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key factor that affects the computational efficiency of the SDDA program is the solver of linear equations. To
solve this problem, this paper replaces the original equilibrium equations solvers in SDDA by the conjugate
gradient iterative method which is applicable for parallel computing, and three parallel computing models, i.e.

pure MPI (Massage Passing Interface), pure OpenMP and hybrid MPI+ OpenMP, are proposed to investigate
which is better for SDDA. The parallelization algorithms are incorporated into the original SDDA source code,
and the modified program is implemented on the high-performance computing clusters of Sugon TC4600. Three
numerical examples are simulated for verification, and the results demonstrate that the proposed hybrid par-
allelization model is correct and effective.

1. Introduction

Discontinuous deformation analysis (DDA) proposed by Shi [1] is
one of the most commonly used discrete element method in rock me-
chanics, and it is useful for investigating the behavior of mechanical
systems dominated by discontinuities. This method will not encounter
mathematical problem in solving any large displacement because of the
relatively independence of individual block [2-4].

So far, great progress has been achieved in two-dimensional (2D)
DDA [5-8], and this method has also been applied widely in many
practical engineering. Hatzor et al. [9] used the DDA method to analyze
the dynamic stability of jointed rock slopes, and found that some energy
dissipation must be introduced to the otherwise un-damped DDA for-
mulation. Jiao et al. employed this approach to model the stress wave
propagation in jointed rock [10] and the process of reservoir-im-
poundment-induced landslide [11]. Wu et al. proposed a practical ap-
proach for earthquake-induced landslide simulations using DDA
[12-14]. In order to investigate the effects of near-fault seismic force on
landslide run-out, kinematic behavior of sliding mass was simulated by
DDA, and results of the horizontal and vertical situation are in good
agreement with those obtained from post-earthquake field investigation
[15]. In order to enable the DDA method to be used to study the seismic
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dynamic response of underground caverns, Zhang et al. [16] made two
modifications, which involved setting viscous boundary conditions and
inputting seismic waves from the bottom in stress way. Jiang et al. [17]
presented an accurate interface shear strength model, and applied the
modified DDA to analyze the failure mechanisms and stability of the
ancient masonry seawall along Qiantang River in China. Rizzi et al.
[18] presented new analytical solutions of the classical Couplet-
Heyman problem in the statics of circular masonry arches, and con-
firmed them by the numerical DDA computations. Ma et al. [19] re-
placed the original Mohr-Coulumb joint model with the displacement-
dependent Barton-Bandis rock joint model, and applied the DDA code
to predict the dynamic motion behavior of sliding blocks. Based on a
viscous boundary and the free-field theory, Peng et al. [20] modified
the DDA, and applied it to accurately simulate earthquake-induced
landslide with high velocity and long runout.

To analyze actual rock engineering problems, it is not appropriate to
directly apply the 2D calculation model because of typical three-di-
mensional (3D) effects. However, 3D DDA has focused on basis theory
development until now [21-23]. The key of DDA method is the contact
theory including the contact detection and open-close iteration. To re-
duce the complexity of the contact detection and improve the compu-
tational efficiency of the DDA program in 3D, fundamental studies of
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the spherical discontinuous deformation analysis (SDDA) have com-
menced [24-27]. However, with the increasing element number of the
numerical model to solve, the simulation tends to be very time con-
suming, and this obstructs the application of the SDDA method for si-
mulating large-scale spherical system. Thus, to improve the computa-
tional efficiency of the SDDA is important.

In the DDA or SDDA program, solving simultaneous equations ac-
counts for the highest percentage of computing time. Koo and Chern
[28] adopted rigid body displacement function and preconditioned
conjugate gradient solver, and reduced the computational time for
DDA. Mohammad [29] compared several equation solvers in the DDA
method and suggested three different ranges of solver in terms of de-
grees of freedom. Recently, parallel computing has developed rapidly.
Based on Graphics processing unit(GPU), Xiao et al. [30] developed the
parallel method accelerating DDA computing, and the total perfor-
mance of DDA was improved about 2 to 10 times with different cases.
Song et al. [31] proposed to accelerate the DDA using parallel Jacobi
Preconditioned Conjugate Gradient (JPCG) technique on GPUs, and
modeled earthquake-induced landslide. To improve the efficiency of the
DDA method, Fu [32] introduced the block Jacobi (BJ) iterative method
and the block conjugate gradient with Jacobi pre-processing (Jacobi-
PCG) iterative method, and developed the parallel computing of the
DDA linear equations based on the multi-thread and CPU-GPU hetero-
geneous platforms with OpenMP and CUDA, respectively.

