (D. Gong).
1 It is with deep regret and sadness that we report the passing of the third author

Fei-Ching Kuo on October 6, 2017.

s

s

s

m

2

https://doi.org/10.1016/j.jss.2019.04.049

0164-1212/© 2019 Elsevier Inc. All rights reserved.
f these processes may be completed in different orders, result-

ng in different execution traces even if the program runs against

he same program input, which is the so-called nondeterministic

xecution of MPI programs. MPI provides two kinds of commu-

ication modes: blocking and non-blocking . On the one hand, the

on-blocking mode is beneficial to the execution efficiency of par-

llel programs. However, MPI programs with the non-blocking pat-

ern typically behave more unpredictable than programs with the

locking counterpart. Meanwhile, the non-blocking mode requires

dditional auxiliary functions when transmitting messages. On the

ther hand, the blocking mode program is more logically clear

nd more controllable than the non-blocking mode, although the

locking mode has drawbacks in the communication and calcula-

ion overlap of MPI programs. Various software systems have gen-

rally been developed using MPI in the Blocking-Communication

arallel mode (Barker, 2015). In the rest of this paper, we will

all this kind of software MPI-BCP software (BCP software, for

hort).

Software testing is a primary software engineering process to

uarantee software quality, with its focus on detecting errors in

oftware. One key testing activity is designing test data to run

oftware and observing software behavior during the run. Various

tudies have shown that genetic algorithm (GA) is an effective

ethod of automated generating test data (Malhotra and Khari,

013; Harman and McMinn, 2010), and code coverage is a sensible

https://doi.org/10.1016/j.jss.2019.04.049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.04.049&domain=pdf
mailto:dwgong@vip.163.com
https://doi.org/10.1016/j.jss.2019.04.049

T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144 131

p

t

(

(

B

g

T

c

c

s

b

t

a

p

o

t

l

t

c

i

a

t

f

g

S

d

b

o

e

t

o

S

c

S

r

2

2

e

p

a

m

M

t

a

t

b

s

t

2

c

A

m

t

g

D

t

n

s

w

T

i

o

i

b

h

i

e

c

m

n

c

NOTATION

p A parallel program

p i The i th process of p

n i
j

The j th basic unit of p i

P

i The given path in p i

P The given program path

X The program input

ndp A non-deterministic point

ndp k The k th non-deterministic point

DNP The set of non-deterministic points

π k The execution sequence of sending nodes corre-

sponding to ndp k
D πk

The set of execution sequences of sending nodes

corresponding to ndp k
| D πk

| The size of D πk

π j

k
The j th execution sequence of sending nodes in D πk

˜ X The decision variable or a solution

D X The domain of X

z The number of non-deterministic points

D ˜ X The domain of D ˜ X

ξ i (̃ X) The sub-path in p i traversed by ˜ X

ξ (̃ X) The path traversed by ˜ X

iL The length of an encoded input

nkL The length of encoded execution orders of sending

nodes associated with k th ndp

L The length of an encoded candidate solution

C The set of encoded candidate solutions

DC The set of candidate solutions

c j The j th encoded candidate solution

a nk
j

/b nk
j

The j th digit of execution orders of sending nodes

associated with the k th ndp

a i
j
/b i

j
The j th bit of input encodings

pos The crossover or mutation position

O The ordered set that presents the sequence to be

amended

ˆ O The set that contains all the process identifiers as-

sociated with ndp corresponding to the sequence to

be amended

o ∗ The element under examination

o m The digit after mutation

arameter in designing the fitness function of GA for software

esting.

Tian and Gong applied a traditional genetic algorithm (TGA)

 Tian and Gong, 2013) and a co-evolutionary genetic algorithm

CGA) (Tian and Gong, 2016) to generate test data for BCP software.

oth methods are code-based coverage testing, with the purpose of

enerating test data to execute software through a given path. In

GA, test data generation is based on the assumption of correct

ommunication among processes. For CGA, the experiments are

ontrolled such that more than one sender cannot simultaneously

end a message to the same receiver to avoid non-deterministic

ehavior in parallel programs.

In this study, the crucial characteristics of BCP software, such as

ypical sending/receiving operator and non-deterministic behavior,

re fully taken into account. We reformulated the path coverage

roblem and identified the program input and the execution order

f sending nodes as the decision variable. Besides, we developed

arget amending strategies for candidates at each round of the evo-

ution. Essentially, this paper has the following twofold contribu-

ions: (1) formulating the problem of test data generation for path

overage as an optimization problem with its decision variable be-
ng the program input and the execution order of sending nodes,

nd (2) developing target amending strategies for candidates ob-

ained by the crossover and mutation operators when solving the

ormulated problem using genetic algorithms.

The rest of this paper is organized as follows. The back-

round information of parallel programs is introduced in Section 2 .

ection 3 presents how to formulate the problem of generating test

ata and explains our amending strategies for candidates obtained

y the crossover and mutation operators in the GA-based method

f generating test data for BCP software. The proposed method is

valuated through a series of experiments. The experimental set-

ings, including research questions, object programs, framework

f test data generation and experimental design are detailed in

ection 4 ; while the experimental results are analyzed and dis-

ussed in Section 5 . Section 6 discusses the related work. Finally,

ection 7 concludes the whole paper, and identifies potential di-

ections for future research.

. Background

.1. MPI

A parallel program is composed of multiple processes that ex-

cute the same or different code in parallel. Any process in the

rogram needs to call MPI_Init to initialize the MPI environment

t the initial stage, and MPI_Finalize to exit from the MPI environ-

ent at the final stage. Other MPI functions, e.g., MPI_Send and

PI_Recv, are called after MPI_Init and before MPI_Finalize. Signa-

ures and parameters of these two methods are given in Tables 1

nd 2 (extracted from Snir et al., 1998).

In MPI_Send, “dest” and “tag” must be set explicitly. By con-

rast, “source” and “tag” in MPI_Recv can be set either explicitly

y giving the sender information, or implicitly by using two con-

tants, namely MPI_ANY_TAG and MPI_ANY_SOURCE, which mean

hat any tag and any sender are acceptable.

.2. BCP software

Parallel software is the program with m processes executed

oncurrently and cooperating with each other by communication.

 set p = { p 1 , p 2 , . . . , p m } is used to denote the software with these

 processes. Behavior of parallel software is often complex, and

hus is normally modeled using the control-communication flow

raph, which is a directed graph composed of nodes and edges.

efinitions of node and edge are given below:

Node: A node is a basic unit of a process. When running

he program with an input, either all elements contained in the

ode are executed or none of them is executed. The node as-

ociated with MPI_Send function call is named a sending node ,

hile the one associated with MPI_Recv is named a receiving node .

wo processes communicate with each other through their send-

ng/receiving nodes.

Edge: An edge is a link between two nodes. There are two types

f edges in the control-communication flow graph. For two nodes,

f one node is executed after another of the same process, the edge

etween these two nodes is called a control edge . On the other

and, if two nodes are located in different processes, with one be-

ng a sender and the other being the corresponding receiver , there

xists a communication edge between these two nodes. Since the

ontrol-communication flow graph is a directed graph, every com-

unication edge has a direction from sending node to receiving

ode.

With the definitions of node and edge, a control-

ommunication flow graph can be defined as follows:

132 T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144

Table 1

MPI_Send.

int MPI_Send (void ∗buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

Parameter Description

buf Initial address of the sending buffer

count Size of the buffer for this MPI_Send operation

datatype Data type of each element sent. [Rule:For Process A to transmit data to Process B, the type of data in MPI_Send operation of

Process A needs to match that in MPI_Recv operation of Process B.]

dest Identifier of the receiver

tag Message tag

comm This parameter specifies the scope of communication, that is, which processes can be notified about this MPI_Send operation.

Note that MPI_COMM_WORLD is a default scope of communication that includes all processes involved in a parallel program.

Table 2

MPI_Recv.

int MPI_Recv (void ∗buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status ∗status)

Parameter Description

buf Initial address of the receiving buffer

count size of the buffer for this MPI_Recv operation

datatype Data type of each element received. [Rule:For Process A to transmit data to Process B, the type of data in MPI_Send operation of

Process A needs to match that in MPI_Recv operation of Process B.]

source Identifier of the sender

tag Message tag

comm This parameter specifies the scope of communication, that is, which processes can be notified about this MPI_Recv operation.

status This parameter captures the number and tag of receive data, as well as the sender information if the MPI_Recv operation was

successful. It could be a list of errors if this operation failed.

Fig. 1. Code for the process, p 1 , in Gcd.

t

p

fl

s

p
Control-communication flow graph: A control-communication

flow graph of parallel software is a directed graph, denoted as G =
{ V, E} , where V is the node set, and E is the edge set.

Let us consider one example of BCP software, called Gcd

(Krawczyk et al., 1994), which computes the maximal common di-

visor of three integers. The code of Gcd is given in Figs. 1 and

2 , while its control-communication flow graph is shown in Fig. 3 .

As shown in the graph, Gcd involves three parallel processes, p =
{ p 1 , p 2 , p 3 } . p 1 runs the code in Fig. 1 , and p 2 and p 3 have the

same function and run the code in Fig. 2 . Both processes employ

functions in MPI to set up the communication between processes.

