
Parallelizing MPI using Tasks for Hybrid
Programming Models

Surabhi Jain, Gengbin Zheng, Maria Garzaran, James H. Cownie, Taru Doodi, Terry L. Wilmarth
Intel Corporation

Email: {surabhi.jain, gengbin.zheng, maria.garzaran, james.h.cownie, taru.doodi, terry.l.wilmarth}@intel.com

Abstract—Many-core architectures such as the Intel R© Xeon
PhiTM provide dozens of cores and hundreds of hardware threads.
For these machines, a basic MPI implementation is inefficient, as
it does not take advantage of the shared data across the ranks
on the same node. A hybrid-programming model called MPI+X,
where MPI is used between the nodes and a threading model
X (Pthreads or OpenMP*, among others) can better utilize the
compute and memory resources.

In this paper, we investigate how the MPI library can run in
parallel without competing with the threads of X that are running
the application, and in particular without oversubscribing the
available hardware resources. We assess whether MPI can use
tasks that can be executed by idle threads in X. To prototype such
a system, we have chosen X to be OpenMP. Our experimental
results show that parallelizing MPI calls using OpenMP tasks
can provide significant speedups.

I. INTRODUCTION

Many-core architectures such as the Intel R© Xeon PhiTM

processor provide dozens of cores and hundreds of hardware

threads per chip. For these many-core machines, using only

MPI parallelism is inefficient, as it does not take advantage of

the shared data across the ranks on the same node, requiring

message exchanges across ranks in the same chip. For these

systems, a hybrid-programming model can better utilize the

compute and memory resources. This model is usually called

“MPI+X”, where MPI is used between the nodes and the

threading model “X” (X can be Pthreads, OpenMP* or Intel R©

Threading Building Blocks (TBB), among others) is used

across the cores in a node. Applications running in such

a programming model use several threads to execute the

computation in parallel, but usually only one of the threads

calls the MPI library. Thus, the MPI library runs serially, while

many threads are idle. This is especially true if the MPI call

is made from the serial part of the application, but it might

also be true when the MPI call is made from the parallel

region. Furthermore, the MPI implementation itself typically

is sequential. In a many-core machine, this poor use of the

resources can result in a significant number of idle threads.

In this paper, we investigate how to use threads of X to

parallelize an MPI implementation without competing with

the threads of X that are running the application, and in

particular without oversubscribing the available hardware re-

sources. Similar work was done by Si et al [1]. In their study,

they implemented a multi-threaded MPI using OpenMP and

tried to exploit idle threads to speedup the MPI calls. Their

approach relies on a modified OpenMP runtime that provides

information about the number of idle threads. However, it

is challenging to gather that information in the general case

where the user code is using tasks. This is because a thread

that is in a barrier is not guaranteed to be idle since it

could be executing OpenMP tasks. Furthermore, this approach

may lead to oversubscription when the OpenMP application

uses nested parallelism. These problems motivated us to look

for parallelization methods that do not require creating new

threads. One such method is to use tasks. Tasks are found in

OpenMP and TBB and can be executed by the thread that

creates them or by other threads in “X”, at least at task-

scheduling points, such as barriers.

In this paper, we investigate whether task parallelism can be

used to parallelize MPI. To prototype such a system, we have

chosen X to be OpenMP and have consequently used OpenMP

tasks within the MPI library. We show experimental results

for parallel execution of intranode MPI Send(), MPI Pack(),
and communication using derived datatypes. Our experimental

results show that when the amount of work to be performed

inside the MPI library is large enough, parallelizing MPI

calls with OpenMP tasks can result in significant speedups.

Applications in new domains such as Machine Learning

and Deep Learning communicate large messages, imposing a

great challenge to the underlying MPI communication library.

Therefore, it is critical to optimize the MPI library for large

messages on the many-core architectures.

The paper is organized as follows. Section II presents an

overview of our approach; Section III discusses our design

and implementation; Section IV presents our environmental

setup; Section V shows our experimental results; Sections VI

discusses related work; Finally, Section VII concludes.

II. OVERVIEW

The goal of this work is to consider MPI parallelization

approaches that avoid oversubscription. In this Section, we

compare two possible thread execution models to achieve

this. In the first approach, given a system with N threads,

we reserve X threads for the MPI library. In this model,

when a thread calls the MPI library, this will run in parallel

using the X threads reserved for the use of the MPI library.

Assuming that the application uses N −X (or fewer) threads,

the system will not be oversubscribed. An example of such

approach is shown in Figure 1(a), where N = 6 and X = 2.

This approach, however, does not use the resources efficiently.

First, when the MPI library is called from the serial part of

1303

2018 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-5555-9/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPSW.2018.00203

the application, the MPI library is run using only two threads,

when all the six other threads could have been used. Even

when the MPI library is called from a parallel region, more

than two threads could be used to execute the MPI call if other

application threads are idle, for instance, when the application

has load imbalance. The example in Figure 1(a) shows a case

like this, where the first two threads have finished earlier and

are waiting for the other threads to complete and arrive at the

barrier. These two idle threads could also help in the execution

of the MPI call. A similar approach is proposed in [2], where

they offload MPI processing to a dedicated thread.
Figure 1(b) shows the other thread execution model. In this

case, the application uses all the threads, N = 6, to execute

the compute part in parallel. When the MPI library is called

from a serial region, all the threads participate in the execution

of the MPI call. When the MPI library call is made from

the parallel section, the application thread that called the MPI

library and all idle threads (for instance, waiting at a barrier)

help in the execution of the MPI call. As threads complete the

execution of the compute part and reach the barrier, if there

is work created by the MPI call (in the form of tasks) that

has not yet been executed, the newly idle threads can steal

it and thereby contribute to the execution of the MPI call.

