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Abstract—We evaluate the power and performance of the
Rodinia benchmark suite using the Altera SDK for OpenCL
targeting a Stratix V FPGA against a modern CPU and GPU.
We study multiple OpenCL kernels per benchmark, ranging
from direct ports of the original GPU implementations to
loop-pipelined kernels specifically optimized for FPGAs. Based
on our results, we find that even though OpenCL is functionally
portable across devices, direct ports of GPU-optimized code do
not perform well compared to kernels optimized with
FPGA-specific techniques such as sliding windows. However, by
exploiting FPGA-specific optimizations, it is possible to achieve
up to 3.4x better power efficiency using an Altera Stratix V
FPGA in comparison to an NVIDIA K20c GPU, and better run
time and power efficiency in comparison to CPU. We also
present preliminary results for Arria 10, which, due to
hardened FPUs, exhibits noticeably better performance
compared to Stratix V in floating-point-intensive benchmarks.

Index Terms—FPGA, Performance evaluation, OpenCL,
Heterogeneous computing

I. INTRODUCTION

FPGAs are a middle-ground between general-purpose

processors and specialized ASICs. They offer better

performance per watt in comparison to general-purpose

processors for a wide range of applications but fall short of

the efficiencies of specialized hardware. FPGAs’

reconfigurable nature however provides the flexibility to

accelerate a wider range of applications than specialized

hardware. Harnessing this reconfigurability though is

challenging even for specialists due to low level Hardware

Description Languages (HDL) such as Verilog and VHDL

which lack many of the high-level constructs of conventional

software programming languages and employ a parallel/data

flow model rather than a sequential one.

Attempts have been made throughout the years to make

FPGAs more attractive to software programmers, such as

C-to-Gates or C-to-hardware converters that translate

programs written in a software programming language to

HDL for use on FPGAs. This process is usually called

High-level Synthesis (HLS). Examples of C-to-Gates

converters are AutoESL Autopilot [1] and Synopsys

Synphony C Compiler [2], which can convert C and C++ to

synthesizable HDL.

To make FPGAs more attractive to software programmers,

Altera [3] and Xilinx [4] have recently developed HLS

toolchains based on OpenCL, a royalty-free, open source and

portable programming language [5]. This approach to

programming FPGAs enables the possibility of porting

existing OpenCL kernels for CPUs and GPUs to FPGAs.

However, there are few studies on benchmarking FPGA

performance with OpenCL and on the performance

portability of OpenCL kernels among such devices.

To determine the effectiveness of utilizing FPGAs in

future HPC systems, we evaluate the performance of the

Rodinia suite [6] compiled with the Altera SDK for OpenCL

targeting a Terasic DE5-Net board equipped with an Altera

Stratix V 5SGXA7 FPGA. We additionally evaluate the

OpenCL kernels on a modern CPU and GPU and compare

run time and performance per watt among the three devices.

In addition to evaluating the original Rodinia benchmarks,

we also explore the effectiveness of FPGA-specific

parallelization and optimizations. The original Rodinia

implementations are meant to be used for GPU-like, highly

multi-threaded processors, and even though Altera FPGAs

support executing such programs by pipelining the execution

of multiple threads, it is likely that such programs will

perform sub-optimally due to barriers. An example of a more

FPGA-friendly programming model, as recommended in the

Altera programming and optimization guides [7, 8], is to

pipeline loop iterations, where data dependencies across

iterations can be resolved with sliding windows. The

effectiveness of this second programming model depends on

the target algorithm, though; algorithms that are inherently

parallel and use little to no barriers may perform better with

the first model initially designed for GPU-like devices.

We evaluate the possibility of using FPGAs as an HPC

accelerator using six representative HPC benchmarks. We

find that in the majority of cases the original multi-threaded

kernels do not perform as efficiently as those optimized with

FPGA-specific techniques, indicating the importance of such

optimizations. Fortunately with these optimizations the

FPGA achieves highly promising performance. Overall, our

results using an Altera Stratix V 5SGXA7 FPGA indicate

that with FPGA-specific optimizations it is possible to

achieve up to 3.4x better power efficiency in comparison to

an NVIDIA K20c GPU, and faster run time and much better

power efficiency in comparison to CPU. More specifically

we show that:

• Optimization strategies like sliding windows are very

effective on FPGAs. However, such optimizations are

409



implemented in a completely different manner compared

to common OpenCL parallelization strategies on GPUs.

• Transforming GPU-optimized code to FPGA-optimized

code yields significant speedup over running the GPU-

optimized code on the FPGA. Often the FPGA-optimized

versions are one to two orders of magnitude faster with

much better power efficiency.

• Although for the overall execution time GPUs are still

faster in most cases, FPGAs excel in energy efficiency

by several factors over GPUs. This itself is already a

favorable result despite that the Stratix V FPGA we used

is not optimized for HPC workloads.

• We found that for some benchmarks significant manual

parameter tuning is required to obtain the best

performance. Although auto-tuning in such cases would

be desirable, the long compilation time of FPGAs

(multiple hours), coupled with high parameter

sensitivity, could pose significant problems in the future.

This suggests the importance of future research

investigating techniques to prune the search space.

• We also present preliminary results for one

compute-intensive benchmark using the new Arria 10

FPGA, which has much better support for floating-point

operations. We show that Arria 10 can achieve 2x better

performance compared to Stratix V and compete with

modern CPUs and GPUs.

II. BACKGROUND

FPGAs are reconfigurable silicon devices that consist of

combinatorial logic elements interconnected by

programmable networks. Modern FPGAs are equipped with

dedicated hardened structures such as memory blocks, digital

signal processors, DRAM, PCI Express and other I/O

controllers.

Since HDLs are notoriously difficult to use for software

programmers due to the lack of high-level constructs and the

fact that they expose much lower details of hardware

circuits, multiple different HLS tools have been created to

make FPGA programming more attractive to such

developers, including the Altera SDK for OpenCL. Altera’s

SDK [9, 10] consists of a high-level synthesis tool for

compiling OpenCL kernels to Verilog HDL. It also includes

a host runtime library to use FPGAs as a valid OpenCL

accelerator. We describe a brief overview of the OpenCL

programming abstractions and how they are implemented

using reconfigurable and hardened resources of an FPGA.