Nowadays, shared memory storage with several multi-core CPUs is
widely used in parallel numerical computation. OpenMP is one of the
dominant parallel programming languages for the shared memory
parallel architecture, but it is not suitable for the cluster system which
adopts distributed memory parallel architecture. Meanwhile, super-
computing involving multiprocessors has become interesting to use.
Cluster based computing system has emerged as a mainstream method
for parallel computing in many application domains, with Linux leading
the pack as the most popular operating system for clusters. These sys-
tems are typically built from symmetric multi-processor (SMP) nodes
connected with high speed local area networks (LANs) or system area
networks (SANs). A majority of these scientific applications are written
on top of Message Passing Interface (MPI) [33]. Whether OpenMP or
MPI is faster, the results are not directly comparable because MPI ap-
plies best to coarser-grained parallelism, which has less overhead,
whereas OpenMP applies best to fine-grained parallelism [34]. Against
this background, this paper presents three parallel computing pro-
grams, i.e. pure MPI, pure OpenMP and hybrid MPI+ OpenMP, and
makes a comparison of these programs in computational efficiency to
find a more appropriate parallel computing way for the SDDA. The
original SDDA program is not suitable for parallel computing because of
the solutions are not completely independent in the existing SOR
iterative method and Cholesky decomposition method. Therefore, the
conjugate gradient iterative method is introduced to provide a feasible
parallelizable implementation for SDDA. The parallel programming of
the SDDA is operated on the high-performance computing clusters of
Sugon TC4600.

2. Fundamental of the SDDA
2.1. Displacement pattern

Each sphere in SDDA is rigid and has six degrees of freedom, the
displacement unknowns of the i-th element can be expressed as
[Di] = [dX dy dZ Fx Ty rz]T; (])
where (d, d,, d;) indicate rigid body translations of the sphere center;
(ry, 1y, 1) represent the rotation angles around the sphere center.

The displacement function of an arbitrary point (x, y, z) of sphere
ican be written as
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u
H = [T(x, . 21D,
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where [Ti(x, y, z)] is the displacement transformation matrix of sphere i,

100 0 2z -y
[T, y,2)]={0 10 -2 0 x|,

where X =x-x,, y=y-), Z=2-2. and (x., }, Z.) are the coordinates of
sphere i’s center.

2.2. Governing equations

According to the principle of minimum potential energy, the gov-
erning equation of sphere system can be obtained from the extremum
condition of the total potential energy (including different kinds of
deformation potential energy, potential energy of external forces).
Assuming that there are n spherical elements in the computational
model, the simultaneous equilibrium equations can be expressed as
follows

[Kii] [Kia] -+ [Kin] [F1]
(K] [Kx] - [KZn] [DZ] [Fz

(K] [K'nz] - Kol

>

(4

where [Kj] (i, j = 1,2, ", n) is a 6 X 6 submatrix, [K;;] depends on the
material properties of sphere i, and [Kj] (i#j) depends on the interac-
tions between sphere i and sphere j;[D;]are the 6 X 1 submatrices of the
basic unknowns of sphere i; [F]are the 6 X 1 submatrices of the gen-
eralized forces acting on sphere i.

In the sphere system, all the contact forces and displacement con-
straints of spheres are cause by the neighboring spheres, and all contact
issues ultimately come down to the establishment of the simultaneous
equilibrium equations. By using the minimum total potential energy
principle, the effects of external forces and internal interaction among
contacting spheres are both transferred into submatrices which are
added to the simultaneous equations. By the same token, the volume
loading, the inertia forces, the submatrices of the point loading, the
displacement constraint as well as the directional constraint can be
obtained easily.

2.3. Kinetic condition

The solution of Eq. (4) must satisfy no-penetration and no-tension
contact constrains between spheres. If penetration happens, stiffness
springs are applied at the contacts, the number, the direction as well as
the location of the contact springs depend on the contact type and the
detected contact status. This algorithm is termed as the penalty function
(also known as Open Close Iteration, OCI) method.