In the worst case, when there are no idle threads, only the

thread that called the MPI library executes the tasks. As long

as the overhead of creating tasks is small, this is no different

from the current sequential MPI implementation, as the MPI

routines are executed sequentially. Thus, the approach shown

in Figure 1(b) is more desirable than that of Figure 1(a), as

it results in the best utilization of the resources, where all the

threads are used during the compute part of the application

and help to execute the MPI library routines when they are

idle. To demonstrate this task-based approach, we chose to

parallelize several MPI functions using OpenMP tasks. Thus,

we assume X to be OpenMP.

Fig. 1: Ways to use MPI and application threads

The MPI standard describes four levels of thread support.

Programs running with MPI THREAD SINGLE do not take

advantage of hybrid programming models, but they can benefit

from parallelism within the MPI runtime when the application

is not using all the threads. This is not a very interesting

case for our study, as the benefit of our proposed solution

is that the MPI runtime can take advantage of application

threads that are idle (rather than unused threads). Programs

written with threading models FUNNELED, SERIALIZED,

or MPI THREAD MULTIPLE use several threads to run the

application. With models FUNNELED and SERIALIZED

only one thread at a time can call the MPI library, while

with MPI THREAD MULTIPLE, several threads can call the

MPI library concurrently. With these three models, since the

application is already running in parallel, parallelizing the MPI

runtime using threads can easily result in oversubscription

of the hardware resources. With our proposal, this issue

is avoided by using OpenMP tasks, as we do not create

additional threads. Currently, most of the applications use

FUNNELED or SERIALIZED threading models, due to the

poor implementation of MPI THREAD MULTIPLE.

Notice that the approach described in this paper is orthogo-

nal to the parallelism that comes from several threads running

in parallel and concurrently calling the MPI runtime using

MPI THREAD MULTIPLE. Our proposal is about paralleliz-

ing each MPI call, by parallelizing the MPI runtime itself. So,

while we create nested parallelism, we never oversubscribe.

III. DESIGN AND IMPLEMENTATION

In this section, we explain the design and implementation

details of our task-based parallelization approach. We consider

our solution opportunistic because it makes use of idle threads.

If all the threads are busy, the thread creating the tasks ends up

executing all the tasks. This type of parallelism may help in

applications that use a synchronizing model such as OpenMP

which potentially generates idle threads at synchronization

points that can be exploited by MPI. Figure 2 shows pseudo-

code of how an MPI call using OpenMP tasks may be

implemented. We first check if the MPI call is made from

a sequential or from a parallel region in the application. In

the case of sequential, we create a parallel region and one

of the threads creates tasks. In the case of parallel region,

the calling thread creates tasks and waits at #pragma omp
taskwait until all the tasks have been executed either by itself

or other idle threads. Our proposed solution is to use OpenMP

tasks which can then naturally be executed by the OpenMP

runtime on threads which are waiting at task-scheduling points

(these task scheduling points include implicit or explicit bar-

riers, the point of encountering a taskwait construct, and the

completion point of a task). As previously mentioned, this

approach has a number of advantages: i) it uses only standard

OpenMP features so is portable to any OpenMP 3.0 (or later)

implementation; ii) it does not cause over-subscription and

therefore kernel scheduling; iii) it does not require a modified

OpenMP library. iv) it naturally exploits idle OpenMP threads

without requiring intrusive changes.

Next, we show how we can use this task-based approach

for parallelizing MPI routines. In particular, we demonstrate

this approach in parallelizing memory copying for intran-

ode communication, explicit and implicit packing and un-

packing of non-contiguous datatypes (e.g. MPI Pack() and

1304

1 if (omp_in_parallel())
2 {
3 //Create tasks for whatever MPI wants to do in parallel
4 //which will run on idle pre-existing OpenMP threads
5
6 #pragma omp taskwait
7 //All tasks we created have completed when we get here
8 }
9 else

10 {//No pre-existing parallelism so create some
11 #pragma omp parallel
12 {
13 #pragma omp single nowait
14 {
15 //Create tasks for what MPI wants to do in parallel
16 }
17 }
18 //All tasks we created have completed when we get here
19 }

Fig. 2: MPI code using OpenMP tasks

MPI Unpack()). Notice that these MPI calls have been chosen

to demonstrate the benefit of this approach, but other MPI calls

can also potentially benefit from it. The main goal of this work

is not to parallelize a particular MPI call, but to show that

it is possible to parallelize MPI itself using tasks to exploit

idle threads in multithreaded hybrid programming model and

achieve significant speedups without creating oversubscription.

A. Shared Memory Communication

Shared memory communication or intranode communica-

tion takes place when different MPI ranks running on the same

node need to communicate, for instance using MPI Send().
Since each rank has a different address space, MPI Send()
between two MPI ranks is implemented as a shared memory

copy. MPICH implements this copy using a pipelined double-

copy approach [3] that uses a shared memory circular buffer

divided into cells so that the sender can copy the data to an

empty cell while the receiver is copying from the cell when it

is full or a complete message is put in.

When the amount of data to copy is large, we expect parallel

copying can provide significant performance improvement.

Parallelism in this case can be implemented at two different

levels. One is intra-level parallelism, where we copy each cell

in parallel. However, in the original MPICH implementation,

each cell is only of 32KB, which makes it difficult to gain

any performance from parallel copying. The other scheme is

to use multiple threads to copy different cells concurrently.

The problem with this scheme is that it eliminates the pipeline

parallelism due to concurrent copying, and copying may finish

out-of-order. Therefore, we implemented a mixed strategy that

uses OpenMP tasks to copy each cell and that retains the

existing pipeline parallelism in MPICH. Figure 3 shows this

approach. In the left side of the figure, we show the sequential

case currently implemented in MPICH, where 4 cells are

copied in a pipelined fashion1. In the right side of the figure 3,

we show our approach, where each cell is copied in parallel

1Notice that the MPICH implementation uses a total of 8 cells, where each
cell is 32KB

using two tasks. In our parallel implementation, we use a

variable cell size, where the cell size depends on the number

of threads the application is using and the size of each task.