A. Overview of the OpenCL Programming Model

OpenCL is an open standard that defines a programming

model for heterogeneous systems using accelerators [5].

Similar to NVIDIA’s CUDA API, OpenCL consists of a set

of common APIs for managing accelerators at run time, and

a C-based language to write programs, i.e., kernels, that are

offloaded to accelerators. Unlike CUDA, the OpenCL

specification does not favor any vendor or hardware type,

allowing applications developed with OpenCL to also run on

a multitude of devices such as FPGAs.
An OpenCL kernel represents a sequence of instructions

executed by a single thread or a work-item in the OpenCL

terminology. Most commonly, a large number of work-items

are executed with a single kernel, by decomposing a problem

into equally loaded chunks of work. Work-items are

hierarchically organized with a three-level multidimensional

index space called NDRange, where a set of work-items are

organized into a work-group, and multiple work-groups are

spawned when a kernel is launched. Note that while the

multi-threading model is the most common pattern of using

accelerators with OpenCL, it is not mandatory, and in fact

single work-item kernels are employed as a preferred

execution model in Altera’s OpenCL implementation as

explained below.
Among several types of memories available in OpenCL,

the local and global memories are most commonly used. The

former is generally smaller but faster than the latter, thus using

it instead of the latter as much as possible is one of the most

important optimization techniques in OpenCL kernels.

B. Altera’s OpenCL Implementation
Figure 1 shows Altera’s OpenCL compilation flow. In this

flow, the host code and the kernel code are compiled

separately since Just In Time (JIT) kernel compilation is not

supported due to RTL synthesis taking multiple hours. User

optimizations are directly applied to the OpenCL kernel

code, then Altera’s OpenCL compiler converts the kernel to

LLVM IR, applies necessary optimizations, converts to

Verilog and then Synthesis, Placement and Routing are

performed to generate the final FPGA bitstream.

Fig. 1. Altera’s OpenCL Flow, “AOC” refers to “Altera OpenCL Compiler”

Two types of parallel execution models are supported in

Altera’s OpenCL implementation: explicit multi-threading
and implicit loop pipelining. The former employs the

NDRange-based programming mechanism for explicit

multi-threading, and iteratively issues each thread into the

kernel pipeline, achieving pipeline parallelism across threads.
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In the loop-pipelining model, the parallelization is

implicit, i.e., the programmer writes sequential code in

kernel functions. If a kernel function does not access any of

the indices in the NDRange index space, the compiler

automatically assumes that the kernel is intended to be used

in a single-threaded manner, and attempts to pipeline the

loops inside the kernel. Unlike explicit multi-threading, the

compiler may fail to parallelize loops even when no true

dependency exists, since it has to make a conservative

decision with, e.g., pointer aliasing, which can be avoided

with the restrict keyword.

The OpenCL global memory is implemented in DRAM

external to the FPGA chip. Similar to discrete GPUs, typical

PCI Express FPGA boards have multiple gigabytes of

DRAM. OpenCL local memory, on the other hand,

depending on size and access pattern of the variable, is

either implemented using registers or Block RAMs available

within the FPGA fabric, which provide significantly higher

throughput and lower latency than the external DRAM.

Local memory consistency can be ensured with the

barrier primitive; however, it results in a highly costly

pipeline flush, potentially negating the benefit of using

on-chip memory blocks. Depending on the algorithm, the

on-chip memory might be used more efficiently with the

loop-pipelined model as explained in Section V.

C. Limitations

While FPGAs have architectural advantages compared to

conventional processors, there are also some limitations that

can potentially hinder adoption in realistic complex HPC

applications, as discussed below.

One such constraint is that every computation physically

needs its own implementation using available logic elements,

thus each kernel has to be small enough to fit on a given

FPGA; otherwise, it needs to be decomposed into multiple

kernels that are small enough to fit. Furthermore, multiple

kernels in a single application should all fit together;

otherwise, the FPGA will have be dynamically reconfigured

during run time which incurs additional delay in the process.

While this problem is not specific to OpenCL, the adverse

effect of this issue might become more noticeable when

combined with OpenCL, since it results in an additional area

overhead for supporting the OpenCL runtime.

Another drawback compared to other accelerators is that

kernel compilation takes an extremely long time. Even a

small kernel with only tens of lines of code may take hours

to compile. While the functional correctness can be verified

with an FPGA emulator provided with the Altera SDK for

OpenCL, experimental performance tuning can be overly

time-consuming unless carefully guided.

III. METHODOLOGY

To understand the performance characteristics of FPGAs

as an accelerator for a wide range of HPC applications, we

use the Rodinia benchmark suite as a representative set of

such computations [6], and compare its performance on

FPGAs against both CPUs and GPUs. Rodinia consists of

twenty-one benchmarks, each of which represents one of the

computational patterns compiled by [11], with

implementations of two kinds of parallelism: fork-join

coarse-grained parallelism based on OpenMP, and

fine-grained highly-multi-threaded parallelism based on

CUDA and OpenCL. The former is intended to be used on

multi-core CPUs, whereas the latter is intended for GPUs.

Considering the fact that the Rodinia suite is frequently used

in literature and multiple optimization techniques from

different publications [12–16] have been incorporated into

the suite, we believe that the original benchmarks are already

well optimized for CPUs and GPUs, and that comparison

between our FPGA-optimized versions and the original CPU

and GPU versions is a fair comparison between

well-optimized benchmarks and not biased towards FPGAs.

We use the multi-threaded OpenCL version as the baseline

implementation for each benchmark. We slightly modify them

to use the offline compilation model since JIT compilation is

not supported in Altera OpenCL, and verify that they produce

correct results when running the kernels on an FPGA. Note

that the kernel code is not modified in the baseline version,

allowing us to understand the FPGA performance when they

are merely used as a replacement of GPUs.