After the possible contact springs are added to the two contact
spheres, the submatrix of the contact springs are computed and added
to the matrices of the governing equations at the corresponding posi-
tions, and then, Eq. (4) is solved. According to the computed results, the
conditions of no-penetration and no-tension are checked. If the condi-
tions of first time OCI iteration are satisfied, the computation of this
time step is finished, or else, the contact springs are appended where
penetration occurs, or removed where tension occurs, and the corre-
sponding stiffness matrix is adjusted, then the next round OCI iteration
begins with corrected stiffness matrix and the process continues until
the conditions are satisfied. If the conditions are not satisfied within six
OCI iterations, the time step will be further reduced, and the OCI pro-
cedure goes on. The flow chart of OCI is shown in Fig. 1. This repeatable
process makes the DDA computation process relatively lengthy.
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Fig. 1. Flowchart of open close iteration.

2.4. Governing equations solvers

The governing equation which possesses symmetric positive matrix
is solved repeatedly in one time-step. The original SDDA program uses
two governing equation solvers, i.e. the direct solver based on Cholesky
decomposition method and the Gauss-Seidel method with successive
over relaxation (SOR). SOR is an iterative solver for solving a linear
system of equations based on an extrapolation of the Gauss-Seidel
method. In the original SDDA program, the governing equation is
solved by SOR method when the number of spheres is larger than 300,
otherwise it is solved by Cholesky decomposition method. These two
solvers work well for the SDDA program involving a few hundred
spheres but for a large number of spheres they lose efficiency, and they
are also not suitable for parallelization. To overcome this difficulty a
more efficient solver based on the conjugate gradient (CG) iterative
method is adopted. Since the global stiffness matrix, [K]in SDDA is
symmetric and positive definite, and the CG iterative solver can be used
to efficiently solve for system involving a large number of spheres. An
iteration of the CG method is of the form

x(®) =x—-1) +s@)d(®) ()

where the new value of vector xis a function of the old value of vector
X, a scalar step size s, and a direction vector d.

Fig. 2 shows the pseudo-code step of the sequential CG algorithm. It
demonstrates that the CG method consists of matrix-vector multi-
plications and dot products, which are applicable for parallel com-
puting. Before the first iteration, values of x(0) and d(0) are both in-
itialized to the zero vector and g(0) is initialized to — [F]. The tolerance
threshold used by the stopping criteria is taken as 1.0e—5, i.e. ep-
silon = 1le—5.

In order to assess the computational efficiency of the solvers, a
series of simulations with different number of spheres have been ana-
lyzed. The solver speed comparison between the original SDDA pro-
gram and the modified one is shown in Fig. 3. In the original SDDA
program, the Gauss-Seidel method with successive over relaxation
(SOR) is employed, and the solver of the modified SDDA is based on the
conjugate gradient (CG) iterative method. It is clear from this figure
that with increase of number of unknowns of equations, the computa-
tional time increases, and the CG method solver is found to be more
efficiency for the SDDA.

3. Computer implementation

Sugon TC4600 under Linux Redhat 6.2 is used for developing the
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fori < 0 ton-1do
dli] <0
x[i]<0
gli] — -F[7]
end for
for iter < 1 to n do
d1 < Inner Product(g. g)
g < Matrix Vector Product(4. x)
fori < 0 ton-1 do
gli] —¢li] - Fi]
end for
1l < Inner Product(g. g)
if n1< epsilon
break
end if
fori <— 0 to n-1 do
d[i] <—g[i] + (n1/d1) = d[i]
end for
n2 < Inner Product(d. g)
t «—Matrix Vector Product(4. d)
d2 <« Inner Product(g. 7)
s «nl/dl
fori < 0ton-1do
x[7] «=x[i] + 5 < d[i]
end for
end for

Fig. 2. Pseudo-code step of sequential CG algorithm.
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Fig. 3. Comparison of computation speed.

performances of the parallel SDDA code. It is equipped with one hun-
dred and thirty-eight Intel E5-2670 processors and two 64T of
Openstor-IB storage nodes. Because graphical display of the original
SDDA code is implemented on the Windows platform, and it is not
compatible with the Linux system, so, file exchange protocol (FXP) is
used to implement the data file exchange across platforms, as shown in
Fig. 4.