Though running p 1 , p 2 , and p 3 in parallel, the program reads three

inputs, x 1 , x 2 , x 3 , through p 1 , and assigns the calculation task to p 2

and p 3 . To show the link between the graph and code, the identi-

fier of a basic unit in Fig. 3 is added to the left side of the code in

Figs. 1 and 2 .

In the control-communication flow graph of Gcd, the 2-5th

node of p 1 and the 9th node of p 2 and p 3 are the sending nodes,

while the 6-7th node of p 1 , the 2-3th node of p 2 and p 3 are the

receiving nodes. < n 1
9
, n 1

10
> is a control edge between n 1

9
and n 1

10
,

and < n 1
2
, n 2

2
> is a communication edge between n 1

2
and n 2

2
. Ev-

ery communication edge involves two processes, which are called

sender and receiver , respectively. For example, when p 1 encoun-

ters the function of n 1
2
, it will be blocked until the message with

the destination of p 2 and the tag of 1 is successfully sent. Sim-

ilarly, when p 2 encounters the function of n 2 2 , it will be blocked

until the message from p 1 with the tag of 1 is received. In other

words, n 2
2

in p 2 matches n 1
2

in p 1 . Consequently, a message is trans-

mitted from p 1 to p 2 through cooperation between p 1 and p 2 . p 1

is the sender and p 2 is the receiver for the communication edge

< n 1
2
, n 2

2
> .

Communication flow , also known as communication sequence be-

tween processes depends not only on the program logic in the

source code, but also on parameter settings upon MPI_Recv invo-

cation. When the sender information is specified in every call of

MPI_Recv methods, the communication flow between processes is

fully predetermined. For instance, in the Gcd program, p 1 sends

two messages to p 2 and p 3 , respectively. The sender and message
ags are both specified during the MPI_Recv operation in p 2 and

3 . These specific tags in MPI_Recv impose a fixed communication

ow, that is, < n 1
2
, n 2

2
>, < n 1

3
, n 2

3
>, < n 1

4
, n 3

2
>, < n 1

5
, n 3

3
> . As a re-

ult, the order of messages arrived at the 2-3th node of p 2 and

3 is deterministic. On the other hand, if the sender information is

T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144 133

Fig. 2. Code for the processes, p 2 and p 3 , in Gcd.

Fig. 3. Control-communication flow graph of program Gcd.

m

n

i

i

o

(

t

f

a

i

n

r

r

o

m

i

i

p

s

i

s

c

(

f

n

w

D

n

i

{

π

d

b

s

l

a

a

p

t

r

n

m

p

e

T

w

n

w

i

b

w

3

3

n

i

w

r

s

i

t

w

n

k

issing in some MPI_Recv calls, the related communication flow is

on-deterministic and only revealed at runtime.

For example, Fig. 3 shows that both p 2 and p 3 (processes shar-

ng the same code in Gcd program) have a node (i.e., the 9th node

n p 2 and p 3) with 2 outgoing edges to p 1 , one edge to n 1 6 and the

ther edge to n 1
7
. This drawing indicates that both receiving nodes

 n 1
6

and n 1
7
) in p 1 expect to receive messages from one of these

wo sendings nodes (n 2 9 and n 3
9
) without specifying the sender in-

ormation. Due to such missing information at receiving nodes (n 1
6

nd n 1
7
), both italicize the phrase “execution sequences of send-

ng nodes”, that is, (n 2 9 , n
3
9
) and (n 3

9
, n 2 9) are considered valid to

1
6

and n 1
7

nodes in p 1 . Since processes in parallel software are

un in a unpredictable manner, Gcd software is foreseen to expe-
ience either one of communication flows, (< n 2
9
, n 1

6
>, < n 3

9
, n 1

7
>)

r (< n 3
9
, n 1 6 >, < n 2 9 , n

1
7 >) - which flow will be taken is deter-

ined at runtime.

BCP software exhibits non-deterministic behavior only when

t experiences non-deterministic communication sequences, that

s, when two or more receiving nodes in the same process ex-

ect messages from more than one sender without specifying the

ender information in their MPI_Recv statement. Because it is an

mportant feature of any BCP software, we will call each set of

uch receiving nodes “a non-determinsitic point in the control-

ommunication flow graph”, or simply “non-determinsitic point”

abbreviated as ndp). We can recognize each of such points easily

rom the graph because each point is a group of at least 2 receiving

odes in the same process, and each of these nodes is connected

ith more than one arrows (one arrow per incoming edge).

There could be more than one non-deterministic points,

NP = { nd p 1 , nd p 2 , . . . , nd p z } , in BCP software, where z ≥ 1. Each

dp i ∈ DNP is associated with a set of execution sequences of send-

ng nodes, denoted as D πk
= { π1

k
, π2

k
, . . . , π

| D πk
|

k
} . In Gcd, DNP =

 ndp 1 } and ndp 1 = { n 1 6 , n
1
7 } . Besides, | D π1

| = 2 , π1
1 = (n 2 9 , n

3
9
) and

2
1

= (n 3
9
, n 2

9
) . Hence, D π1

= { (n 2
9
, n 3

9
) , (n 3

9
, n 2

9
) } .

Coverage testing is about executing software with inputs in or-

er to cover as many components as possible to observe software

ehavior during the execution. To cover a component (such as

tatement), software needs to traverse through certain paths that

ead to that statement. Definition of process path and that of path

re required to understand our proposed method in this paper.

Process path : Process path is a path associated with

 process upon execution of the BCP software. For exam-

le, (n 2 1 , n
2
2 , n

2
3 , n

2
4 , n

2
9 , n

2
10) , (n 2 1 n

2
2 n

2
3 n

2
4 n

2
5 n

2
6 n

2
8 n

2
4 n

2
9 n

2
10) and

(n 2
1
n 2

2
n 2

3
n 2

4
n 2

5
n 2

7
n 2

8
n 2

4
n 2

9
n 2

10
) are three distinct process paths for

he process, p 2 .

Path : A path is an execution trace of the software p when p

uns with an input X ∈ D X . The execution trace includes several

odes, control edges and communication edges. Given that p has

 processes executed concurrently, the path traversed by the in-

ut X is composed of m process paths .

Suppose that the Gcd program runs with X = (4 , 4 , 6) , and the

xecution order of sending nodes in ndp 1 is π1
1 = (n 2 9 , n

3
9
) .

he execution trace after running the software with X

ill be { n 1
1
n 1

2
n 1

3
n 1

4
n 1

5
n 1

6
n 1

7
n 1

8
n 1

9
n 1

11
n 1

12
n 1

8
n 1

13
, n 2

1
n 2

2
n 2

3
n 2

4
n 2

9
n 2

10
,

3
1
n 3

2
n 3

3
n 3

4
n 3

5
n 3

6
n 3

8
n 3

4
n 3

5
n 3

7
n 3

8
n 3

4
n 3

9
n 3

10
} . However, if the program runs

ith the same input but the execution order of the sending nodes

s π2
1 = (n 3

9
, n 2 9) , the process path related to the process p 1 will

ecome n 1
1
n 1

2
n 1

3
n 1

4
n 1

5
n 1

6
n 1

7
n 1

8
n 1

9
n 1

10
n 1

12
n 1

8
n 1

13
, but other process paths

ill remain the same.

. Proposed method

.1. Formulating the problem of generating test data

As mentioned before, execution orders of sending nodes are

on-determistic in BCP software. Without considering this factor

n the problem formulation like the previous studies, the search

ill not be precise and can cause more trial-and-error cycles than

equired to find the right solution (that is, solution always bring

oftware execution through the same path).

Therefore, we reformulate the search problem as follows: seek-

ng an input and an execution order of sending nodes to drive

he software execution through a given path P = { P

1 , P

2 , . . . , P

m } ,
here m is the number of process paths in P .

A solution

˜ X is composed of the execution sequence of sending

ode πk ∈ D πk
for each ndp k and an input X ∈ D X , and D ˜ X = D X ·

z ∏

 =1

D πk
.

134 T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144

s

c

i

5

(

(

3

A

o

t

c

c

c

c

w

a

i

t

c

c

c

t

t

n

c

c

t

i

c

L

a

c

A

t

b

t

f

C

u

s

c

c

c

S

l

c

c

Let a given path be P = { P

1 , P

2 , . . . , P

m } and the path traversed

by ˜ X be ε(̃ X) = { ε 1 (̃ X) , ε 2 (̃ X) , . . . , ε m (̃ X) } . The similarity between

P

i and ε i (̃ X) , δ(P

i , ε i (̃ X)) , can be defined as follows:

δ(P

i , ε i (̃ X)) =

g(P

i , ε i (̃ X))

max (| P

i | , | ε i (̃ X) |) (1)

where g(P

i , ε i (̃ X)) means the number of common nodes between

P

i and ε i (̃ X) in the same position.