Since the baseline version is written for GPUs, it may not

be well optimized for FPGAs, and in fact there are several

optimization techniques that are unique to FPGAs as suggested

in the programming and optimization guides by Altera [7, 8].

To study the effects of such optimizations, we incrementally

apply them to the baseline version using a performance model

as a guiding principle. Details of the performance model and

optimizations are explained in Sections IV and V.

This work uses six representative benchmarks from the

Rodinia suite: NW (dynamic programming), Pathfinder

(dynamic programming), SRAD (structured grid), Hotspot

(structured grid), LUD (dense linear algebra), and CFD

(unstructured grid).1 A brief description of each benchmark

is presented in Section VI-A.

IV. PERFORMANCE MODEL

To guide performance optimization, we build an analytical

performance model of OpenCL kernels on FPGAs using the

information supplied by the compiler. Our analysis models

the performance of a single loop of statements that are

implemented as a pipeline on an FPGA. Note that it can be

considered a simple proxy even for multi-threaded kernels,

since loop iterations effectively correspond to multiple

threads. We first build a model with a single pipeline, and

then extend it for data-parallel pipelines.

A. Single-pipeline Model

Let Ns be the number of pipeline stages encompassing a

loop, L the loop trip count, and R1 the pipeline throughput

defined as the number of finished iterations per cycle. The

1The source code of the modified benchmarks is available at https://github.
com/fpga-opencl-benchmarks.
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maximum throughput is achieved when each iteration is issued

to the pipeline at every clock, therefore 0 < R1 ≤ 1. The

estimated number of cycles for the loop is Ns + L/R1. Thus

the execution time T1 of the loop with a single pipeline can

be expressed as:

T1 = (Ns + L/R1)/Fp (1)

where Fp is the pipeline frequency, which is typically around

200 MHz with the current generation of Altera FPGAs.

Given a sequence of statements, the values of Ns and Fp are

determined by the OpenCL compiler with no explicit

programmer control; although, as a general rule of thumb,

simpler code can lead to a smaller number of stages and

higher frequency. Therefore, performance optimization

should be mainly focused on improving R1.

The pipeline throughput mainly depends on two factors:

dependencies across iterations and memory access latencies.

We discuss iteration dependencies in both the explicit

multi-threading and implicit loop-pipelining models. In the

former, where each thread corresponds to a loop iteration in

the above performance model, the maximum throughput can

be achieved if no synchronization primitive is used, as no

inter-thread dependency exists by definition of the OpenCL

memory consistency model. With a barrier synchronization,

the throughput is effectively halved since the pipeline needs

to be flushed once at the synchronization point. More

generally, R1 < 1/(Nb + 1), where Nb represents the

number of barriers.

In the implicit loop-pipelining model, since the loop is

expressed as set of sequential computations, there can be

arbitrary dependencies across iterations. The compiler

performs standard loop dependence analysis and determines

the number of stall cycles that need to be inserted between

iterations. With the Altera SDK for OpenCL, this

information can be quickly obtained by running the first

phase of kernel compilation without synthesizing RTL. Let

Nd be the number of stall cycles, R1 < 1/(Nd + 1).

We model the throughput reduction by memory access

latencies as follows. Let Nm be the number of total memory

access transactions at each cycle in the pipeline and W be

the number of maximum transactions per cycle. We estimate

Nm from the kernel source code and the underlying memory

technology. We assume that the compiler does not

automatically create a cache memory for DRAM accesses,

but attempts to coalesce multiple memory requests if

possible, as documented in the programming guides [7, 8].

Thus, every load and store instruction results in an off-chip

memory transaction, potentially coalesced with other such

instructions. In our model we estimate Nm as the minimum

number of coalesced transactions necessary to fulfill the

loads and stores. The memory transaction throughput W can

be calculated from the memory performance specification as

well as the pipeline frequency. The number of cycles for the

memory accesses is then estimated as �Nm/W �, therefore

R1 < 1/�Nm/W �.

Putting it all together, the pipeline throughput is bounded

as follows:

R1 < min

(
1/�Nm/W �,

{
1/(Nb + 1)
1/(Nd + 1)

)
(2)

Intuitively, the throughput can be improved by reducing

barriers, iteration dependencies, and memory accesses. The

impact of each optimization depends on the specific kernel

code, the underlying FPGA, and the memory performance.

B. Extension for Data Parallelism

When the loop has no dependencies and the FPGA area

has sufficient resources, it may be possible to improve the

throughput by exploiting data parallelism across loop

iterations. In fact, the Altera OpenCL compiler can replicate

pipelines or generate SIMD-parallel pipelines upon user

annotations, as explained in Section V. Let Np be the degree

of parallelism. The execution time, Tm, is modeled as:

Tm = (Ns + L/(Rm))/Fp (3)

where Rm represents the total pipeline throughput, which is

Np if no overhead exists. Since the memory hardware is not

replicated, unlike computation pipelines, the memory pressure

is effectively increased by a factor of Np, and the number of

cycles for the memory accesses is �(NmNp)/W �. Thus, Rm

is bounded as follows:

R m < Np min

(
1/�NmNP /W �,

{
1/(Nb + 1)
1/(Nd + 1)

)
(4)

V. OPTIMIZATIONS

As indicated in the performance model, the major

strategies to optimize OpenCL kernels for FPGAs are

two-fold: exploiting data parallelism and improving pipeline
throughput. This section presents several such techniques

that can be applied using Altera’s OpenCL implementation.

A. Exploiting Data Parallelism Using Replication and SIMD

Many of existing OpenCL kernels are designed to exploit

data parallelism as it is efficiently supported in many-core

accelerators such as GPUs. In Altera’s OpenCL

implementation, a multi-threaded kernel can be annotated in

two ways to guide the compiler to generate data-parallel
RTL.