Thus, cellsize = tasksize×nthreads. The optimal task size

depends on the target platform. Profile information needs to

be collected to determine the task size, so that task creation

overhead is kept to a low percentage.

As discussed in [1], increasing the cell size can hurt the

performance of data copying. This is because the receiver

cannot start the copying out until the complete cell has been

copied, reducing the overlap between the sender and receiver.

Also, when the number of threads is small, a large cell can

result in slowdown, as the amount of parallelism is not enough

to compensate the reduced overlap between the sender and

receiver. Thus, in general, the cell size needs to be large

enough to provide enough parallelism for the threads, while

avoiding significant task creation overhead.

Our experimental results in Section V confirm this issue.

When the number of threads is small, the parallel approach can

result in slowdowns. In the general case when the MPI runtime

is called from a parallel region in the application, there is no

reliable way for the OpenMP runtime to determine the number

of idle threads because idle threads are free to execute tasks

if there are any. Thus, in our current implementation, parallel

copying is only enabled when the MPI call is done from the

sequential region of the application and if the thresholds in

number of the available threads and message size are met.

Figure 4 shows the pseudo-code to perform the memory copy

using tasks when MPI Send() is called from the serial region.

This particular code creates one task per thread. If the number

of threads is less than a certain threshold (th1) or the size

of each task is small (th2), the memory copy is performed

sequentially; otherwise, one of the threads creates tasks that

can potentially be executed by all the threads in the OpenMP

runtime.

Fig. 3: Sequential and Parallel data copying

B. Derived Datatype Packing and Unpacking

MPI Derived datatypes, like vector, indexed, and struct,

allow the application to specify non-contiguous data in a

convenient manner [4] [5]. Derived datatype packing/un-

packing is done in MPI in two scenarios: (1) when

MPI Pack/MPI Unpack is called explicitly, and (2) when

communicating a non-contiguous datatype [4] [5]. In both

cases, the MPI library calls the internal function Seg-
ment pack/Segment unpack to pack non-contiguous data into

1305

1 int num=omp_get_max_threads();
2 size_t chunksize=len/num;
3 if (num < th1 || chunksize < th2)
4 memcpy(dst,src,len);
5 else
6 {
7 #pragma omp parallel
8 {
9 #pragma omp single nowait

10 {
11 for(i=0; i<num; i++){
12 #pragma omp task firstprivate(i)
13 memcpy(dst+i*chunksize,src+i*chunksize,chunksize);
14 }
15 if(len%num != 0)
16 memcpy(dst+i*chunksize, src+i*chunksize, len%num);
17 }
18 }
19 }

Fig. 4: Memory copy using OpenMP tasks when MPI Send()

is called from the serial region

a contiguous buffer or to unpack a contiguous buffer to a non-

contiguous memory region.

To process the derived datatype, a typical implementation

recursively traverses the derived datatype tree and issues a

local memory copy that copies the non-contiguous trunk of

data from/to the buffer. MPICH [6] optimizes this process to

avoid the recursive traversal by representing the entire derived

datatype as a stack structure and iteratively walks through the

stack in a for loop [7].

1) Vector Datatype: In this section, we discuss how to use

OpenMP tasks to parallelize the packing/unpacking of a vector

datatype, when it is at the lowest level of a derived datatype

tree. The next section discusses a different parallelization

scheme for a nested datatype at a higher level of the tree.

A vector is specified by a number of blocks, a number of

elements in each block, and the block stride. Figure 5 shows

the code that we have used to parallelize the MPI Pack() call.

This code first checks if the call is done from a sequential or

from a parallel region. If the call is from the sequential region

of the application, it first creates a parallel region. One of the

threads creates tasks (#pragma omp single region), while the

others wait at the implicit barrier at the end of the #pragma
omp parallel. The tasks will be executed by all the threads,

the one that created them and all the idle threads waiting at

the barrier. If the call is made from the parallel region of the

application, then the calling thread is the one that creates tasks.

These tasks can be executed by the thread that created them

and by other threads waiting at task synchronization points,

such as barriers. In the worst case, no thread in the system is

idle, in which case, only the thread that called MPI Pack() will

execute the tasks. Our experimental results show that even in

this case, the overhead is small if the task size is appropriately

selected. Notice that #pragma omp taskwait in Figure 5 is a

synchronization construct and forces the thread that created

the tasks to wait until all its child tasks have been completed.

We have observed that when the MPI call is made from a

sequential region, having several threads creating tasks delivers

1 if (!omp_in_parallel()){
2 #pragma omp parallel
3 {
4 #pragma omp single nowait
5 create_MPI_Pack_tasks(..);
6 }// Other threads wait here and
7 } // Execute tasks if idle
8 else{
9 create_MPI_Pack_tasks(..);

10 #pragma omp taskwait
11 //At this point all tasks have finished
12 }
13 void create_MPI_Pack_tasks(...){
14 int num_tasks= total_count/task_size;
15 for (tsk_id=0; tsk_id<num_tasks; tsk_id++){
16 int begin = tsk_id*(total_count/num_tasks);
17 int end = (tsk_id+1)*(total_count/num_tasks);
18 #pragma omp task firstprivate(begin,end)
19 {
20 int i, c, j_iter;
21 for(i=begin; i<end; i++){
22 c=i/nelms*l_stride;
23 for (j_iter=0; j_iter<nelms; j_iter++)
24 l_dest[i+j_iter] = l_src[j_iter+c);
25 }
26 }
27 }
28 }

Fig. 5: MPI Pack() using OpenMP tasks

some additional performance, as all the other threads are idle

and waiting for the tasks to be created before being able to

start execution.