Y.-Y. Jiao et al.

|

‘ Postprocessing

: Windows platform : : Linux cluster :
| | | |
| Preprocessing | I I
| | I |
: l : File exchange : :
| | Output model data |7------- m Read model data | |
| I I |
| | I |
| | | | Parallel program |
| | I ‘ calculate |
| | I |
| | File exchange | l |
| ‘ Read calculate file ¢------- I-iOutput calculate data | |
| |
| I
| |
| |
| |

Fig. 4. Data exchange form of modified program.

3.1. Pure MPI parallel computing model

MPI runs well on a wide variety of distributed storage architectures,
and it is a natural fit for multi-computers. However, MPI relies on an
explicit communication among the parallel processes which requires
mesh decomposition in advance due to data decomposition. Therefore,
MPI may cause load balance and introduce additional time consump-
tion.

3.1.1. Data decomposition in parallel CG method

Since the CG method consists of matrix-vector multiplications and
dot products, a parallel matrix-vector multiplication algorithm based on
a domain decomposition that associates a task with each row of the
matrix is used. To reduce the communication time among processors,
vectors are duplicated among the subtasks. Fig. 5 shows the parallel
matrix-vector multiplication algorithm resulting from this domain de-
composition. It demonstrates that each processor has a row and a
column vector. Processor i has row i of matrix and a copy of vector, so it
has all the data it needs to perform the inner product. After the inner
product computation, processor i has element i of vector c. An all-gather
step communicates each task’s element of ¢ to all the other processors,
and the algorithm terminates. It should be noticed that the number of
matrix rows must be divided by the number of processors, or the pro-
cessor will receive incorrect number of data.

Inner product computation

Processor i

b,

o a2 - @] 7] — [e]

Row i of matrix b

n

Copy of vector

Fig. 5. Parallelization of matrix-vector multiplication.
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3.1.2. MPI parallelization for SDDA

According to the data decomposition format mentioned above,
Fig. 6 demonstrates the pure MPI parallelization which is designed on
the basis of serial algorithm by using peer-to-peer mode and standard
communication mode. In another word, the parallel SDDA program is
executed on a multiprocessor cluster by creating one MPI process for
each CPU on the system, and each process deals with different data
obtained from the matrix. In this case all process interactions will
happen via message-passing.

The flowchart of parallel SDDA on each MPI process is shown in
Fig. 7. The first MPI function call made by every MPI process is the call
to “MPLINIT”, which allows the system to do any setup needed to
handle further calls to the MPI library. The step of “Allocate matrix to
processors” makes the processors hold corresponding row elements of
the matrix. Then the CG iterative solver solves the linear equations with
the corresponding row elements of the matrix, as shown in Fig. 8. Fi-
nally, after a process has completed all of its MPI library calls, it calls
function “MPI_FINALIZE”, allowing the system to free up resources
(such as memory) that have been allocated to MPI. The number of
process is specified by user.

Fig. 8 presents the parallel pseudo-code of the CG iterative solver.
Inner products and matrix-vector multiplications are accomplished
through function calls, as shown in Fig. 9. The function “In-
ner_Product”, when passed two vectors, returns a double precision
scalar value that is the inner product of the two vectors. Because all
vectors are duplicated, every process has all the values it needs to
compute any inner product, and it needs no communications. The
function “Matrix_Vector_Product”, when passed the row elements of the
matrix and a vector, returns a vector that is the product of the matrix
and the vector. Vectors are duplicated, while each process is assigned a
contiguous group of rows of the matrix. Hence multiplying these rows
times a vector results in the solution being distributed in blocks across
the set of processes. In order to gather the solution vector obtained on
each processes, the function “Matrix_Vector_Product” calls the function
“MPI_Gather”.

3.2. Pure OpenMP parallel computing model

OpenMP is an implementation of multithreading, a method of par-
allelizing whereby a master thread forks a specified number of slave
threads and the system divides a task among them. Fig. 10 demon-
strates the parallel principle of OpenMP. It runs well on a shared sto-
rage system and is easier to implement parallelization than MPI. Fig. 11
presents the parallel pseudo-code of the matrix-vector multiplier and
inner product in SDDA.