First, the programmer can use a kernel attribute,

num_compute_units(N), to specify the number of

pipelines for a kernel. At run time, the work groups are

distributed across the replicated pipelines. As indicated in

Equations (3) and (4), replicating the kernel pipeline

potentially increases the total processing throughput by a

factor of N , if there are sufficient resources and the memory

bandwidth is not saturated.

Similarly, an attribute, num_simd_work_items(N),

can be used to annotate a multi-threaded kernel to generate a

pipeline that processes work items in N -way SIMD

parallelism. While this can fail when the kernel contains

SIMD-unfriendly code such as thread-dependent branches,
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the pipeline throughput can be improved by a factor of N if

successful. It is recommended to use the SIMD attribute if

possible, rather than kernel pipeline replications, as the area

overhead is generally smaller.

B. Improving Throughput by Loop Unrolling

In Equation (1), L is usually expected to be much larger

than Ns and hence, having a much bigger effect than Ns in

run time. Yet, since L depends on the algorithm, it is not

normally possible to reduce L and gain higher throughput.

When a loop is unrolled, the pipeline will become longer by

the unroll factor, and Ns will be multiplied by that factor.

L, on the other hand, will effectively decrease by the unroll

factor since the loop step size increases and iteration count

decreases. If the unroll factor is X , Equation (1) will change

to Equation (5) under the presence of loop unrolling:

T2 = (NsX + L/(XR1))/Fp (5)

If L is large enough compared to Ns, T2 will be smaller

than T1 and performance will increase.

C. Improving Pipeline Performance by Using Shift Register

Since most floating-point operations cannot be done in one

clock on FPGAs, reduction operations in which the same

variable appears on both sides of the assignment will result

in an inefficient pipeline due to data dependency on that

variable, and input has to be issued once every multiple

clocks for correct operation (e.g. 8 clocks for floating-point

addition). This will significantly reduce R from Equation (1)

and result in low throughput. In such cases, a shift register

with a depth equal to the input initiation interval can be

inferred so that the reduction input is read from the

beginning of the shift register, and output written to the end

of it [7]. This effectively resolves the data dependency and

results in an efficient pipeline with R = 1. An extra

reduction on the final content of the shift register will be

necessary here to obtain the final output.

D. Improving Pipeline Throughput Using Sliding Windows

As indicated in Equations (2) and (4), the pipeline

throughput can be improved by reducing memory accesses,

barriers in multi-threaded kernels, and iteration dependencies

in loop-pipelined kernels. Common optimization techniques

such as data blocking in the local memory are also effective

with FPGAs; however, the throughput improvement may be

limited by the barrier synchronizations necessary for the

local memory consistency.

Number of memory accesses can also be reduced using

sliding windows which can be used in single-threaded

loop-pipelined kernels [7]. In such case, as the kernel is

single-threaded, barrier synchronization is not necessary; i.e.,

Nb = 0. When a statically-sized array is used with static

memory access patterns, the compiler creates a shift register

using FPGA registers. The shift register can be used as a

sliding window to efficiently forward data from iteration i to

iteration j, i < j, allowing data reuse across iterations. As

accesses to registers can be served without a pipeline delay,

the loop can be perfectly pipelined without stalling.

To illustrate the technique, we use Rodinia NW

benchmark as an example. NW computes a 2-D matrix with

a neighbor data dependency on the above, left, and top left

elements. The original version uses wavefront parallelization,

where the inter-wave data dependency is resolved by using

the local memory. This method is also applicable to FPGAs;

however, it is very inefficient due to the throughput reduction

caused by local memory barriers. To resolve these

dependencies more efficiently, we use a sliding window and

two extra registers that are implemented using FPGA

registers.

For this benchmark, we split the matrix vertically, with the

width of each chunk being the same as the length of the

sliding window. The size of the sliding window is limited by

FPGA resources. At the beginning, we load the first row of

the first chunk from global memory to the sliding window,

and compute the new value of the top-left index of the

matrix by accessing the sliding window for the top

dependency, using zero for the top-left dependency, and

accessing global memory for the left dependency. Fig. 2(a)

depicts this step. In the next step, we first move the current

value of the first index in the sliding window to an extra

diag register (Fig. 2(b)), which will be used to resolve the

top-left dependency of the next index in the row, and then

use the newly-calculated value to update both this index in

the sliding window (top dependency for next row) and an

extra left register (left dependency for the next index in the

current row) (Fig. 2(c)). From here until the end of the row

in this chunk, all dependencies can be resolved using the

sliding window and the extra registers (Fig. 2(d)). For the

left-most index of next row in the chunk, we will again need

to access global memory to resolve the left and top-left

dependencies, but for the rest of that row, all dependencies

are resolved by accessing and updating the sliding window

and extra registers. After finishing all of the chunk, the next

chunk will be processed in the same manner.

VI. EXPERIMENTAL SETTINGS

In this section we describe the benchmarks, hardware and

software platforms, and power measurement methodology that

were used in our experimental evaluation.

A. Benchmarks

a) NW: Needleman-Wunsch (NW) is a dynamic

programming benchmark based on a sequence alignment

algorithm. A pair of strings is organized as the top-most row

and the left-most column of a 2-D matrix. The algorithm

computes a score for each matrix element from the top-left

position to the bottom-right position. Each score is computed

based on its neighbor scores at the top, left, and top-left

positions, resulting in diagonal data dependency. Wavefront

parallelization is implemented in both the original OpenMP

and CUDA/OpenCL versions. No floating-point arithmetic is

used in this benchmark.
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Fig. 2. Sliding window optimization technique; blue shows global memory, green shows local memory, and red shows current index in the matrix.

b) Pathfinder: Pathfinder is a dynamic programming

benchmark that attempts to find a path with smallest

accumulated weight from the bottom of a 2-D grid to its top.