The advantage of parallelizing MPI Pack() using OpenMP

tasks versus OpenMP threads appears when the MPI call is

made from the parallel region, as in that case the calling

thread can create tasks that other threads can execute if they

are idle. The tasking approach is also helpful to balance the

load dynamically, and as long as the tasks are large enough,

they should not add significant overhead. For the sequential

region, there is really not much difference between using tasks

or threads, as all the threads, except the one calling MPI,

are idle. Notice that the approach that uses tasks can never

create oversubscription, as it always uses the threads that

the application created and never creates additional threads.

When using #pragma omp parallel in the MPI library, it

is possible to create oversubscription when the MPI call is

made from inside a parallel region in the application. Whether

oversubscription happens or not will depend on the value of

the OMP NESTED environment variable, which allows for

nested parallelism when set to TRUE. In the GCC, LLVM,

Intel OpenMP runtime system this variable is set to FALSE
by default, but the programmer can override that value, in

which case oversubscription may occur.

2) Nested Datatype (Vector of Vectors): The same paral-

lelization scheme may not work efficiently for nested datatypes

such as a vector of vectors. This is because task partitioning

always occurs at the leaf level of the nested datatype, and

when the leaf vector is too small to be divided into tasks,

the parallelization does not deliver any performance benefit.

One possible solution is that instead of partitioning the leaf

vector as tasks, we partition along the higher level of vector

1306

for tasks, i.e. each task is responsible for packing/unpacking

one or more entire leaf vectors.

We have designed and implemented a prototype using this

approach in MPICH for vector of vectors datatypes. Currently,

we have only implemented this approach for vector of vectors

datatypes, but the same idea applies to other nested datatypes.

In MPICH, packing/unpacking a nested datatype is handled

in the function Segment manipulate(), which traverses the

derived datatype tree using a stack structure in a for loop and

does a memory copy whenever a leaf level datatype (e.g. vec-

tor) is encountered. To parallelize this for loop with OpenMP

tasks, we transform the for loop into an OpenMP parallel

region. As the stack is traversed, and a vector leaf datatype

is encountered, an OpenMP task is created for packing and

unpacking the entire vector. This approach can potentially

increase the OpenMP task size. While our experiments showed

some encouraging results, we will need to rewrite the MPICH

packing function to make this approach more general, which

is part of our future work.

IV. EXPERIMENTAL SETUP

In this Section, we discuss our environmental setup. Exper-

iments were run on a single or multiple nodes of a Knights

Landing (KNL) machine. This is an Intel R© Xeon PhiTM

Processor 7210 (1.3 GHz, 64 cores, 4 threads/core, with

32KB L1 data and instruction cache, 1MB L2 cache, 96GB

of DDR, and 16GB of MCDRAM), running Linux 3.10.0.

Codes are compiled using Intel R©Parallel Studio XE Composer

Edition for C++ (version 2016.0.109) for both the MPICH

libraries and the applications. We use MPICH v3.2b4-98-

g4551de1 as a baseline. The KNL is configured to have mem-

ory model -Flat, Cluster mode -Quadrant, no SNC [8]. The

code is publicly available at https://github.com/jain-surabhi-

23/mpich/commit/22f8ed6.

KNL has DDR4 RAM and in package memory called

MCDRAM. MCDRAM has a higher bandwidth than DDR4

(using the STREAM benchmarks, we have measured that the

memory bandwidth of MCDRAM is 400 GB/s, while the

memory bandwidth of DDR4 is 90GB/s). MCDRAM can be

configured in different modes (a discussion of these modes is

outside the scope of this paper). For the experiments reported

in this paper, we have run by placing all the data in DDR4

(using numactl -m 0) and by placing all the data in MCDRAM

(using numactl -m 1). Our experimental results show similar

trends in both cases, although MCDRAM sometimes deliv-

ers higher speedups,although MCDRAM sometimes delivers

higher speedups for benchmarks limited by bandwidth. Since

the focus of this paper is not on whether to use MCDRAM

or DDR, we only focus on one configuration, and we have

chosen the one where all the data are placed in MCDRAM.

To adapt to dynamic workloads, we use a set of parameters

to determine when to parallelize. Parallelization only occurs if

the input to the MPI call is large enough to use tasks. We per-

form offline tuning on the target hardware to determine these

thresholds. The optimal value of task size and buffer size used

in case of shared memory communication is also determined

specifically for the target hardware.

V. EXPERIMENTAL RESULTS

In this section, we first assess the benefit of our approach

using benchmarks, and show the benefit of parallelizing shared

memory communication (Section V-A) and MPI Pack() or

communication using derived datatypes (Section V-B). We

also show experimental results using real applications (Sec-

tion V-C).

A. Shared Memory Communication

To assess the benefits of shared memory communication we

ran experiments with the point to point communication latency

benchmark in the OSU MPI benchmark suite with 2 MPI ranks

running on a single node. Figure 6 shows speedups for this

benchmark with respect to the original MPICH, for different

message sizes as the number of threads per rank increases.

Original MPICH uses an internal shared memory buffer of

256 KB and cells of 32 KB, but the experimental results in

this figure (both original and our parallel implementation) use

an intermediate buffer of 4MB. In the parallel implementation

cellsize = tasksize × nthreads. We have chosen tasksize
to be 32KB. The sizes 4MB and 32KB provide the maximum

benefits, as explained in detail later in this section.

As the figure shows, we only parallelize for messages

of 64KB or larger, as each task has a size of 32KB. As

explained in Section III-B for low number of threads (2 and

4) the parallel approach results in slowdowns with respect

to the sequential version. The reason is that the parallel

approach increases the cellsize and as a result delays the

time when the receiver can start copying out, reducing the

overlap between sender and receiver. As the number of threads

increases (8 or more), the added parallelism can compensate

for the reduced overlap, achieving speedups of almost 2.5X

for the largest messages. For messages of size 64KB or

1MB, this approach does not produce speedups. For 64K

messages, only two threads can perform the data copying,

as the task size is 32KB. For 1M messages, with 16 threads,

cellsize = 32KB∗16 = 512KB and only two cells are used.