3.3. Hybrid MPI+ OpenMP parallel computing model

The pure MPI parallel computing model can scale beyond one node,
and has no data placement problem. But it is difficult to develop and
debug, the communication is explicit, and it is very difficult to achieve
the load balancing.

The pure OpenMP parallel computing model is very easy to imple-
ment parallelism, and it has low latency, high bandwidth. However, it
runs only on shared memory machines, and scales within one node.

Since most architecture in high performance computing is dis-
tributed shared memory, this study presents a hybrid MPI+ OpenMP
parallel computing program for SDDA to further enhance calculation
ability on single node, as shown in Fig. 12. The parallel pseudo-code of
the matrix-vector multiplier and inner product are the same as in
Fig. 11.

4. Verification examples

Based on the parallel algorithms mentioned above, the parallel CG
solvers, written in C+ +, have been developed and incorporated into
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void
{

for i

CG (int id, int p, double *A, double *b, double *x, long n)

<—0ton-1do
d[i] <0

x[i] <0

gli] —FIi]

end for
for iter < 1 ton do

the original SDDA source code proposed by Jiao et al. [28]. This section
presents three numerical examples to verify the correctness of the
proposed parallel models and to make a comparison of pure MPI, pure
OpenMP and hybrid MPI+OpenMP parallelization in computational
efficiency. The common computational properties used in these ex-
amples are listed in Table 1.

The speedup ratio as one of the key indexes of parallel processing is

dl < Inner_Product(g, g, n)
Matrix_Vector_Product(id, p, A, x, g, n)
MPI_Bcast(g, n, MPI_DOUBLE, 0, MPI_COMM_WORLD)
fori < 0ton-1do

g[i] — gli] - F[i]
end for
nl « Inner_Product(g, g, n)
if n1< epsilon

break
end if
fori < 0ton-1do

d[i] — g[i] + (nl/d1l) Xd[i]
end for
n2 « Inner_Product(d,g)
Matrix_Vector_Product(id, p, A, d, tmpvec)
MPI_Bcast(tmpvec, n, MPI_DOUBLE, 0, MPI_ COMM_WORLD)
d2 < Inner Product(d,tmpvec)
s < n2/d2
fori < 0ton-1do

x[i] = x[i] + s Xd[i]
end for

end for

!

used to analyze the efficiency of the parallel CG solver. Speedup is the
ratio between sequential execution time and parallel execution time

[34]:

Sequentialexecutiontime

Speedup =

Parallelexecutiontime

Fig. 8. Pseudo-code of the parallel CG iterative method.
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void Matrix_Vector Product(int id, int p, double *m, double *v, double *g, long n)
{
int size < n/p;
double *local sum < (double *) malloc(size*sizeof(double));
for i — 0 to size-1 do
local sum[i] < 0
forj~— 0ton-1do
local_sum[i] < local_suml[i] + v[j] * m[i*n+j]
end for
end for
MPI_Gather(&local_sum[0], size, MPI_DOUBLE, g, size, MPI_DOUBLE, 0,
MPI_COMM_WORLD)

1
s

double Inner_Product(double *a, double *b, long n)

{
double rs < 0
fori< 0ton-1do
rs < a[i] * b[i]
endfor
return rs
b
Fig. 9. Pseudo-code of the function called by CG solver.
Sequential Main thread 4.1. Numerical tests of free falling body
art
P | _ . Fork This example intends to verify the correctness of the modified
solver. The spherical element, with a mass of 10 kg and radius of 0.5 m,
Parallel Child thread respectively, is falling under gravity, as shown in Fig. 13. Time step
part id threa t = 0.001. Pure MPI parallel computing model is employed.
Fig. 14 compares the obtained velocities by the original solver (with
. < - -LL - Join the method of Cholesky and SOR), sequential CG solver and parallel CG
Sequer:\tlal solver. It can be seen that the results of the two CG solvers converge to a
pa - +——> Fork stable state at time t = 6.8 s, and the original one converges to a stable
Parallel ) state at t = 7.1 s. The motion curves obtained by the three solvers are
part Child thread consistent, indicating that the two CG solvers are correct and faster.
S fial <112 Join
ecg)uaer? e 4.2. Simulation of landslide