Movement direction is either straight ahead or diagonally

ahead and calculation is done row by row. This benchmark

has one kernel and is integer.

c) Hotspot: Hotspot is a structured grid benchmark. It

simulates microprocessor temperature based on a stencil

computation on 2-D structured grids and uses

single-precision floating-point values. In the original CUDA

version the 2-D grid is decomposed into sub-grids, each of

which is computed by a thread block. The Rodinia

implementation incorporates an optimization technique that

saves global memory accesses by redundantly computing

wider halo regions.

d) SRAD: SRAD is a structured grid benchmark that

processes 2-D medical images with PDE-based diffusion

kernels. Similar to Hotspot, its computation involves stencil

computations with single-precision floating-point values.

Unlike Hotspot, it also includes reduction of grids and

dependency between iterations.

e) LUD: LU Decomposition (LUD) is a dense linear

algebra benchmark that decomposes an arbitrary-sized square

matrix to the product of a lower-triangular and an

upper-triangular matrix. In the version we studied, the matrix

indexes are single-precision floating-point numbers. This

benchmark is compute-intensive with multiple instances of

floating-point multiplication, addition and reduction.

f) CFD: CFD Solver (CFD) is an unstructured grid

benchmark that solves 3-D Euler equations for compressible

flow using the standard CSR format. The main bottleneck in

unstructured grid algorithms is the indirect memory accesses,

which is also the case with this benchmark. In addition, the

kernel has highly intensive single-precision floating-point

computations; thus, with the Stratix V FPGA which lacks

hardened FPUs, performance is not expected to be as high as

GPUs.

B. Software and Hardware Platform

We use a Terasic DE5-Net board that contains an Altera

Stratix V 5SGXA7 FPGA and 4GB of 1600 MHz DDR3

memory in a 2-bank configuration. The FPGA has 234,720

Adaptive Logic Modules (ALMs), 938,880 registers, 2,560

M20K blocks, and 256 DSP blocks. ALM refers to Altera’s

unit of soft-logic elements which, in the case of Stratix V,

consists of an 8-input Adaptive LUT, two embedded adders

and four registers. M20K refers to 20 Kbit-sized on-chip

memory blocks, and DSP refers to variable-precision

arithmetic blocks that can perform arithmetic operations on

up to two 27-bit inputs. We use Altera Quartus v15.1.2 and

v16.0 and Terasic’s Board Support Package 14.1 for this

board.

For CPU performance evaluation, we use an 8-core Xeon

E5-2670 with 32 GB of DDR3 memory and the OpenMP

version of the benchmarks in the Rodinia suite, compiled

with both GCC v5.4.0 and ICC 2016. We use 16 threads for

each benchmark and report the best time between ICC and

GCC. For GPU performance evaluation, we use the CUDA

version of the benchmarks with CUDA v7.5 and a Tesla

K20c. This specific CPU and GPU were chosen to keep

comparison fair, since they are of similar age compared to

the Stratix V FPGA family.

C. Power Measurement

We extract power results for FPGA by running quartus pow

on fully place-and-routed OpenCL projects. These values are

an estimation of the power usage of the FPGA itself and do not

reflect the power consumption of all of the FPGA board. For

CPU, we used the MSR [17] driver available in most Linux

distributions to extract the CPU’s energy usage (in joules).

For GPU, we used NVIDIA’s NVML [18] library to read the

GPU’s power consumption (in watts) with a sampling rate of

10 ms during kernel execution. Directly comparing the GPU

measurement with FPGA is, however, not completely fair, as

the GPU power also includes the power usage of the on-board

memory. Thus, we adjust the power consumption of the FPGA

by adding an estimated power usage of its memory as well.

Since we are unable to measure the actual power usage of

the FPGA memory, we use its maximum power consumption

as a conservative estimate. In this evaluation, we use 1.17

watts from the datasheet of a similar memory module as the

one used on our FPGA board [19], and add 2.34 watts to the

FPGA power consumption as it has two memory modules.

Finally, energy usage (energy-to-solution) is calculated as run

time (s) × power usage (watt), and is used for comparing

power efficiency between the different platforms, with lower

energy usage being better.

In two benchmarks, NW and Pathfinder, even with the

largest possible input settings, execution finished too quickly

and prevented a correct GPU power reading. In our
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TABLE I
NW FPGA RESULTS

Type Optimization
Level

Fmax
(MHz)

Run Time
(ms)

Power
Usage (Watt)

Energy
Usage (J)

Thread None 277.23 16574.74 12.01 199.13

Loop None 243.48 117523.09 10.60 1245.27

Thread Basic 194.70 2445.92 16.95 41.45

Loop Basic 249.19 116457.60 9.93 1156.77

Loop Advanced 148.06 251.29 15.44 3.88

experience, even with very high sampling rates, measuring

the power consumption of kernels that last less than 1

second usually resulted in inconsistent numbers. To

overcome this issue, we wrapped the kernel of these two

benchmarks in a for loop to force the benchmark to repeat

the same computation multiple times, and successfully

extracted average power consumption.

VII. RESULTS AND COMPARISON

In this work we focus on kernel run time and disregard host

to device memory transfer. Although this can put the CPU at

a disadvantage, it simplifies exploring potential performance

gains using FPGAs. Run times are the average of five runs and

have been extracted using the default execution settings from

the Rodinia suite, unless stated otherwise. The latest version

of Rodinia suite (v3.1) was used to ensure that latest CPU and

GPU-based optimizations are already applied.

For the sake of brevity in Tables I to VI multi-threaded

kernels have been marked as “Thread” and loop-pipelined

kernels have been marked as “Loop”. In all benchmarks, the

multi-threaded version with no optimization is the original

kernel from the Rodinia suite, and the rest of the versions

are distinguished by their execution type and optimization

level. Optimization level “None” shows the baseline. “Basic”

shows performance that can be achieved with basic

optimization techniques and a small amount of effort.

“Advanced” shows performance with non-trivial

FPGA-specific optimizations. Also the power usage reported

in these tables does not include the FPGA DRAM power.

A. NW

Table I shows performance and power results for the NW

benchmark. The length of strings is 16384 in our evaluation.