In this case, the receiver can only start the copyout when half

of the message has been copied to the intermediate buffer and

there are not enough stages in the pipeline (only two cells are

used) to compensate for the delay in start of the copyout. It

is important to notice that the limitations that we observe in

the parallel execution of the shared memory communication

are due to the pipeline approach used in the original MPICH

to perform the memory copy across ranks. This problem can

be avoided by using a different implementation so that each

individual sub-cell can be copied out right after it has been

copied in to the intermediate buffer without having to wait

for the whole cell to be copied. This implementation requires

some extra bookkeeping and is left as future work.

We have also evaluated the performance of the memory

copying as the task size varies and have found that 32KB is

usually a good tradeoff. With a task size of 16KB, the shape of

1307

the plot is similar to that of Figure 6, but with lower speedups,

with the maximum speedup being 1.7 instead of 2.5. Finally,

we have noticed that for messages of size 256KB or larger,

having a larger intermediate buffer of 4MB runs faster than

with the small buffer in the original MPICH. However, for

small messages, a small buffer is better. Our comparison uses

4MB in both cases, so that we only evaluate the impact due

to parallelism and not to different buffer sizes.

Fig. 6: Speedup of parallel memory copying with 32KB task

size

B. MPI Pack()

We have evaluated the performance benefit of parallelizing

MPI Pack() when using vector datatype and vector of vectors

datatypes. We have also considered whether the call is made

from the sequential part or from the parallel part of the

application with different threading modes.

1) Vector Datatype: We have evaluated the performance

benefit of executing MPI Pack() in parallel with the same

benchmark used by Si et al. [1]. This benchmark packs the

top 2D (XZ) plane of the 3D matrix. The volume of data

in the 3D matrix is 1GB (1024 × 65536 × 2 doubles). A

pictorial view in Figure 7 shows in green color the top part

being packed. This experiment uses a vector datatype, where

the number of vectors is determined by the value of the

Z dimension, the length of the block is determined by the

value of the X dimension, and the stride is determined by the

values of the X and Y dimensions, as shown in the Table I

in the second row, Axis 2. In the table, the number written

within the parenthesis is the value of that field for the cube in

Figure 7. We assume the X dimension to be contiguous. Along

axis 2 (the communication of ZX plane) the X dimension is

contiguous but Z is not. So, the data is represented as a vector

datatype. For our experiments, the size of the Y dimension is

fixed to 2. We pack the top (XZ plane), of volume 0.5 GB and

parallelize over the Z dimension. Thus, one or more rows of

Z consisting of X contiguous doubles are packed (or copied)

by 1 thread or task to the output buffer.

MPI Pack() is called from sequential region: The plot in

Figure 8 shows the speedups when packing the top surface

as we vary the number of blocks (the Z dimension) and

Fig. 7: Pictorial view of the 3D cube

the length of each block (the X dimension), while maintain-

ing the amount of data packed constant (X*Z=0.5GB). For

this experiment we used 1 MPI rank. In Figure 8 we vary

num blks along the X-axis, and the Y-axis shows the speedup

we obtain over the original sequential MPICH. Different trend

lines show the number of threads we used in data packing.

We see speedups of up-to 62x when using 64 threads. We

also notice that speedups are higher when using 64 or 128

threads, irrespective of the number of blocks. Higher speedups

are usually achieved with larger number of blocks, 64K. The

speedup with 256K blocks is slightly lower than that with 64K,

because with 256K the block size is 256 doubles. This adds

overheads due to too many memcpy() calls on small sizes.

We also have results using DDR, instead of MCDRAM. In

that case, maximum speedup is 8x, which is usually achieved

with 32 or 64 threads. Finally, notice that since MPI Pack()
is being called from the sequential region, we have the choice

to implement the MPI Pack() using the OpenMP parallel
for or OpenMP tasks, as we know all the threads are idle

and oversubscription is not possible. Our experimental results,

show that in this case, both approaches deliver the same

performance, so we do not show it.

Fig. 8: Results from packing the top surface (MPI Pack from

serial region)

MPI Pack() is called from the parallel region: We have

also evaluated the performance of MPI Pack() with a vector

datatype when called from an OpenMP parallel region under

a multithreaded environment. For that, we have used the syn-

thetic benchmark shown in Figure 9. In this benchmark, when

the program enters the OpenMP parallel region, the threads are

divided into three groups depending on the thread ID number:

(1) packing threads, which call MPI Pack(); (2) compute

1308

Dimension Face Datatype Blocklength Num blks Stride

Axis 1 Z(3) YX (Orange) memcopy
Axis 2 Y(2) ZX (Green) Vector X(4) Z(3) X*Y(8)
Axis 3 X(4) ZY (Blue) Vector of 1 Y(2) X(4) Leaf Vector

Vectors Y(2) Z(3) X*Y(8) Top Vector

TABLE I: Datatypes used along each of the three axes on the cube

threads, which perform a certain amount of computation,

and (3) idle threads. For this experiment, the MPI threading

mode used is MPI THREAD MULTIPLE. We compare two

different parallel implementations of MPI Pack(), one that

uses OpenMP tasks as proposed in this paper, and another

that uses the OpenMP parallel for construct.

This experiment uses nested parallelism as the application

is running in parallel while the MPI runtime is trying to run

MPI Pack() in parallel. However, by default OpenMP does not

enable nested parallelism. Therefore, if MPI Pack() is imple-

mented with a parallel for construct, it will run sequentially,

as nested parallelism is disabled. To enable nested parallelism,

we set the OpenMP environment variable OMP NESTED to

TRUE. When nested parallelism is enabled, the packing thread

that uses the parallel-for inside MPI Pack() creates a new team

of threads. This may result in thread oversubscription. The

task-based scheme does not introduce an OpenMP parallel for,

instead, it creates OpenMP tasks to parallelize the MPI Pack(),
avoiding thread oversubscription.