Landslide is one of the serious natural hazards in mountainous areas

Fig. 10. Parallel principle of OpenMP. and represents a major threat to infrastructure, transportation lines, and
people. In this section, a simple landslide is simulated. The landslide

plan is shown in Fig. 15. The sliding surface is about 103 m in length,

and the shearing opening is about 57 m in width. The computational

model is shown in Fig. 16, and the slide mass consists of 1526 sphere

int size < n/p double rs+— 0
double *local_sum < (double *)malloc(size*sizeof(double)) #pragram omp parallel for
#pragram omp parallel for private (7, tmp) fori < 0ton-1do
fori < 0to size-1 do rs < a[i]*b[i]
local_sum[i] ~— 0 end for
tmp < 0 return rs

forj < 0ton-1do
local_sum[i] < local_sum[i] + v[j]*m[i*n+j]
end for
end for

(a) matrix-vector multiplier (b) Inner product

Fig. 11. Pseudo-code of the call function.
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Program starts
|
MPI initialization MPI initialization MPI initialization
v ! v
Assemble Assemble Assemble
governing governing governing
stiffness matrix stiffness matrix stiffness matrix
by OpenMP by OpenMP by OpenMP
Fork the main thread Fork the main thread Fork the main thread
) (@) ) O (@ @ O (@] @
=5 =3 =X =3 =3 =H E =, =X
al =l... &= al l&... = al |=.,...=
[oW [N o o [N [oN o o o
— [\®) = —_ B, = = [\ =
Join the thread Join the thread Join the thread
Gather the data Gather the data Gather the data
! - ' - !
Allocate Communication Allocate Communication Allocate
matrix to [ ———> matrixto f-————-— > matrix to
processors processors processors
¥ . o v L v
SOlve ommunication SOlve Communication SOlVC
equations equations equations
| ' '
Update data Update data Update data
MPI Finalize MPI Finalize MPI Finalize
[ | |
v
Output data
Fig. 12. Parallel model of hybrid MPI+ OpenMP.
Table 1

Computational properties.

Parameters

Values

Gravitational acceleration (m/s%)
Normal spring stiffness (GN/m)
Shear spring stiffness (GN/m)

9.8
1
0.25

elements without bonding strength. The spherical elements, with mass
of 2700 kg and radius of 1 m, respectively, are sliding under gravity.
Time step t = 1 x 10~ °s. Fig. 17 shows the simulated results at dif-
ferent calculating time steps. The results show that the parallel SDDA

model can simulate the motion of landslide.

In order to analyze the parallel efficiency, different numbers of
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Fig.

13. Model of free falling body.
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Fig. 14. Comparison of velocity-time curves in Example 1.

Sliding range

Shear opening

Fig. 15. Plan of landslide.

Slide mass

Shear opening

(a) Model of landslide

Slide mass

Sliding surface

(b) Side view of landslide model

Fig. 16. Model of landslide.
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(c) Step = 400802

Fig. 17. Simulated results of landslide.
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3.5

3.0+

254

Speedup

2.0+

1.5 1

T

Number of Processes

Fig. 18. Speed-up ratio results of the parallel CG solver with pure MPI com-
puting model.

processors are employed. The speedup ratio is shown in Fig. 18. It
clearly highlights that the parallel speedup ratio increases with the
number of processes, and the effect of speedup is very obvious with
pure MPI computing model.

4.3. Simulation of tunnel collapse

To further verify the ability of the proposed parallel SDDA in
modeling large scale problem, a model with two cross tunnels was
constructed and simulated. The tunnel, with a shape of straight wall
and semi-circle, is 2.8 m in width and 3.2 m in height. The calculating
model, with 4161 spherical elements, is 6.5 X 6.5 X 4.3 m, as shown in
Fig. 19. The properties of the spherical element are: the density
p = 2700 kg/ms, the normal stiffness k, = 5 X 108 N/m, the shear
stiffness ks = 1.25 x 108 N/m, and the radius r = 0.2 m.

The mechanical properties are: the tensile strength Tp = 10 MPa,
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Fig. 19. Model of tunnel collapse.

the cohesion ¢ = 12 MPa, and the internal friction angle ¢ = 30°. Time
step t =1 x 107>, The boundary conditions are: the vertical load
F = 100 MPa, the outer faces of the tunnel are fixed.

The simulated results at different calculating time steps are shown
in Fig. 20. It can be seen that under the compression forces, the mod-
ified SDDA program with parallel CG solver can simulate the problem of
tunnel collapse, effectively.