The basic optimization of the multi-threaded version adds

4-way SIMD and restrict annotations compared to the

baseline version, which we experimentally found to be most

efficient among other possible optimizations for the

multi-threaded version. The baseline loop-pipelined version

is a straightforward sequential implementation of the

algorithm. Its basic optimization adds the restrict
keyword. The advanced optimization uses a sliding window

as explained in Section V-D.

As shown in the table, the sliding window-based version

performs most efficiently among all five versions. The

TABLE II
HOTSPOT FPGA RESULTS

Type Optimization
Level

Fmax
(MHz)

Run Time
(s)

Power
Usage (Watt)

Energy
Usage (J)

Thread None 302.48 85.22 10.99 936.52

Thread Basic 269.69 45.14 14.44 651.97

Loop Basic 196.19 48.02 13.70 657.67

Loop Advanced 227.84 8.14 12.54 102.12

baseline multi-threaded kernel (no optimization) performs

approximately 66x slower than the fastest version

(loop-pipelined with advanced optimization). This difference

clearly shows the inefficiency of running GPU code on

FPGAs, and the importance of using FPGA-specific

optimization techniques.

B. Hotspot

Table II shows performance and power results for the

Hotspot benchmark. For our evaluation, the size of computed

grids is 1024x1024 and the number of iterations is 10000.

For this benchmark, the multi-threaded version with basic

optimization uses 4-way SIMD and the restrict keyword

for the input parameters, which was experimentally found to

be the most optimal setting, as was done for the NW case.

Compared to the baseline loop-pipelined version, the version

with basic optimization uses the restrict keyword and

unrolls the inner loop, and the version with advanced

optimization uses the sliding window optimization. Unlike

NW, the sliding window in this benchmark is used to cache

neighboring indexes loaded in one iteration, to be reused in

other iterations and reduce off-chip memory access, rather

than saving and forwarding partial results to subsequent

iterations. Results of the baseline loop-pipelined version are

not reported here due to very high (hours) run time.

Although the multi-threaded version with basic

optimization performs better than the loop-pipelined version

with basic optimization, the effect of the sliding window

optimization, which achieves 10.5x better performance

compared to baseline, is significant as shown in the final

version. This shows the effectiveness of the sliding window

technique for programs with structured grid computation

pattern.

C. Pathfinder

Table III shows performance and power results for the

Pathfinder benchmark. In this benchmark, the lengths of each

row and column are 100,000 and 100, respectively. For the

baseline loop-pipelined version, the restrict keyword is

added, and the for-loop on the matrix rows is moved from

host code to device code, which is not allowed in the

multi-threading model due to the lack of global memory

synchronization. The multi-threaded version with basic

optimization, on the other hand, retains the structure of the

baseline multi-threaded version, but uses the restrict
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TABLE III
PATHFINDER FPGA RESULTS

Type Optimization
Level

Fmax
(MHz)

Run Time
(ms)

Power
Usage (Watt)

Energy
Usage (J)

Thread None 302.48 151.23 10.56 1.6

Loop None 285.87 41.93 10.72 0.45

Thread Basic 164.74 115.34 19.61 2.26

Loop Basic 194.32 18.48 12.79 0.24

Loop Advanced 142.49 4.57 13.72 0.06

keyword, 16-way SIMD, and two replicated pipelines;

further replications in this version resulted in lower

performance since multiple local memory accesses were

forced to share the same Block RAM port due to lack of

sufficient on-chip memory. The loop-pipelined version with

basic optimization uses loop unrolling both on the outer loop

and the two inner loops, and the version with advanced

optimization uses the sliding window technique.

As shown in Table III, the results again demonstrate the

importance of the FPGA-specific optimization. Compared to

the original baseline multi-threaded version, the fastest version

achieves more than 33x performance improvement.

D. SRAD

Table IV shows performance and power results for the

SRAD benchmark with a 4000x4000 input size and 100

iterations. In this benchmark, the multi-threaded version with

basic optimization uses 2-way SIMD and restrict.

Among the loop-pipelined kernels, the baseline

implementation uses restrict and retains the multi-kernel

structure of the original multi-threaded implementation, and

the version with basic optimization uses shift register for

efficient reduction and adds some unrolling.

The version with advanced optimization is created by

merging all the original kernels into a single one.

Specifically, the original prepare and reduction kernels are

merged into one pipelined for loop, and the srad and srad2
kernels are merged into another. With local data sharing in

this new kernel, many global memory buffers are removed

and global memory access is significantly reduced (nearly 10

fold). Furthermore, computation is partitioned and one

sliding window is used in form of a static cache to locally

address repeated reads from the same memory locations in

the first pass of the computation (original srad kernel),

similar to Hotspot. In the second pass (original srad2
kernel), the computation direction is changed from top right,

downwards, to bottom left, upwards, and another sliding

window is used to efficiently resolve data dependency

between iterations, similar to NW. Both windows are forced

to be implemented using registers, instead of Block RAMs,

using Altera’s memory attributes. A global memory buffer is

also used to resolve data dependency on partition boundaries.

Here, the final version achieves 19.6x speedup compared to

the baseline multi-threaded implementation.

TABLE IV
SRAD FPGA RESULTS

Type Optimization
Level

Fmax
(MHz)

Run Time
(s)

Power
Usage (Watt)

Energy
Usage (J)

Thread None 253.67 81.62 17.35 1416.38

Loop None 278.7 73.99 14.79 1094.19

Thread Basic 233.69 80.54 21.20 1707.30

Loop Basic 207.77 12.93 19.74 255.19

Loop Advanced 186.11 4.17 16.08 67.07

E. LUD

Table V shows performance and power results for the LUD

benchmark with an input size of 8192. In this benchmark, the

baseline loop-pipelined version uses the implementation called

“base” provided by the benchmark author, and the version with

basic optimization uses shift register for efficient reduction.