1 #pragma omp parallel
2 {
3 thread_id=omp_get_thread_num();
4 if (thread_id < 4) {
5 call MPI_Pack();
6 }
7 else if (thread_id < 4 + num_idle_threads) {
8 do nothing
9 }

10 else {
11 do_computation
12 }
13 }

Fig. 9: Example of MPI Pack() called from a parallel region

Figure 10 shows the speedup results compared with the

original unmodified MPICH in four different scenarios. (1)

MPI Pack() using task-based parallelization when nested par-

allelism is disabled; (2) same as (1) but with nested par-

allelism enabled; (3) MPI Pack() using parallel for when

nested parallelism is disabled; and (4) same as (3) but with

nested parallelism enabled. All experiments were run on a

KNL single node with a total of 256 OpenMP threads. The

number of packing threads is fixed to be 4, and we vary

the number of idle threads that can help in the execution

of MPI Pack(). As we can see in the figure, enabling the

nested parallelism does not affect the performance of the

task-based executions (first and second bars in the figure)

because the implementation does not rely on the parallel
for construct. Scenario (3), shown in the third bar of the

figure, has the same performance as the original sequential

MPICH, because nested parallelism is disabled, and as a result

MPI Pack() runs sequentially. As the figure shows, when the

number of idle threads is 0, the first three scenarios behave

similarly, while (4) is slower because nested parallelism is

enabled and creates thread oversubscription. As we increase

the number of idle threads, the task-based scheme achieves

higher speedup due to the efficient use of the idle threads to

perform the packing. The implementation using parallel for
where nested parallelism is enabled, has consistently worse

performance because new threads are being spawned that are

oversubscribing the cores. This experiment demonstrates that

when MPI Pack() is called from inside an OpenMP parallel

region, the task-based MPI Pack() can efficiently use the idle

threads. This results in better performance compared to the

parallel for based MPI Pack() which runs either sequential

(nested disabled) or slower due to oversubscription (nested

enabled). As the figure shows, if no idle threads are present,

our approach does not incur any overhead (see the first two

bars when number of idle threads = 0)

Fig. 10: Speedup of MPI Pack() when called from parallel

region under 4 different scenarios

2) Vector of Vectors datatype: In this section, we evaluate

the speedup for packing the left surface of a 3D matrix of

doubles, as shown by the blue color surface in Figure 7 and

in the third row of Table I, Axis 3. In this case, we pack the

Y-Z plane. The difference between the X-Z plane (described

in the previous section) and the Y-Z plane (that we use in this

section) is that in the Y-Z plane, none of the dimensions is

contiguous. So, nested datatype is used. If we parallelize at

the leaf level (vector datatype), we can only parallelize one

column of Y non-contiguous elements at a time. This results

in limited amount of parallelism, especially if the Y dimension

is small. If we go one level higher (vector of vectors datatype),

then several Y columns can be packed concurrently, increasing

1309

the amount of parallelism per thread/task. Hence, parallelizing

along Z dimension is more beneficial than along Y.

Figure 11 shows the speedup, when parallelizing the pack-

ing of the left surface of the 3D cube in Figure 7 with

respect to the running time of the original sequential MPICH

MPI Pack(). For this experiment, the volume of the cube was

set to 1GB and X was fixed to 2. Decreasing the value of

Y, increases the value of Z. MPI Pack() was called from the

sequential part of application. The figure shows results as the

value of the Y dimension (number of blocks) varies. Note

that when the number of blocks is below 1K, we do not meet

the conditions for packing in parallel, so the packing happens

sequentially and all the lines overlap. Speedups are higher as

the number of blocks increases. Using 128 threads gives the

highest speedup (14.9X). Notice that the performance is not as

good as for packing the top surface because packing the left

surface has the limitation of the small size of the leaf vector.

Fig. 11: Results from packing the left surface (Vector of

Vectors datatype)

C. Applications

In this section, we report results for real applications.

Section V-C1 reports results using the NAS MG benchmark,

while Section V-C2 shows results using the transpose kernel

from the Parallel Research Kernels.
1) NAS MG Benchmark: The NAS kernel Multigrid (MG)

[9] is a simple 3D Multigrid benchmark. It is an implementa-

tion of several iterations of the V-cycle Multigrid algorithm to

obtain an appropriate solution to the discrete Poisson problem.

We used NAS version 3.3.1 in our experiments. The input

to this benchmark is traditionally a cubic matrix whose size

in each dimension is a power of 2. MG requires that the

number of MPI ranks is also a cube of the power of 2. For

example, to run a problem of total size 256x256x256 for 4

iterations using 8 processors, a 2x2x2 processor grid is formed

and each partition on a processor is of size 128x128x128.

Therefore, a maximum of 8 Multigrid levels may be used.

These are of size 128, 64, 32, 16, 8, 4, 2, 1, with the coarsest

level being a single point on a given processor. The comm3
subroutine in NPB3.3.1/NPB3.3-MPI/MG/mg.f organizes the

communication on all the borders. The comm3 routine calls

ready, give, and take sub-routines. The give sub-routine sends

border data out in the requested direction. In the give routine,

data was packed manually; we modified the code to use

derived data types and call MPI Pack() on it. Figure 7 shows

the pictorial view of the three faces that are communicated in

the NAS MG. Table I shows the datatypes used along each

dimension. We assume the X dimension to be contiguous.

Along axis 1, face YX gets communicated and the data is

contiguous, so it can simply be copied using memcpy, without

requiring packing. Along axis 2, the data is represented as

vector datatype. Along axis 3, the data is represented as a

vector of vectors datatype.