A path is actually an execution order of nodes. Measurement

of the path similarity should start from the beginning. Further re-

search has indicated that the more successive common nodes are

from the first node, the more closer the candidate solution, ˜ X , ap-

proaches the desired solution. Taking the position of a node into

account, the similarity between P

i and ε i (̃ X) can be further en-

hanced as follows:

δ(P

i , ε i (̃ X)) = n (P

i , ε i (̃ X))
g(P

i , ε i (̃ X))

max (| P

i | , | ε i (̃ X) |) (2)

where n (P

i , ε i (̃ X)) refers to the number of common successive

nodes between P

i and ε i (̃ X) from the first node.

Given Formula (2), the similarity between P and ε(̃ X) can be

redesigned as follows:

f (̃ X) =

m ∑

i =1

(
δ(P

i , ε i (̃ X))
)

(3)

Finally, the formulation for the path coverage problem can be

defined below as to maximize the similarity between P and ε(̃ X) .

max f (̃ X)

s.t. ˜ X ∈ D ˜ X

(4)

It is clear that when f (̃ X) reaches the maximal value(i.e., the sum

of the length of process paths in P), ˜ X will be the desired solution .

It can be concluded from Formula (4), the program input and

the execution order of sending nodes are selected as the decision

variable, and the similarity between the executed path and the

given one is defined as the objective function. Together with the

constraint that reflects the domain of the program input and that

of the execution order, the above problem can be formulated as

an optimization problem. It differs the formulation of the problem

for serial programs as well as for BCP software given in our ear-

lier work in the decision variable. For the latter, only the program

input is regarded as the decision variable when formulating the

problem. Even for BCP software, the execution order is not taken

into consideration when selecting the decision variable in our ear-

lier work.

3.2. Encoding of candidate solutions

Ways of encoding software inputs have been well studied. There

exist standard encoding schemes for primary data types, such as

boolean, binary and integer data types. We will follow these stan-

dard schemes to encode the input data of software under study.

On the other hand, we are not aware of any study which encodes

the execution order of sending nodes. We will use a sequence of

integers to encode this order, where each integer is the identifier

of a process corresponding to a sending node. The length of an en-

coded candidate solution L = iL + n 1 L + n 2 L + . . . + nzL .

In the Gcd program, there are three input variables x 1 , x 2 and x 3
of integer type and one non-deterministic point (ndp 1 = { n 1 6 , n

1
7 }).

Assume that the input range for each variable is [1,32]. We could

employ 5 binary bits to encode all 32 values for each input vari-

able. Accordingly, the sum of binary bits for x 1 , x 2 and x 3 make

up the length of encoded software input; hence iL = 15 . Besides, 2
ingle digits are enough to encode π1 associated with ndp 1 , indi-

ating that n 1 L = 2 . These decisions will produce 17 digits encod-

ng scheme, where the first 15 digits are the collection of 3 sets of

-binary bits. In this case, a candidate solution

˜ X with the input of

26, 17, 10) and the execution order of (n 3
9
, n 2 9) will be encoded as

1101010 0 010101032) where “32” corresponds to π1 .

.3. Amending illegal candidate solutions

Operators such as crossover and mutation are necessary to GA.

s mentioned above, the input of BCP software and the execution

rder of its sending nodes are encoded in different ways. Besides,

he value ranges for these encoded data are different. However, the

rossover and mutation operators can possibly result in an illegal

andidate solution. This problem will be illustrated in detail below.

Crossover operator: Let two encoded candidate solutions be

 1 = a i 1 a
i
2 . . . a

i
iL a

n 1
1 a n 1 2 . . . a n 1 n 1 L a

n 2
1 a n 2 2 . . . a n 2 n 2 L . . . a

nz
1 a

nz
2 . . . a nz

nzL

 2 = b i 1 b
i
2 . . . b

i
iL b

n 1
1 b n 1 2 . . . b n 1 n 1 L b

n 2
1 b n 2 2 . . . b n 2 n 2 L . . . b

nz
1 b

nz
2 . . . b nz

nzL

here a i
1
a i

2
. . . a i

iL
and b i

1
b i

2
. . . b i

iL
are the input encoding and

nk
1

a nk
2

. . . a nk
nkL

and b nk
1

b nk
2

. . . b nk
nkL

are the encodings of π k . When pos

s in the range of (1, iL), after performing the crossover operator,

he newly generated two encoded candidate solutions, denoted as

′
1

and c ′
2
, are represented as follows:

′
1 = a i 1 a

i
2 . . . b

i
pos . . . b

i
iL b

n 1
1 b n 1 2 . . . b n 1 n 1 L b

n 2
1 b n 2 2 . . . b n 2 n 2 L . . . b

nz
1 b

nz
2 . . . b nz

nzL

′
2 = b i 1 b

i
2 . . . a

i
pos . . . a

i
iL a

n 1
1 a n 1 2 . . . a n 1 n 1 L a

n 2
1 a n 2 2 . . . a n 2 n 1 L . . . a

nz
1 a

nz
2 . . . a nz

nzL

Similarly, when pos falls in the range of (iL + 1 , iL +

∑ z
k =1 n jL) ,

he crossover will take place in the encoding scheme of an execu-

ion order of sending nodes (for example, π k). As a result, the two

ewly generated encoded candidate solutions become as follows:

′′
1 = a i 1 a

i
2 . . . a

i
iL a

n 1
1 a n 1 2 . . . a n 1 n 1 L . . . a

nk
1 a nk

2 . . . b nk
pos . . . b

nk
nkL . . . b

nz
1 b

nz
2 . . . b

nz
nzL

′′
2 = b i 1 b

i
2 . . . b

i
iL b

n 1
1 b n 1 2 . . . b n 1 n 1 L . . . b

nk
1 b

nk
2 . . . a

nk
pos . . . a

nk
nkL . . . a

nz
1 a

nz
2 . . . a

nz
nzL

After the crossover operation, π k in this two candidate solu-

ions may, i.e., a nk
1

a nk
2

. . . b nk
pos . . . b

nk
nkL

in c ′′
1

and b nk
1

b nk
2

. . . a nk
pos . . . a

nk
nkL

n c ′′ 2 , contain duplicate sender identifiers.

Our strategy of amending this problem is detailed below.

Take a nk
1

a nk
2

. . . b nk
pos . . . b

nk
nkL

in c ′′
1

as an example. This sequence

an be presented as an ordered set, O = (a nk
1

, a nk
2

, . . . , b nk
pos , . . . , b

nk
nkL

) .

et o ∗ denote the element under examination, Q = O \{ o∗} and ex-

mination rule is “the value of o ∗ does not appear in Q ”.

A method of A mending execut I on sequen C e of S ending nodes

aused by crossover(abbreviated as AICS-Crossover) is detailed in

lgorithm 1 . For each element in O , if o ∗ is found to be against

he examination rule (Lines 5–10), then replace the value of o ∗

y another process identifier not shown in Q but associated with

he k th ndp (Lines 11–13). In this way, a nk
j

has a distinct value

rom other elements in O after amendment. Consequently, AICS-

rossover guarantees that all elements in O will have distinct val-

es.

An example is given as follows. Let us say that two candidate

olutions are (17 , 12 , 26 , n 3
9
, n 2

9
) and (18 , 23 , 29 , n 2

9
, n 3

9
) . After en-

oding, they will look like the following

 1 = 10 0 01011001101032

 2 = 10010101111110123

uppose pos = 17 , the newly generated two encoded candidate so-

utions will become:

′′
1 = 10 0 010110011010 33

′′
2 = 100101011111101 22

T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144 135

Algorithm 1 AICS-Crossover.

Input: O and

ˆ O

Output: The amended sequence, O

1: Set sign = 0 , where sign records whether the element in O

needs to be amended

2: for each element o∗ ∈ O

3: Set Q = O \{ o∗}
4: Set sign=0

5: for each Q(i) ∈ Q , where Q(i) is the value of the i th element

in Q

6: if Q(i) == o∗
7: Set sign=1 to indicate that o∗ needs to be amended

8: break

9: end_if

10: end_for

11: if sign == 1

12: o∗ = the first element ∈

ˆ O \ Q
13: end_if

14: end_for

15: Output O

n

t

a

O

t

p

a

a

b

c

S

c

T

d

c

A

A ∑

e

s

A

A

I

O

c

w

a

t

6

a

d

c

d

1

a

t

t

i

a

c

w

c

v

f

g

p

e

a

a

3

g

D

f

i

t

d

i

t

s

c

l

r

t

c

n

t

p

i

t

r

3

o

C

w

m

p

B

m

Obviously, there exists an illegal execution order of sending

odes because two sender identifers in one ndp cannot be iden-

ical but two digits representing these identifies become identical

s shown in the 16th to the 17th positions, 33 and 22, in c ′′
1

and c ′′
2

.

ur strategy to solve this problem is as follows. For 33 in c ′′
1
, since

he integer in the 16th position, 3, is equal to the one in the 17th

osition, it needs to be changed to 2, the identifer of p 2 , which is

nother sender associated with ndp 1 . Since there is no more digits

fter the 17th position, the amendment is done and hence c ′
1

will

ecome:

′′
1 = 10 0 010110011010 23

imilarly, c ′ 2 will be corrected as:

′′
2 = 100101011111101 32

he decoding of c ′′ 1 and c ′′ 2 become (17 , 12 , 26 , n 2 9 , n
3
9
) and

(18 , 23 , 29 , n 3
9
, n 2 9) , respectively, both showing a legal execution or-

er of sending nodes.