Fig. 21 shows the runtimes of solving linear equations with pure
MPI parallel computing model and pure OpenMP parallel computing
model. As can be seen in the figure, For this example, the computation
speed of pure OpenMP parallel computing model is faster, in which 2, 4,
6 threads are employed.

In order to analyze the parallel efficiency, different numbers of
processors are employed, and different numbers of threads are also used
in hybrid MPI+OpenMP parallel computing model, the runtime of
linear equations solving are demonstrated in Fig. 22. Table 2 lists the
speedup of pure MPI and hybrid MPI + OpenMP with different numbers
of processors and threads. In this case, the effect of hybrid parallel
model is better when the number of processes is less than 6. When the
number of processes comes up to 12, the effect of hybrid parallel model
with more than 2 threads is worse than the pure MPI parallel mode.
Besides, it can be seen that the maximum speedups of pure MPI, pure
OpenMP and hybrid MPI+ OpenMP are 3.91, 2.85 and 6.73, respec-
tively. Therefore hybrid parallel programming is better than the other
two pure parallel models, and it can further enhance the computational
efficiency for the SDDA.

Data communication has also a major effect on the parallel effi-
ciency. The time-consuming of getting data in parallel computing is
shown in Fig. 23. It can be seen that time-consuming is more as the
number of processes is more, and the time-consuming do not increasing
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(c) Step =3734

Fig. 20. Simulated results of tunnel collapse.

when the number of processes comes up to 4, the possible reason is that
the load balancing is implemented. Moreover, the parallel efficiency of
hybrid MPI + OpenMP model is higher than the pure MPI model.

To illustrate the implementation and performance of the present
method for large scale problem, we employ more spherical elements, up
to 10,660 elements, to simulate the tunnel collapse. The result is shown
in Fig. 24. It can be seen that the computational efficiency of the par-
allel SDDA is higher, the speedup is about 7.

5. Concluding remarks

Since SDDA uses an implicit solution scheme which is un-
conditionally stable for any time-step size, larger time-step size can be
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Fig. 21. Comparison of efficiency between pure MPI model and pure OpenMP
model.
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Fig. 22. Comparison of efficiency between pure MPI model and hybrid parallel
model.

Table 2

Speedup results of hybrid MPI+ OpenMP.
Processes Threads

1 2 4 6 8 10 12

1 1.00 1.69 2.46 2.71 2.80 2.78 2.85
2 1.31 3.7 4.52 5.00 6.03 4.95 4.95
4 211 4.66 6.73 5.84 1.54 5.01 4.65
6 2.53 5.05 5.94 3.9 5.21 3.92 3.43
9 3.66 6.02 5.42 3.46 4.05 2.81 2.61
12 3.91 4.34 3.61 2.83 2.82 2.34 2.15

used. However, the open-close iteration restricts the time-step size, and
it requires a number of iterations to satisfy contact constrains and a
large number of linear systems of equations in each time-step to be
solved. These imply that the calculate process in SDDA will require
more time. Therefore, to improve the computational efficiency for
SDDA, this paper presents three parallel computing models which run
on Linux cluster platform, and the following conclusions are de-
termined.

The CG iterative method is used to overcome the shortcomings of
the original SDDA (with the solver of Cholesky decomposition and SOR
iterative) which is unsuitable for parallel computing. The efficiency
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Fig. 23. Time-consuming of getting data in parallel computing.
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Fig. 24. Comparison of time-consuming between serial SDDA and parallel
SDDA using 10,660 elements.

analyses of the solvers are investigated, and the results demonstrate
that the CG iterative solver is a better choice for SDDA to solve the
linear equations.

Parallel computing model for solving the linear equations in SDDA
is implemented by pure MPI, pure OpenMP and hybrid MPI+ OpenMP,
respectively. Through the simulations of three verification examples,
the correctness of the proposed parallel computing models is proved,
and the parallel efficiency analyses demonstrate that the multiple par-
allel programming can further enhances the computing efficiency for
SDDA.

However, the pure MPI and the hybrid MPI+OpenMP programs
proposed for SDDA remain problematic because of the problems of load
balance and communication between processes. Further studies are
needed to improve the number of parallel process for achieving higher
speedup.
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