Fig. 12: Speedup in data packing along one axis in NAS MG

In this experiment, we run 8 MPI ranks on 4 KNL nodes

with appropriate core bindings. The input is class D, which is

a 3D matrix of order 1K. In Figure 12, we vary the number

of threads per rank and the Y axis shows the speedup over the

original MPICH that we get in data packing along axis 2. For

the other two axes, the amount of data being communicated

is small, so we do not see speedups. Note that the maximum

speedup (2.65X) is obtained when using 16 threads per MPI

rank. The speedup for this benchmark is not as good as

expected because in NAS MG there are many data exchanges

of small sizes, which do not benefit from parallelism. Note that

the speedup in data packing does not contribute to a decrease

of communication or overall execution time of the benchmark,

as the amount of time spent in data packing is <0.5% of the

total execution time.
2) Parallel Research Kernels: The Parallel Research Ker-

nels [10] cover common communication, computation, and

synchronization patterns encountered in parallel HPC appli-

cations. For this work, we modified the transpose kernel to

use vector datatypes and called MPI Pack() explicitly before

communicating the data. In this kernel, a square matrix

A of order n is divided into strips (columns) among the

ranks. To calculate the transpose, the matrices are distributed

identically, necessitating a global arrangement of the data

(all-to-all communication), as well as a local rearrangement

(per rank transpose of matrix tiles). Figure 13 shows the

global view of the transpose operation on the entire matrix.

Each rank first does a local transpose on data, which is not

communicated across ranks. The rest of the data on the rank

is transposed and packed into a contiguous buffer for each

1310

rank. Here we saw the opportunity to represent the data

using derived datatypes. After the all-to-all communication,

each rank unpacks the data it receives and stores it in the

appropriate cell in the transposed matrix B. As the data

is being transposed and packed in the same step, it is not

contiguous in any dimension on any rank. So we had to use

vector of vectors datatype to express the data. For the leaf

level vector datatype, block length is 1, number of blocks is

block order and stride is num ranks*block order. The top

level vector has block order number of vectors.

Fig. 13: Matrix transpose)

Fig. 14: Speedup in transpose kernel when 2 ranks are placed

on 1 KNL node (Intranode)

Figure 14 shows the results we obtain for this experiment.

We transpose a square matrix of order 8K doubles using 2

MPI ranks while running on a single node of KNL and binding

ranks to cores. The X axis shows the number of threads per

rank and the Y axis shows the speedup we get over the original

MPICH implementation. We measure the time taken to pack

data using explicit timers on each rank and call MPI Reduce()
on it using MPI MAX as op. Speedup obtained on pack time

is shown by the red line and speedup on the total transpose

time is shown by the blue line. We get the best speedup when

32 threads are used per rank. Scaling beyond this uses hyper-

threading and the speedup decreases. Though we get speedup

of up to 6.4X on packing, its impact on the speedup of the

total transpose time is up to 1.6X. We expect to see higher

speedups for transpose of matrices of higher order.
Figure 15 shows the same experiment but running on 2 KNL

nodes where we bind ranks to cores. A matrix of 16K doubles

is transposed using 4 MPI ranks, 2 ranks per KNL node. On

the X-axis, we vary threads per rank and the Y-axis shows the

speedup over original MPICH. As in the previous plot, the

speedup is best when we use 32 threads per rank.

Fig. 15: Speedup in transpose kernel when 4 ranks are placed

on 2 KNL nodes (Internode)

VI. RELATED WORK

Our work in this paper was inspired by the MT-MPI work

by Si et al in [1], where the idea of using OpenMP to

parallelize MPI was first proposed. MT-MPI is an internally

multithreaded MPI implementation that tries to coordinate

with the application to utilize idle OpenMP threads. MT-

MPI relies on the information about the idle threads, which

is provided by a modified version of the OpenMP runtime.

Although this approach works well for an OpenMP application

without using tasks, the method it uses to define an idle

thread does not work when OpenMP tasks are present. This

is because when OpenMP threads reach a barrier, they can

still be busy executing tasks before they really become idle.

Furthermore, since MT-MPI directly uses the OpenMP “par-

allel for” construct to parallelize MPI functions, with nested

parallelism, this approach can easily result in oversubscription.

In comparison, we use OpenMP tasks to parallelize MPI, and

since MPI does not create new threads, the oversubscription

issue is avoided. In addition, this approach requires a modified

OpenMP runtime library, binding the MPI library to a specific

OpenMP implementation. In contrast, our approach uses only

standard OpenMP interfaces supported by all OpenMP compil-

ers, thus allowing the user to choose which OpenMP compiler

to use independently of the MPI library.

The Intel MPI library for Intel Xeon Phi Co-processors

supports multithreaded memcpy [11]. This approach is similar

to MT-MPI and can also suffer from oversubscription.

Blue Gene/Q CNK tried to solve the thread oversubscription

by deploying an underlying common resource manager [12],

[13] that manages the hardware threads for MPI and OpenMP.

By default, it does not encourage thread oversubscription. MPI

attempted to pick threads that were unlikely to be used at the

start for its progress engine. When a CPU is over committed,

the scheduler would preempt the lower priority thread running

on the CPU. Although, using a common resource manager

sounds like an ideal solution to avoid thread oversubscription,

in practice, having such common resource manager for all

runtimes is difficult and requires substantial changes to the

MPI and OpenMP runtimes.

MPI supports the MPI THREAD MULTIPLE threading

1311

model [14], [15]. To support this model, the MPI runtime

needs to protect the shared resources using critical sections and

so each MPI call can end up being serial if not carefully imple-

mented. The implementation of MPI THREAD MULTIPLE
is orthogonal to the issue discussed in this paper. In fact,

our implementation also works with this threading model, as

demonstrated in our experimental results.