Mutation operator: Let an encoded candidate solution be

 1 = a i 1 a
i
2 . . . a

i
iL a

n 1
1 a n 1 2 . . . a n 1 n 1 L a

n 2
1 a n 2 2 . . . a n 2 n 2 L . . . a

nz
1 a

nz
2 . . . a nz

nzL

fter mutation, the digit in this position is replaced by its allele.

s mentioned before, when pos falls in the range of (iL + 1 , iL +
 z
j=1 n jL) , the mutated candidate solution may contain an illegal

xecution order of sending nodes. A method to A mend execut I on

equen C e of S ending nodes caused by mutation (abbreviated as

ICS-Mutation) is detailed in Algorithm 2 .

lgorithm 2 AICS-Mutation.

nput: o m , O and

ˆ O

utput: The amended sequence, O

1: for each element o∗ ∈ O

2: if o∗ == o m

3: break

4: end_if

5: end_for

6: o∗ = the element ∈

ˆ O \ O

7: Output O

Assume c ′′′
1

is created by mutating a nk
pos of c 1 ,

′′′
1 =a i 1 a

i
2 . . . a

i
iL a

n 1
1 a n 1 2 . . . a n 1 n 1 L . . . a

nk
1 a nk

2 . . . a ′ nk
pos . . . a

nk
nkL . . . a

nz
1 a

nz
2 . . . a

nz
nzL
here a ′ nk
pos represents the digit after mutation. Further assume

nk
1

a nk
2

. . . a ′ nk
pos . . . a

nk
nkL

is an illegal encoding of π k . Lines 1–5 intend

o seek for the integer equal to the mutated one, a ′ nk
pos , while Line

 is used to change a ′ nk
pos into a different process identifier, which is

ssociated with the k th ndp but not shown in the existing list.

Consider the example of Gcd program. Let the encoded candi-

ate solution be

 1 = 10101111001001032

It is decoded as (21 , 28 , 18 , n 3
9
, n 2

9
) . If pos = 17 , the newly pro-

uced one becomes 101011110010010 33 , where the integer in the

7th position is taken place by its allele, 3. According to our

mendment strategy, the integer in the 16th position is equal to

he mutated one, 3, and needs to be changed. Since there are only

wo related senders, p 2 and p 3 , associated with ndp 1 , the integer

n the 16th position is changed into 2, the identifer of p 2 . After

mendment, the illegal solution 101011110010010 33 becomes:

′′′
1 = 101011110010010 23

hich is decoded as (21 , 28 , 18 , n 2 9 , n
3
9
) .

Given the fact that candidate solutions obtained by the

rossover and mutation operators may be illegal due to the in-

olvement of the execution order, target strategies are presented

or amending them. After amendment, the resulted candidates are

uaranteed to be legal, which can be further employed to run the

rogram under test. Since the existing studies do not involve the

xecution order in the decision variable, it is of unnecessity to

mend candidates obtained by the crossover and mutation oper-

tors.

.4. Pseudo-code of test data generation by using GAs

The pseudo-code of generating test data for BCP software is

iven in Algorithm 3 . The software under test, p , is instrumented.

C includes n candidate solutions which are initially generated

rom the solution domain(D ˜ X). Here, n means the population size

n GA approach. A finite iterative process (Lines 5–22) works with

he goal of finding out test data to cover the given path. Each can-

idate solution is used to run p and the traversed path is stored

n EP . If EP contains the given path, P , namely test data to cover

he given path are found, the iteration is terminated; otherwise, all

olutions in DC are encoded to compose C . The fitness of each en-

oded solution c i is calculated using formula (4). The candidate so-

utions with high fitness values are retained in C by selection (e.g.,

oulette wheel selection), and the crossover and mutation opera-

ors given in Section 3.3 are performed in C to generate new en-

odings. Decoding version of C is then replaced the old DC in the

ext iteration. After the iterative process is terminated, whether

he desired test data is found is checked. If yes, they are the out-

ut; otherwise, there is no output. Algorithm 3 is to search an

 N put and execut I on sequen C e of S ending nodes for each ndp for

raversing a target path using GA approach. We will call this algo-

ithm “NICS-GA” hereafter.

.5. Difference between the proposed and previous methods

Similar to NICS-GA, CGA and TGA are two GA-based methods

f generating test data for BCP software. Among these methods,

GA employs co-evolution to generate test data of BCP software

ith each receiving node explicitly specifying the sender and the

essage tags. In other words, non-deterministic points are pur-

osely avoided in BCP software, implying that CGA only works for

CP software whose communication among processes is predeter-

ined.

136 T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144

Algorithm 3 NICS-GA.

Input: The software under test, p , and given path, P

Output: test data of covering P

1: Instrument the software under test, p

2: Set C = {} and DC = {}
3: Set counter = 1 and sign = 0 , where sign records whether the

test data covering P is found

4: Set DC = { d c 1 , d c 2 , . . . , d c n } , where d c i is a candidate solution

initially generated from the solution domain

5: while counter < maximum and sign == 0 , where the terminal

condition of the loop is that the test data that covers the given

path are found(sign == 1) or the number of iterations reaches

the maximum (counter == maximum)

6: for each candidate solution dc i ∈ DC

7: ¡¡ Execute p with dc i and append the path traversed by dc i
to EP

8: end_for

9: if P ∈ EP

10: sign=1

11: end _ if

12: if sign==0

13: Encode each candidate solution dc i in DC and store the

encoding solution c i in C

14: Calculate the fitness for all c i ∈ C using Formula (4)

15: Perform selection in C

16: Perform crossover in C with the assistance of Algorithm 1

17: Perform mutation in C with the assistance of Algorithm 2

18: Empty DC

19: Decode each candidate solution c i in C and store the de-

coding solution dc i in DC

20: end _ if

21: Increment counter by 1

22: end _ while

23: if sign==1

24: Output the test data of covering P

25: end _ if

t

f

p

s

a

b

t

s

l

e

i

o

t

n

v

w

4

p

s

4

t

t

4

e

s

p

G

g

2

t

i

(

a

w

f

Table 3

Basic information of each object software.

Software # of input # of # of sending # of receiving

name parameters processes operations operations

Gcd + 4 7 18 18

Matrix 9 3 8 8

SUT-MPI 40 10 60 60

Rsort 16 16 51 51

Max-CPI 100 12 42 42
Different from CGA, TGA takes the influence of non-

deterministic points on the execution of BCP software into

consideration. In TGA, the equivalent path is defined, and a path is

said to be equivalent to a given path, if and only if the difference

in nodes between the path and the given one is caused only

by non-deterministic communication. The equivalent path(s) of

a given path is(are) first sought for according to ndps , and a

traditional GA is then employed to generate test data for covering

either the given path or any one of its equivalent one(s). Let P 1 be

a given path, and P 2 , P 3 , . . . , and P n be its equivalent ones, then

we have

max { f 1 (X) , f 2 (X) . . . , f n (X) }
s.t. X ∈ D X

(5)

Taking Gcd as an example, if a given path is P 1 =
{ P 1 1 , P 1 2 , P 1 3 } = { n 1

1
n 1

2
n 1

3
n 1

4
n 1

5
n 1

6
n 1

7
n

1
8
n

1
9
n

1
11

n

1
12

n 1
8
n 1

13
, n 2

1
n 2

2
n 2

3
n 2

4
n 2

9

n 2
10

, n 3
1
n 3

2
n 3

3
n 3

4
n 3

5
n 3

6
n 3

8
n 3

4
n 3

5
n 3

7
n 3

8
n 3

4
n 3

9
n 3

10
} , its equivalent path will

be P 2 = { P 2 1 , P 2 2 , P 2 3 } = { n 1 1 n
1
2 n

1
3 n

1
4 n

1
5 n

1
6 n

1
7 n

1
8
n

1
9
n

1
10

n

1
12

n 1 8 n
1
13 ,

n 2
1
n 2

2
n 2

3
n 2

4
n 2

9
n 2

10
, n 3

1
n 3

2
n 3

3
n 3

4
n 3

5
n 3

6
n 3

8
n 3

4
n 3

5
n 3

7
n 3

8
n 3

4
n 3

9
n 3

10
} . Then the path

coverage problem can be formulated as follows:

max { f 1 (X) , f 2 (X) }
s.t. X ∈ D X

(6)

In this example, TGA will output X = (4 , 4 , 6) as a desired test

datum since the objective in formula (6) reaches to the maximal

value, 1, with the datum, meaning that the datum covers either P 1

or P 2 . Due to non-deterministic communication in this program,
his datum may not cover the given path, P 1 , even although it is

ound.

Let us consider the proposed method. Given the fact that this

rogram has only one non-deterministic point, ndp 1 = { n 1
6
, n 1

7
} , the

olution, ˜ X for Gcd will be { X , ndp 1 } and D ˜ X will be D X · D ndp 1
. By

dding ndp 1 to the problem formulation, seeking for test data will

e more precise than TGA. Instead of outputting X = (4 , 4 , 6) for

he path, P 1 , the proposed method will output { (4 , 4 , 6) , (n 2 9 , n
3
9
) } .