The version with advanced optimization was created by

computing in a block-based manner, and temporal blocking

was employed, similar to the multi-threaded kernels. Inner

loop headers that depend on the iteration of the outer loop,

were converted to fixed headers with if-else statements inside

the loop for correct pipelining. The two innermost loops in

the internal kernel were also fully unrolled. Still, even the

last version performs only slightly faster than the baseline

multi-threaded version. The loop-pipelined versions with no

and basic optimization were not included in Table V due to

slowness. We believe these versions cannot achieve good

performance due to complex memory access pattern and

unbalanced nested loop that result in inefficient pipelining.

Compared to the baseline, the multi-threaded version with

basic optimization uses fixed work group sizes as outlined in

Altera’s documentation, and fully unrolls the loop in the

internal kernel. Since this benchmark was local

memory-intensive on Stratix V, in the version with advanced

optimization, multiple techniques were employed to

minimize the number of accesses to local buffers and the

number of times these buffers are replicated to enable

stall-free access. Specifically, a temporary register variable is

used for reduction in the diameter and perimeter kernels

instead of using the Block RAM-based local variables

directly. Also to enable coalesced accesses to the buffers

when unrolling is used, the local buffer in the diameter
kernel and one of the buffers in the perimeter kernel were

replicated manually, with one being loaded column-wise and

the other row-wise. The loading direction of another buffer

in the perimeter kernel was also changed to column-wise for

the same reason. Finally, partial unrolling was used in the

diameter and perimeter kernels, and multiple compute units

were used for the perimeter and internal kernels to

maximize resource usage. This version is DSP-bound on our

Stratix V board.

Here, the fastest version (multi-threaded with advanced

optimization) is 133.6x faster than the baseline.
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TABLE V
LUD FPGA RESULTS

Type Optimization
Level

Fmax
(MHz)

Run Time
(s)

Power
Usage (Watt)

Energy
Usage (J)

Thread None 251.31 731.11 17.60 12865.38

Thread Basic 256.20 46.37 16.61 770.07

Thread Advanced 240.50 5.47 26.68 145.95

Loop Advanced 216.40 517.17 20.91 10811.33

F. CFD

Table VI shows the performance and power results for the

CFD benchmark with a default input data file with 97047

mesh points. For the multi-threaded version, only minor

modifications such as annotating the input pointers with

restrict are possible, as the remaining area resources,

especially the logic elements and DSP blocks, are not

enough to do any further optimizations such as pipeline

replication. Due to the nature of algorithm, blocking

optimization is not used in this benchmark and the sliding

window optimization does not apply to it. Furthermore, since

no barrier synchronization is used in the multi-threaded

versions, it is expected that both the multi-threading and

loop-pipelining models will perform similarly, which is in

fact demonstrated as shown in the results. The baseline

loop-pipelined version is created by wrapping the original

multi-threaded kernel with an outer loop for iterating the

index space. In the basic optimization, we solve the

reduction data dependency in the inner-most loop using a

shift register, as outlined in Section V, which greatly

improved the performance compared to the initial

loop-pipelined version. Overall, as expected, the results show

that our optimization has little impact on this benchmark due

to the FPGA resource limitation.

The problem of limited resources is particularly profound

in this benchmark due to floating-point-heavy computations.

Since the Stratix V FPGA does not have hardened FPUs, such

kernels require a large amount of logic elements as well as

DSP blocks. This will be alleviated with the next generation of

FPGAs with hardened FPUs, thus we expect the performance

to greatly improve to the point where the memory bandwidth is

saturated. It should be noted that since the number of points is

uniformly fixed in this implementation, typical optimizations

for sparse matrices such as reordering are not necessary for

this benchmark.

G. Comparison with CPU and GPU

Figure 3 shows speed-up and power efficiency of the Stratix

V FPGA and GPU against CPU for all of our benchmarks.

For CFD, the FPGA version has only gone through basic

optimization and is slower than CPU but more power efficient.

Compared to GPU, the FPGA is quite a bit slower and also

less power efficient.

Among the rest of the benchmarks for which the FPGA

version has gone through advanced optimization, CPU is faster

TABLE VI
CFD FPGA RESULTS

Type Optimization
Level

Fmax
(MHz)

Run Time
(s)

Power
Usage (Watt)

Energy
Usage (J)

Thread None 250.94 15.61 13.71 214.02

Loop None 271.58 52.72 16.72 881.55

Thread Basic 244.25 15.61 17.84 278.49

Loop Basic 213.62 12.15 17.75 215.71

than FPGA only in Hotspot and otherwise slower. FPGA is

also more power efficient than CPU in all of these benchmarks,

including Hotspot, up to an order of magnitude. Comparison

between GPU and FPGA among these benchmarks shows that

even though FPGA is slower than GPU in every case, it is still

more power efficient in all cases. The best case here is NW

in which FPGA is only 48% slower but 3.4 times more power

efficient. The worst case is Pathfinder in which FPGA is 5.3

times slower but is still 20% more power efficient than GPU.

These results show that despite the current Stratix V

FPGAs not being optimized for HPC workloads, with proper

optimization, they can achieve multiple times better power

efficiency compared to state-of-the-art GPUs. With the latest

Arria 10 and upcoming Stratix 10 FPGAs being more

optimized towards HPC workloads, we expect such FPGAs

to be much more competitive against modern GPUs.

H. Preliminary Arria 10 Results

To test the new Altera Arria 10 FPGA family that utilizes

new floating-point DSPs, we used a Bittware A10PL4 board

with an engineering sample of an Arria 10 GX 10AX115

FPGA. This FPGA has 427,200 ALMs, 1,708,800 registers,

54,260 M20K memory blocks, and 1,518 variable-precision

DSP blocks, where each DSP block contains two 18x19 bits

IEEE 754-compliant multipliers and one adder that run at

450 MHz at maximum and have a theoretical

single-precision computational performance of 1.3 TFLOPS.

This board also has 8 GB of 2133 MHz DDR4 memory in a

2-bank configuration.