Casper [16] offloads MPI RMA communication to a small,

user-specified number of cores on a multicore or many-core

environment. These “ghost processes” are dedicated to help

asynchronous progress for user processes through appropriate

memory mapping from those user processes. Since these ded-

icated cores are reserved only for MPI RMA communication,

there is no oversubscription issue. However such an imple-

mentation potentially results in lower application performance

because fewer cores are used for computation, especially when

RMA communication does not dominate.

VII. CONCLUSIONS

In this paper, we have proposed and assessed the use of

tasks and threads to parallelize the MPI library itself. The

thread that calls the MPI runtime can create tasks that can

be executed by the calling thread and any other application

threads that are idle at task scheduling points, such as barriers.

We have evaluated implementations using OpenMP tasks

and OpenMP threads to parallelize intranode communication,

packing of data when using explicit calls to MPI Pack()
or communication through derived datatypes. We performed

experiments when the MPI call is made from a parallel region

and compared the approach using a parallel for construct and

tasks. Our results show that the approach using tasks performs

significantly better than the one using OpenMP threads mostly

due to avoiding oversubscription. In the case when no idle

threads are present, our approach shows similar performance

to the baseline implementation where the MPI library runs

sequentially. The approach using OpenMP tasks does not need

to take care of the values of configuration variables, such as

whether nesting is enabled. We have identified the thresholds

where parallelization produces speedup. This requires tuning

parameters such as task size to the target architecture so that

the performance is never hurt. Overall, our results show that

parallelizing MPI using tasks produces speedups of up-to 2.5x

for shared memory communication of messages of size 32MB

or larger. For MPI Pack(), speedups depend on the number of

available threads, but we observe speedups of up-to 62X when

using 64 threads. We have also run the transpose kernel from

PRK and obtained a speedup of 6.5X on data packing. For the

NAS MG benchmark, we obtained speedup of 2.65X on data

packing.

Our conclusion is that the use of OpenMP tasks provide a

simple and efficient way to parallelize the MPI library. This

approach is appealing because it guarantees that there is no

oversubscription and provides a mechanism for application

threads that are otherwise idle to help in the execution of

tasks that other threads might have created, allowing the most

efficient use of the computing resources.

VIII. ACKNOWLEDGEMENT

This material is based upon work supported by Subcontract

No. B609815 with Argonne National Laboratory and Intel

Federal LLC.

REFERENCES

[1] M. Si, A. J. Peña, P. Balaji, M. Takagi, and Y. Ishikawa, “Mt-mpi:
Multithreaded mpi for many-core environments,” in Proc of the 28th
ACM International Conference on Supercomputing, 2014, pp. 125–134.

[2] K. Vaidyanathan, D. D. Kalamkar, K. Pamnany, J. R. Hammond,
P. Balaji, D. Das, J. Park, and B. Joó, “Improving concurrency and asyn-
chrony in multithreaded mpi applications using software offloading,” in
Proc of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2015, pp. 30:1–30:12.

[3] D. Buntinas and G. Mecier, “Implementation and shared-memory eval-
uation of mpich2 over the nemesis communication subsystem,” in Proc
of Euro PVM/MPI, 2006.

[4] T. Hoefler and S. Gottlieb, “Parallel zero-copy algorithms for fast
fourier transform and conjugate gradient using mpi datatypes,” in Recent
Advances in the Message Passing Interface. Springer, 2010, pp. 132–
141.

[5] G. Santhanaraman, J. Wu, W. Huang, and D. K. Panda, “Designing
zero-copy message passing interface derived datatype communication
over infiniband: Alternative approaches and performance evaluation,”
International Journal of High Performance Computing Applications,
vol. 19, no. 2, pp. 129–142, 2005.

[6] “Mpich website,” http://www.mpich.org.
[7] R. Ross, N. Miller, and W. D. Gropp, “Implementing fast and reusable

datatype processing,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, 2003, pp. 404–413.

[8] “Colfax research,” http://colfaxresearch.com/knl-mcdram/.
[9] “Nas parallel benchmarks,” http://www.nas.nasa.gov/publications/npb.html.

[10] R. Wijngaart, A. Kayi, J. Hammond, G. Jost, T. John, S. Sridharan,
T. Mattson, J. Abercrombie, and J. Nelson, “Comparing runtime systems
with exascale ambitions using the parallel research kernels,” in ISC,
2016, pp. 321–339.

[11] Sergey Kazakov, “Multi-threaded Memcpy Support,”
http://software.intel.com/en-us/node/528848.

[12] J. E. Moreira et al., “The blue gene/l supercomputer: A hardware and
software story,” Int. J. Parallel Program., vol. 35, no. 3, pp. 181–206,
Jun. 2007.

[13] Megan Gilge, “IBM System Blue Gene Solu-
tion - Blue Gene/Q - Application Development,”
http://www.redbooks.ibm.com/redbooks/pdfs/sg247948.pdf.

[14] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur, “Toward
efficient support for multithreaded mpi communication,” in Proc. of the
15th European PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface, 2008, pp.
120–129.

[15] D. Goodell, P. Balaji, D. Buntinas, W. Gropp, S. Kumar, B. de Supinski,
and R. Thakur, “Minimizing mpi resource contention in multithreaded
multicore environments,” in IEEE Cluster, 2010.

[16] M. Si, A. J. Pea, J. R. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa,
“Casper: An asynchronous progress model for mpi rma on many-core
architectures.” in IPDPS, 2015, pp. 665–676.

Intel and Intel Core are trademarks of Intel Corporation in the U.S. and/or
other countries.

Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products. For more
information go to http://www.intel.com/performance.

Intel’s compilers may or may not optimize to the same degree for non-
Intel microprocessors for optimizations that are not unique to Intel micropro-
cessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets
covered by this notice.

1312