Essentially, the main difference between previous work and this

tudy can be summarized as follows.

(1) The decision variable of the optimization problem formu-

ated in this paper contains two parts, the program input and the

xecution order of sending nodes, whereas that of previous work

ncludes only the program input.

(2) When employing GA to generate test data, this study devel-

ps target amending strategies for illegal candidates produced by

he crossover and mutation operators. However, previous work is

ot involved in these strategies, given the fact that the decision

ariable does not include the execution order of sending nodes

hich raises illegal candidates.

. Experimental study

A series of experiments have been conducted to evaluate the

erformance of the proposed NICS-GA method. We present the de-

ign and settings of the experiments in this section.

.1. Research questions

In order to evaluate the performance of the proposed method,

he following three research questions are raised.

RQ1 How effectively does the proposed method generate test

data for covering a path?

RQ2 How efficient is the proposed method in finding the desired

solution?

RQ3 How is the effectiveness of test data for path coverage?

These research questions will be answered one by one through

he controlled experiments.

.2. Object softwares

Five BCP-MPI programs were selected as the test objects in the

mpirical study, as summarized in Table 3 . They are either clas-

ical parallel programs or their extensions for evaluating parallel

rogram testing techniques. Among these programs, Gcd+ extends

cd (Krawczyk et al., 1994) by increasing the range of the pro-

ram input. For Matrix, it multiplies two matrices (Souza et al.,

008), and its complexity is increased by adding other func-

ions. Regarding SUT-MPI, it was implemented through extend-

ng and changing a function of the non-trivial benchmark, SkaMPI

 Reussner et al, 2002). In addition, Calculating π (Fu et al., 2015)

nd Parallel Sorting (Rashid and Qureshi, 2006) are two real-

orld parallel applications. Max-CPI seeks the maximum datum

rom a series of data followed by calculating the value of π , and

T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144 137

Fig. 4. Framework of test data generation.

R

m

M

4

4

t

e

C

w

b

i

t

l

c

4

m

s

s

m

t

t

e

e

c

u

o

a

t

n

d

t

w

t

p

s

v

fi

f

t

w

p

p

e

r

I

p

o

n

M

4

F

fi

T

r

d

a

m

t

p

r

t

c

4

s

a

t

p

c

g

r

t

c

i

o

f

r

l

p

o

s

e

p

A

m
sort mainly implements the function of parallel rank sorting. For

ore details of these programs, please refer to the Supplementary

aterial.

.3. Variables and measures

.3.1. Independent variable

The independent variable in this study is the test data genera-

ion technique.

NICS-GA proposed in this paper was definitely selected for our

xperiments. In addition, in view of the current study, TGA and

GA are two existing method of test data generation for BCP soft-

ares. However, as discussed before, CGA is particularly applica-

le to specific types of BCP programs where sender information

s fixed to avoid non-deterministic behavior. Therefore, it is unfair

o compare the proposed method with CGA. In this study, we se-

ected the random method and TGA as the baseline technique for

omparison.

.3.2. Dependent variable

If test data that covers the given path are generated by a

ethod, the method is considered as successful. We applied the

uccess rate to measure the effectiveness of the methods under

tudy (that is, to answer RQ1). Let r is the total number of experi-

ental runs (which is 20 in this study, as defined in the next sec-

ion) and r s is the successful number, then the success rate equals

o r s / r ∗ 100%.

Intuitively speaking, the greater the success rate is, the more

ffective a method is. Therefore, the success rate can be utilized to

valuate whether a method can effectively generate test data that

overs the given path of BCP programs.

For measuring the efficiency (that is, for answering RQ2), we

tilized two metrics, namely the execution time and the number

f evaluated candidate solutions , to compare the proposed method

nd random method. The execution time refers to how much

ime is consumed in a run of a test data generation method. The

umber of evaluated candidate solutions means how many can-

idate solutions have been evaluated in a run. Besides, as men-

ioned in Section 3 , TGA calculates the path similarity several times

hen evaluating a candidate, and tends to seek a program input

hat can bring the program execution through one of (equivalent)

aths.

Therefore, we employed the number of calculating the path

imilarity to evaluate TGA and NICS-GA. Obviously, the smaller the

alues of these three metrics are, the more efficient a method is in

nding desired solutions.

Moreover, mutation analysis was employed to answer RQ3. To

ulfill this task, a number of changes are inserted into a program

o generate its alternative versions according to predefined rules

hich mean mutation operators. Each alternative version of the

rogram is called a mutant. If a mutant behaves the same as the
rogram under all test data, it is called an equivalent mutant. The

ffectiveness of test data is evaluated by the mutation score which

eflects the percentage of mutants which differ from the program.

f a mutant produces an output or covers a path different from the

rogram, it is called a killed mutant. Let M1 be the total number

f mutants, M2 be the number of killed mutants, and M3 be the

umber of equivalent ones, then the mutation score is equal to

 2 / (M 1 − M3) ∗ 100% .

.4. Framework of test data generation

Test data is generated through the framework shown in Fig. 4 .

or a program under test, its control-communication flow graph is

rst constructed. Consequently, a path is selected as the given one.

he selected path combined with the instrumented program and

equired parameters is input to the test data generator. The test

ata generator includes two parts: the test data generation method

nd coverage information collector. Here, the test data generation

ethod is responded by one process, while the coverage informa-

ion collector is responsible for repeatedly calling the instrumented

rogram and collecting coverage information to the method. Cor-

espondingly, the method can judge whether or not the test data

hat covers the given path are found. For NICS-GA, the fitness of a

andidate solution is also calculated.

.5. Experiment design

For each object program, a path was first chosen, and its fea-

ibility was then checked. If it was feasible, it would be regarded

s the given path; otherwise, the above steps were repeated un-

il a feasible one was found. Note that the communication among

rocesses was also investigated when checking the feasibility of a

hosen path. Totally, there were 66 given paths for five object pro-

rams.

For each given path, and the experimental results of 20-time

uns were recorded. Based on them, we calculated the success rate,

he average execution time, and the mean number of evaluated

andidate solutions and the mean number of calculating path sim-

larities.

Note that parameter settings have an influence on the efficiency

f evolutionary test data generation, and there have been no rules

or setting parameters to date. A large population size generally

esults in much computational cost in GA. Therefore, a small popu-

ation size is often chosen when applying GA to tackle a real-word

roblem on the premise of guaranteeing its effectiveness. Based

n this, if it is complicated, a large population size is generally

elected; otherwise, a small one is adopted. Based on this, differ-

nt population sizes were selected as listed in Table 4 for different

aths. GA includes two main operators, crossover and mutation.

mong them, crossover is a major operator and mutation is a

inor one when searching solutions to a problem. Consequently,

138 T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144

Table 4

Population size.

Software path population size

Gcd + path1-path2 100

path3-path4 20

Matrix path1-path2 20

path3 50

path4 100

SUT-MPI path1-path8 50

Rsort path1-path20 50

Max-CPI path1-path30 200

Table 5

Mutation operators for MPI functions.

Mutation

operators Mutation ways

Del Delete a function

ReplModeSend Replace MPI_Send with MPI_Ssend

ReplSource Change MPI_ANY_SOURCE into other sources

ReplTag Change MPI_ANY_TAG into other tags

ReplProbe Replace MPI_Recv with MPI_Prob

ReplArg Change the argument in a function into the one in

other functions

ChanArg Change the argument in a function into the one in this

function

InsUnaArg Insert an unary operator into arguments

5

5

m

i

h

R

m

t

r

t

5

c

i

o

p

v

a

o

o

G

o

w

T
crossover is generally employed with a larger probability than

mutation. Given the fact that the crossover and mutation proba-

bilities of 0.9 and 0.3 are widely used in the literature, the same

settings were adopted in this study. It should be noted that even

though these values of parameters have been widely used in

various methods of generating test data, they are not necessarily

the best. It will be possible to get better results if we set more

appropriate values of these parameters (Arcuri and Fraser, 2011;

Garousi, 2008). Parameter tuning is not the focus of this paper.

The process of generating testing data using the random

method is as follows. A candidate is randomly generated. If the

path traversed by the candidate is just the given path, the method

will be terminated; otherwise, the above steps are repeated until

the maximal number of evaluated candidates is reached.

The Mann-Whitney U -test with a significance level of 0.05 was

conducted to further verify the statistical significance of the dif-

ference in efficiency. The null hypothesis (H 0) for the statistical

testing was that for one particular path, NICS-GA had the simi-

lar efficiency (either execution time or number of evaluated candi-

date solutions) to the comparative method. If the p -value is smaller

than 0.05, H 0 was rejected, implying that the efficiency of NICS-GA

was statistically significantly higher than that of the comparative

method.

With respected to mutation analysis, a number of mutants were

firstly produced according to predefined mutation operators. Five

suggested mutation operators (Offutt et al., 1996), ABS, UOI, LCR,

AOR, and ROR, were selected for the elements common with se-

rial programs, and Table 5 lists the mutation operators which are

special for MPI functions (Silva et al., 2012). Then, the mutation

score was calculated. Moreover, there is a lack of approaches to ef-

fectively detecting equivalent mutants of MPI programs. Obviously,

studies on effectively detecting equivalent mutants are out of the

scope of this paper. In this study, equivalent mutants are manually

detected and removed.
Fig. 5. Success rate(%) of NICS-GA and the random
. Experimental results

.1. Answer to RQ1

The success rates of NICS-GA and the random method are sum-

arized in Figs. 5 and 6 and those of NICS-GA and TGA are listed

n Fig. 7 .

It is clearly shown from Figs. 5 and 6 that NICS-GA had the

igher success rate than the random method for 66 given paths.

egarding the last two softwares, the success rate of the random

ethod was zero for all the given paths, whereas NICS-GA reached

he success rate of 100% and 65% − 100% for Rsort and Max − CP I,

espectively. Fig. 7 also verifies that NICS-GA was more effective

han TGA when generating test data for covering a given path.

.2. Answer to RQ2

In the rest of this section, we will focus on the evaluation and

omparison of efficiency for the three methods.

Figs. 8–13 report the mean value of a metric under 20 exper-

mental runs. As mentioned in Section 5.1 , for each given path

f Rsrot and Max − CP I, the random method cannot generate ex-

ected test data in each experimental run. Consequently, the mean

alue of the number of evaluated candidate solutions was 50 0,0 0 0

nd 2,0 0 0,0 0 0 for Rsrot and Max − CP I, respectively. For the sake

f space, Figs. 10 –13 only list the execution time and the number

f evaluated candidate solutions of NICS-GA.

From Figs. 8 –13 as well as Table 6 , we can observe that NICS-

A normally spent shorter execution time and used fewer number

f evaluated candidate solutions than the random method. In other

ords, the NICS-GA was more efficient than the random method.

he results of the statistical testing are summarized in Table 6 . In
method on Gcd+, Matrix, SUT-MPI and Rsort.

T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144 139

Fig. 6. Success rate(%) of NICS-GA and the random method on Max-CPI.

Fig. 7. Success rate(%) of NICS-GA and TGA.

Fig. 8. Average execution time(ms) for NICS-GA and the random method on Gcd+, Matrix and SUT-MPI.

Fig. 9. Average number of evaluated candidate solutions for NICS-GA and the random method on Gcd+, Matrix and SUT-MPI.

140 T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144

Fig. 10. Average execution time(ms) for NICS-GA on Rsort.

Fig. 11. Average number of evaluated candidate solutions for NICS-GA on Rsort.

Fig. 12. Average execution time(ms) for NICS-GA on Max-CPI.

Fig. 13. Average number of evaluated candidate solutions for NICS-GA on Max-CPI.

T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144 141

Table 6

p -values of statistical testing for comparing the efficiency between NICS-GA and the random method.

Software Path Execution time

Number of evaluated

candidate solutions

Gcd + path1 0.010 0.002

path2 0.372 0.007

path3 0.007 < 0.001

path4 < 0.001 < 0.001

Matrix path1 0.011 0.008

path2 0.079 0.030

path3 0.001 < 0.001

path4 0.001 < 0.001

SUT-MPI path1 0.094 0.001

path2 0.011 0.001

path3 < 0.001 < 0.001

path4 0.070 0.008

path5 0.028 0.023

path6 < 0.001 < 0.001

path7 < 0.001 < 0.001

path8 0.003 0.001

Rsort path1–path20 < 0.001 < 0.001

Max-CPI path1–path4 < 0.001 < 0.001

path5 0.105 < 0.001

path6 0.007 < 0.001

path7–path8 < 0.001 < 0.001

path9 0.001 < 0.001

path10 0.001 < 0.001

path11-path15 < 0.001 < 0.001

path16 0.279 < 0.001

path17 0.007 < 0.001

path18 0.001 < 0.001

path19 < 0.001 < 0.001

path20 0.001 < 0.001

path21–25 < 0.001 < 0.001

path26 0.030 < 0.001

path27 0.105 < 0.001

path28 0.030 < 0.001

path29 0.007 < 0.001

path30 0.105 < 0.001

t

t

o

t

G

2

c

t

o

e

G

m

t

t

t

p

r

p

Fig. 14. Average execution time(ms) for NICS-GA and TGA.

5

R

t

G
he table, “ < 0.001” means that the p -value is very small (smaller

han 0.001).

Based on Table 6 , we can observe that NICS-GA significantly

utperformed the random method on most of paths in terms of

he execution time, and there was no significant difference on

cd+-path2, Matrix-path2, path1 and 4 of SUT-MPI and path5, 16,

7 and 30 of Max-CPI. With respect to the number of evaluated

andidate solutions, NICS-GA had significantly higher performance

han the random method on 66 paths.

Since the difference between TGA and NICS-GA is the number

f calculating the path similarity and success rate, which can be

mbodied by only one given path, path1 of each program among

cd+, Matrix, and Max-CPI was selected to explain the perfor-

ance of NICS-GA and TGA. Fig. 14 and Table 7 exactly show

hat there was no significant difference in terms of the execution

ime between NICS-GA and TGA, and Fig. 15 and Table 7 report

hat NICS-GA consumed less computation cost than TGA for two

aths.

In summary, NICS-GA was more effective and efficient than the

andom method and TGA for generating test data that covers given

aths.
Table 7

p -values of statistical testing for comparing th

Software Path Execution time Num

Gcd + path1 0.685 < 0

Matrix path1 0.766 0.27

Max-CPI path1 0.871 < 0
.3. Answer to RQ3

In order to answer RQ3, 2887 mutants were generated for Gcd+,

sort and Max-CPI. We performed mutation analysis on these

hree programs based on a test datum that traverses a path of

cd+ and Rsort, respectively, and six test data of covering six paths
e efficiency between NICS-GA and TGA.

ber of evaluated candidate solutions

.001

9

.001

142 T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144

Fig. 15. Average number of evaluated candidate solutions for NICS-GA and TGA.

Table 8

Results of mutation analysis.

Program # of mutants # of equivalent mutants mutation score(%)

Gcd + 578 88 93.1

Rsort 1113 249 97.4

Max-CPI 1196 298 96.1

a

d

g

p

g

i

t

e

t

a

t

d

6

p

a

R

r

i

d

l

t

S

c

t

t

M

b

t

t

c

c

o

p

b

e

m

t

b

c

a

t

H

a

fl

i

w
of Max-CPI. Table 8 lists the high mutation scores of 93.1%, 97.4%

and 96.1%. The reason is that a test datum includes an input and

an execution order of sending nodes. Meanwhile, a path is com-

posed of multiple process paths which cover information related

to not only the control flow but the communication flow. Conse-

quently, the variations in a program can be successfully detected

by comparing the outputs and the traversed paths of the pro-

gram and those of its mutants. Therefore, test data for path cov-

erage can reveal faults resulted from computation and commu-

nication associated with parallel program characteristics, suggest-

ing that test data for path coverage were effective in software

testing.

6. Related work

6.1. Test data generation based on genetic algorithms

Search-based optimization algorithms have been widely used

for studying software engineering (Harman et al., 2012). A lot

of work has also been conducted to use various search tech-

niques in test data generation (Malhotra and Khari, 2013; Har-

man and McMinn, 2010; Ali et al., 2010; Wu et al., 2015).

Xanthakis et al. (1992) is a pioneer who employed GAs to au-

tomatically generate test data and established the foundation for

the application of GAs in test data generation. Rauf and An-

war (2010) proposed the method of generating test data by using

GAs for programs with graphic user interface. Arcuri (2010) ap-

plied search-based algorithms to automatically generate test data

for the popular object-oriented software, and studied the influence

of the length of a test sequence on the branch coverage. Rao and

Govindarajulu (2015) applied genetic GAs to generate test data for

killing mutants in mutation testing. Moreover, in the view that

test data with high diversity are likely to improve the complete-

ness and quality of software testing, Bueno et al. (2014) incorpo-

rated GAs with other meta-heuristics to generate diversity-oriented

test data. 100% path coverage is a very stringent requirement and

often infeasible. Some researchers studied the problem of multi-

ple paths coverage. Ahmed and Hermadi (2008) obtained the de-

sired test data for covering multiple paths by one population, while

McMinn et al. (2006) utilized several sub-populations to seek for

test data that covers multiple paths, aiming at improving the effi-

ciency of generating test data. For the problem of many paths cov-

erage, Gong et al. (2011) divided many paths into several groups
ccording to path similarity and made use of a GA to generate test

ata covering the paths contained in each group.

The aforementioned methods mainly focused on serial pro-

rams. Since these methods omitted the unique characteristics of

arallel programs, the problem formulation in them for test data

eneration is unsuitable for testing parallel programs. Furthermore,

nformation among processes of a parallel program was not fully

aken into account during generating test data. Consequently, the

ffectiveness and the efficiency of these methods in generating

est data will be drastically reduced if they are applied directly to

 parallel program. Different from their approaches, our method

akes account of the features of a parallel program to generate test

ata.

.2. Parallel program testing

Due to the popularity of parallel programs, seeking for ap-

roaches to effectively and efficiently testing parallel programs has

ttracted increasing attention of many researchers. Krammer and

esch (2006) inspected improper usages of MPI occurred while

unning a program. Vetter and de Supinski (20 0 0) developed a ver-

fication tool for a MPI program, and applied it to detect certain

efects such as resource exhaustion, deadlock and mismatched col-

ective operation. Also for MPI programs, Fu et al. (2015) adopted

he symbolic execution to detect the similar defects. Christakis and

agonas (2011) collected useful information by analyzing source

ode and built the communication graph to detect defects related

o message passing, such as deadlock and race condition. In addi-

ion, Vakkalanka et al. (2008) presented a model-checking tool for

PI programs, and Leungwattanakit et al. (2014) proposed cache-

ased model checking to detect deadlock and non-captured excep-

ion for distributed parallel programs. All these studies attempted

o reveal problems caused by the concurrent execution, and to test

ommunication sequences in a parallel program in order to detect

ertain defects such as deadlock, resource race and incorrect usage

f MPI. Different from these researches, this study aims to cover

aths using refined GA operators and fitness function.

Researchers have proposed various methods for finding a feasi-

le path, for which test cases can be found to cover a given code

lement of a parallel program, such as a node, an edge, a state-

ent, etc. Bao et al. (2009) employed the event graph of a program

o find a feasible path. Furthermore, Katayama et al. (1997) com-

ined the event graph with interactions among units of a con-

urrent program to find a feasible path of this program. In

ddition, Wong et al. (2005) exploited the reachability graph

o generate a test sequence for covering all nodes or edges.

uang et al. (2013) developed CLAP which records thread paths

t runtime and computes the related memory dependencies of-

ine for replaying concurrency bugs. This method can be fallen

nto path testing techniques, but it is different from NICS-GA

hich evolutionarily generates test data to cover a given path by

T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144 143

r

C

l

a

i

t

s

S

a

i

fl

o

t

m

o

p

i

c

6

l

c

i

s

n

j

r

t

f

A

d

b

a

p

s

l

c

l

p

a

s

t

a

g

t

7

p

m

g

p

s

i

o

a

t

t

e

p

m

m

c

a

a

u

m

u

p

a

c

o

d

i

l

U

t

t

t

A

F

S

f

R

A

A

A

A

A

B

B

B

C

E

F

G

G

H

H

H

H
epeatedly running a software product. Aiming to multi-threaded

 programs, Rabinovitz and Grumberg (2005) detected bugs re-

ated to safety properties by confining the number of interleavings

mong threads for property checking. Similarly, NICS-GA also takes

nterleavings among processes into consideration when generating

est data of MPI-BCP programs.

Many traditional coverage criteria for serial programs are not

uitable or sufficient for testing message passing parallel software.

ouza et al. (2008) redfined these existing criteria, such as the

ll-nodes, all-edges, all-defs, all-c-uses, and all-p-uses criteria, by

ncorporating the control/communication flows and data/message

ows. They further extended the available criteria to cover types

f communications, such as collective and unblocking communica-

ions (Souza et al., 2014). Unfortunately, neither the problem for-

ulation for test data generation nor the corresponding method

f generating test data has been given yet. In this paper, we im-

rove the way of finding test inputs and execution orders of send-

ng nodes in order to cover a given path P , regardless of which

overage criterion is used to decide paths (such as P) for coverage.

.3. Applications of genetic algorithms in parallel program testing

In recent years, GAs have been brought to testing a paral-

el or concurrent program. Some thread interleavings can reveal

oncurrent faults in Java programs. In order to generate different

nterleavings, the synchronization primitives (e.g., yield()) can be

eeded into a program to cause context switches, which is called

oise injection. Eytani (2006) formulated the problem of noise in-

ection as an optimization problem, and employed a genetic algo-

ithm to seek for appropriate positions for injecting noises into

he program. Hrubá et al. (2012) also utilized a GA to search

or proper types of noises and parameterize each noise type.

lba et al. (2008) applied a GA in the model checking to detect

eadlocks. Steenbuck and Fraser (2013) proposed a concurrency-

ased coverage to reveal real-world concurrency bugs, and utilized

 genetic algorithm to generate the desired test cases for the pro-

osed criteria.

More recently, some work has been conducted on testing BCP

oftware by using GAs. Based on unrealistic assumptions, the prob-

em of path coverage was described as generating test data to

over one of target paths. The method (TGA) of solving the prob-

em by using GA was hereby proposed. CGA is a method of em-

loying the co-evolution of two kinds of populations to gener-

te test data that meet path coverage. This method was designed

pecifically for BCP software without non-determinism. Therefore,

he problems formulated in these two methods (TGA and CGA)

nd the corresponding strategies of solving them are unsuitable for

eneral BCP software. By contrast, this paper has proposed solu-

ions to address these issues.

. Conclusion

Parallel computing, along with the popularity of high-

erformance parallel machines and computer clusters, becomes a

ainstream way for problem solving. Correspondingly, in order to

uarantee the reliability of parallel programs, the testing of parallel

rograms has attracted more and more attention.

The problem of generating test data for covering a path of BCP

oftware was investigated in this paper. According to the character-

stics of BCP software, the software input and the execution order

f sending nodes were considered together as the decision vari-

ble for this problem. In addition, the specific crossover and mu-

ation operators were designed for the genetic algorithm to solve

he above problem, with the aim of effectively and efficiently gen-

rating test data. The proposed method, namely NICS-GA, was ap-

lied to test five typical BCP software programs, and the experi-
ental results showed that as compared with the baseline random

ethod, the proposed NICS-GA method achieved the higher suc-

ess rate with the smaller number of evaluated candidate solutions

nd the shorter execution time, implying the higher effectiveness

nd efficiency.

A number of randomly selected paths were employed to eval-

ate the test data generation method presented in this paper. A

ore comprehensive experimental evaluation can be conducted by

sing more appropriate methods of selecting paths. For example,

ath complexity can be considered when selecting paths, which is

 topic to be addressed in the future. In addition, this study fo-

used on BCP software, and simultaneously searched for the input

f the program and the execution orders of sending nodes at non-

eterministic points. When the unblocking communication mode

s used, the non-deterministic behavior of a parallel program is re-

ated not only to senders, but also to their corresponding receivers.

nder this circumstance, the problem of generating test data and

he development of appropriate strategies of solving the problem

o produce the desired test data would be more complicated, and

hus are another potential research topics for the future work.

cknowledgment

This work is jointly supported by National Natural Science

oundation of China with Grant Nos. 61503220 and 61773384 .

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jss.2019.04.049 .

eferences

hmed, M.A. , Hermadi, I. , 2008. GA-based multiple paths test data generator. Com-

put. Oper. Res. 35 (10), 3107–3124 .
lba, E. , Chicano, F. , Ferreira, M. , Gomez-Pulido, J. , 2008. Finding deadlocks in large

concurrent java programs using genetic algorithms. In: Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation, pp. 1735–1742 .

li, S. , Briand, L.C. , Hemmati, H. , Panesar-Walawege, R.K. , 2010. A systematic review
of the application and empirical investigation of search-based test case genera-

tion. IEEE Trans. Softw. Eng. 36 (6), 742–762 .

rcuri, A. , 2010. Longer is better: on the role of test sequence length in software
testing. In: Proceedings of the 3rd International Conference on Software Testing,

Verification and Validation, pp. 469–478 .
rcuri, A. , Fraser, G. , 2011. On parameter tuning in search based software engineer-

ing. In: Proceedings of International Symposium on Search Based Software En-
gineering. Springer, Berlin, Heidelberg, pp. 33–47 .

ao, X. , Zhang, N. , Ding, Z. , 2009. Test case generation of concurrent programs based

on event graph. In: Proceedings of the 5th International Joint Conference on
INC, IMS and IDC, pp. 143–149 .

arker, B. , 2015. Message passing interface (mpi)[c]//workshop: High performance
computing on stampede 262 .

ueno, P.M.S. , Jino, M. , Wong, W.E. , 2014. Diversity oriented test data generation
using metaheuristic search techniques. Inf. Sci. 259, 490–509 .

hristakis, M. , Sagonas, K.F. , 2011. Detection of asynchronous message passing errors

using static analysis. In: Proceedings of the 13th International Symposium on
Practical Aspects of Declarative Languages, pp. 5–18 .

ytani, Y. , 2006. Concurrent java test generation as a search problem. Electron Notes
Theor. Comput. Sci. 144 (4), 57–72 .

u, X. , Chen, Z. , Zhang, Y. , Huang, C. , Dong, W. , Wang, J. , 2015. MPISE: symbolic
execution of MPI programs. In: Proceedings of the 2015 IEEE 16th International

Symposium on High Assurance Systems Engineering (HASE), pp. 181–188 .

arousi, V. , 2008. Empirical analysis of a genetic algorithm-based stress test tech-
nique. In: Proceedings of the 10th Annual Conference on Genetic and Evolution-

ary Computation. ACM, pp. 1743–1750 .
ong, D.W. , Zhang, W. , Yao, X. , 2011. Evolutionary generation of test data for many

paths coverage based on grouping. J. Syst. Softw. 84 (12), 2222–2233 .
arman, M. , Mansouri, S.A. , Zhang, Y. , 2012. Search-based software engineering:

trends, techniques and applications. ACM Comput Surv 45 (1) . 11:1-11:61
arman, M. , McMinn, P. , 2010. A theoretical and empirical study of search based

testing: local, global and hybrid search. IEEE Trans. Softw. Eng. 36 (2), 226–247 .

rubá, V. , Kr ̆ena, B. , Letko, Z. , Ur, S. , Vojnar, T. , 2012. Testing of concurrent programs
using genetic algorithms. In: Proceedings of the 4th International Conference on

Search Based Software Engineering, pp. 152–167 .
uang, J. , Zhang, C. , Dolby, J. , 2013. CLAP: recording local executions to reproduce

concurrency failures. ACM Sigplan Not. 48 (6), 141–152 .

https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.jss.2019.04.049
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0017

144 T. Tian, D. Gong and F.-C. Kuo et al. / The Journal of Systems and Software 155 (2019) 130–144

T

W

W

T

C

t

m

D

i

t

T

F

S

h

n

t

C

G

f

S

s

H

a

U

V

H

t

e

Katayama, T. , Furukawa, Z. , Ushijima, K. , 1997. A test-case generation method for
concurrent programs including task-types. In: Proceedings of Joint 4th Interna-

tional Computer Science Conference and 4th Asia Pacific Software Engineering
Conference, pp. 4 85–4 94 .

Krammer, B. , Resch, M.M. , 2006. Correctness checking of MPI one-sided commu-
nication using marmot. In: Proceedings of the 13th European PVM/MPI Users

Group Conference on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, ser. EuroPVM/MPI06, pp. 105–114 .

Krawczyk, H. , Wiszniewski, B. , Mork, H. , 1994. Classification of Software Defects in

Parallel Programs. Faculty of Electronics, Technical University of Gdansk, Poland
Tech. rep. 2 .

Leungwattanakit, W. , Artho, C. , Hagiya, M. , Tanabe, Y. , Yamamoto, M. , Takahashi, K. ,
2014. Modular software model checking for distributed systems. IEEE Trans.

Softw. Eng. 40 (5), 483–501 .
Malhotra, R. , Khari, M. , 2013. Heuristic search-based approach for automated test

data generation. A survey. Int. J. Bio-Insp. Comput. 5 (1), 1–18 .

McMinn, P. , Harman, M. , Binkley, D. , Tonella, P. , 2006. The species per path approach
to search-based test data generation. In: Proceedings of the 2006 International

Symposium on Software Testing and Analysis, pp. 13–24 .
Offutt, A.J. , Lee, A. , Rothermel, G. , 1996. An experimental determination of sufficient

mutant operators. ACM Trans. Softw. Eng. Method. 5 (2), 99–118 .
Rabinovitz, I. , Grumberg, O. , 2005. Bounded model checking of concurrent pro-

grams. In: Proceedings of International Conference on Computer Aided Verifi-

cation. Springer, Berlin, Heidelberg, pp. 82–97 .
Rao, C.P.G. , Govindarajulu, P. , 2015. Genetic algorithm for automatic generation of

representative test suite for mutation testing. Int. J. Comput. Sci. Netw. Secur.
15 (2), 11–17 .

Rashid, H. , Qureshi, K. , 2006. A practical performance comparison of parallel sorting
algorithms on homogeneous network of workstations. WSEAS Trans. Comput. 5

(7), 1606–1610 .

Rauf, A. , Anwar, S. , 2010. Automated GUI test coverage analysis using GA. In:
Proceedings of the 7th International Conference on Information Technology,

pp. 1057–1062 .
Reussner, R. , Sanders, P. , Traff, J.L. , 2002. SKaMPI: a comprehensive benchmark for

public benchmarking of MPI. Sci. Program. 10 (1), 55–65 .
Silva, R.A. , Souza, S.R.S. , Souza, P.S.L. , 2012. Mutation operators for concurrent pro-

grams in MPI. In: Proceedings of the 13th Latin American Test Workshop

(LATW), pp. 1–6 .
Snir, M. , Otto, S. , Huss-Lederman, S. , Walker, D. , Dongarra, J. , 1998. MPI- the com-

plete reference, volume 1. The MPI Core, 2nd MIT Press, Cambridge, MA, USA .
Souza, P.S.L. , Souza, S.R.S. , Zaluska, E. , 2014. Structural testing for message-passing

concurrent programs: an extended test model. Concurr. Comput. 26 (1), 21–50 .
Souza, S.R.S. , Vergilio, S.R. , Souza, P.S.L. , Simao, A .S. , Hausen, A .C. , 2008. Structural

testing criteria for message-passing parallel programs. Concurr. Comput. 20 (16),

1893–1916 .
Steenbuck, S. , Fraser, G. , 2013. Generating unit tests for concurrent classes. In: Pro-

ceedings of the 2013 IEEE 6th International Conference on Software Testing, Ver-
ification and Validation, pp. 144–153 .

Tian, T. , Gong, D.W. , 2013. Model of test data generation for path coverage of
messeage-passing parallel programs and its evolution-based solution. Chin. J.

Comput. 36 (11), 2212–2223 .
ian, T. , Gong, D.W. , 2016. Test data generation for path coverage of message-passing
parallel programs based on co-evolutionary genetic algorithms. Autom. Softw.

Eng. 23 (3), 469–500 .
Vakkalanka, S. , Delisi, M. , Gopalakrishnan, G. , Kirby, R. , Thakur, R. , Gropp, W. , 2008.

Implementing efficient dynamic formal verification methods for MPI programs.
In: Recent Advances in Parallel Virtual Machine and Message Passing Interface,

pp. 248–256 .
Vetter, J.S. , de Supinski, B.R. , 20 0 0. Dynamic software testing of MPI applications

with umpire. In: Proceedings of the 20 0 0 ACM/IEEE conference on Supercom-

puting, Vol. 51 . 1-51:10
ong, W.E. , Lei, Y. , Ma, X. , 2005. Effective generation of test sequences for structural

testing of concurrent programs. In: Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems, pp. 539–548 .

u, H. , Nie, C. , Kuo, F.C. , Leung, H. , Colbourn, C.J. , 2015. A discrete particle swarm
optimization for covering array generation. IEEE Trans. Evol. Comput. 19 (4),

575–591 .

Xanthakis, S. , Ellis, C. , Skourlas, C. , 1992. Application of genetic algorithms to soft-
ware testing. In: Proceedings of the 1992 International Conference on Software

Engineering and Its Applications, pp. 625–636 .

ian Tian received the Ph.D. degree in control theory and control engineering from

hina University of Mining and Technology in 2014. She is an associate professor in

he School of Computer Science and Technology, Shandong Jianzhu University. Her
ain research interest is parallel program testing.

unwei Gong received the Ph.D. degree in control theory and control engineer-
ng from China University of Mining and Technology in 1999. He is a professor in

he School of Information and Control Engineering, China University of Mining and
echnology. His main research interest is search-based software engineering.

ei-Ching Kuo was a senior lecturer at the Department of Computer Science and
oftware Engineering, Swinburne University of Technology, Australia. She received

er Bachelor of Science Honors in Computer Science and Ph.D. in Software Engi-

eering, both from Swinburne University of Technology, Australia. She was a lec-
urer at University of Wollongong, Australia. She was also the Program Committee

hair for the 10th International Conference on Quality Software 2010 (QSIC’10) and
uest Editor of a Special Issue for the Journal of Systems and Software, special issue

or Software Practice and Experience, and special issue for International Journal of
oftware Engineering and Knowledge Engineering. Her research interests included

oftware analysis, testing and debugging.

uai Liu is a lecturer in Department of Computer Science and Software Engineer-
ing at Swinburne University of Technology, Melbourne, Australia. He received his

Bachelor of Engineering in Physioelectronic Technology and Masters of Engineering
in Communications and Information Systems at Nankai University, China, in 1998

nd 2003 respectively, and a Ph.D. degree in Software Engineering from Swinburne
niversity of Technology, Australia, in 2008. Dr. Liu has worked as a Lecturer at

ictoria University and a Research Fellow at RMIT University. Prior to working in

igher Education he worked as an engineer in the IT industry. Dr Liu’s research in-
erests include software testing and reliability, services and cloud computing, and

nd-user software engineering.

http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30081-0/sbref0041

	Genetic algorithm based test data generation for MPI parallel programs with blocking communication
	1 Introduction
	2 Background
	2.1 MPI
	2.2 BCP software

	3 Proposed method
	3.1 Formulating the problem of generating test data
	3.2 Encoding of candidate solutions
	3.3 Amending illegal candidate solutions
	3.4 Pseudo-code of test data generation by using GAs
	3.5 Difference between the proposed and previous methods

	4 Experimental study
	4.1 Research questions
	4.2 Object softwares
	4.3 Variables and measures
	4.3.1 Independent variable
	4.3.2 Dependent variable

	4.4 Framework of test data generation
	4.5 Experiment design

	5 Experimental results
	5.1 Answer to RQ1
	5.2 Answer to RQ2
	5.3 Answer to RQ3

	6 Related work
	6.1 Test data generation based on genetic algorithms
	6.2 Parallel program testing
	6.3 Applications of genetic algorithms in parallel program testing

	7 Conclusion
	Acknowledgment
	Supplementary material
	References