To keep the comparison fair, we tested this FPGA against a

more recent CPU and GPU, namely a 10-core Intel Xeon E5-

2650 v3 (with 20 OpenMP threads) and an NVIDIA GTX 980

Ti. Our software settings and test methodology is the same

as before, with the exception that since the A10PL4 board

has a built-in power sensor, instead of estimating its power

consumption, we periodically read the power sensor during

kernel execution and calculate the average power consumption

of the board, similar to our methodology for GPUs.

At the time of writing the paper, we encountered some

issues with Altera’s compiler for Arria 10, namely

compilation failures (e.g. NW) and lower operating

frequency compared to Stratix V with the exact same kernel

settings. Apart from this, since Bittware’s BSP for this board

only supports one of the two memory banks on the board at

this time, our memory-intensive benchmarks (e.g. SRAD and
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Fig. 3. Speed-up and Power Efficiency of FPGA and GPU compared to CPU, CPU bars show the normalized value of 1

TABLE VII
LUD RESULTS FOR ARRIA 10 AND NEW CPU AND GPU

Device Run Time
(ms) Speed-up Power

Usage (Watt)
Power

Efficiency

Stratix V 5470 0.97 29.02 2.64

Arria 10 2745 1.94 29.48 5.18

E5-2650 v3 5329 1 78.64 1

980 Ti 496 10.74 184.41 4.58

Hotspot) exhibit worse performance compared to the Stratix

V board, due to available memory bandwidth being much

lower (16 GBps vs. 23.5 GBps). The only one of our

benchmarks that exhibited meaningful performance scaling

on Arria 10 is the compute-intensive LUD benchmark.

Table VII shows the performance and power efficiency

results of both FPGA boards and new CPU and GPU for this

benchmark. Speed-up and power efficiency numbers are

against the E5-2650 v3 CPU.

The LUD implementation on Arria 10 uses the same code

as the Stratix V implementation, but with bigger block size,

higher unrolling factor in the diameter and perimeter
kernels, and SIMD for the internal kernel. The internal
kernel is completely memory-bound here due to very low

memory bandwidth, and the other kernels cannot be unrolled

any further due to lack of enough Block RAMs.

Unlike the old CPU, the new CPU can beat the older

Stratix V FPGA in run time, but still not in power efficiency.

It loses to the Arria 10 FPGA in both cases, though. The

980 Ti GPU is much faster than all platforms, and manages

to beat the power efficiency of the older Stratix V FPGA,

but it still loses to Arria 10 in this metric, despite the ultra

low memory bandwidth on our Arria 10 board, which is very

promising. The 2x speed-up achieved with Arria 10

compared to Stratix V clearly shows the advantage of the

new DSPs. We hope that once the compiler and BSP issues

are resolved, we will be able to get even better performance

in LUD, and similar speed-up in other benchmarks.

VIII. RELATED WORK

One of the earliest attempts in utilizing OpenCL for

FPGA-based programming was presented in [20], where the

authors describe a source-to-source converter called

SOpenCL (Silicon-OpenCL) that is capable of producing

synthesizable HDL code from OpenCL kernels. Similarly,

in [21], the authors present another source-to-source

converter capable of converting CUDA programs to

synthesizable code for FPGAs. Both of these papers aim at

creating a platform for automatic conversion of GPU code to

synthesizable code for FPGAs.

In [22], Krommydas et al. present performance evaluation

using SOpenCL. Similar to our results, they used benchmarks

derived from the Rodinia suite, including GEM, NW, SRAD

and BFS, and evaluated their performance on a wide range of

hardware including a Xilinx Virtex-6 LX760 FPGA. Unlike

our work, that paper mainly used the kernels written for GPUs,

and does not discuss FPGA-specific optimizations in detail,

which is crucial for obtaining optimal performance on FPGAs,

as shown in our work.

Since the Altera SDK for OpenCL is relatively new, there

have been very few studies on its performance. Pu et al.

present an implementation of the k-NN algorithm on the

Terasic DE4 board with an Altera Stratix IV 4SGX530

FPGA, using the Altera SDK for OpenCL [23]. Speed and

performance per watt comparison is also provided for CPU

and GPU. Settle presents an implementation method of the

Smith-Waterman algorithm using the Altera SDK for
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OpenCL, which is similar to Needleman-Wunsch studied in

our work [24]. Our optimization using sliding windows is

based on the method described in this work. In [25], three

image processing kernels (Canny, Sobel, and SURF) were

implemented on three OpenCL-capable FPGA boards using

the Altera SDK for OpenCL, and area usage, operating

frequency and productivity results have been compared with

HDL implementations of the same kernels on one of the

boards. While the preceding results complement the results

reported in this paper, our work further extends the depth

and breadth of the benchmarking.

Che et al. presented a comparison of GPU, FPGA, and

CPU for three benchmarks from the Rodinia benchmark

suite [26]. This paper compared the number of cycles on

each processor for a given algorithm when implemented with

CUDA, VHDL, and OpenMP for GPU, FPGA, and CPU.

Our work is complementary to theirs since we evaluated the

same algorithms using OpenCL instead of HDL. However it

is not straightforward to compare our results with theirs

since the hardware and software platforms are significantly

different.

Recently different frameworks for generating synthesizable

high-level language code for FPGAs are emerging. In [27],

Lee et al. present an OpenACC-based framework that can

convert C code using OpenACC directives to OpenCL code

compatible with Altera’s compiler. Del Sozzo et al. present a

preliminary framework for automating implementation of

CNNs on FPGAs targeting Xilinx Vivado HLS [28]. Also in

[29], Wang et al. introduce an OpenCL-based MapReduce

framework for FPGAs which allows users to write familiar

MapReduce interfaces in C which are then converted to

OpenCL code targeting Altera’s compiler.

IX. CONCLUSION AND FUTURE WORK

In this work we presented the results of porting and

optimizing a subset of the Rodinia benchmark suite to the

FPGA platform, using the Altera SDK for OpenCL, and

compared run time and power efficiency with an NVIDIA

Tesla K20c GPU and an Intel E5-2670 CPU. We also

presented a simple model that can be used to guide

optimizations that are possible on this platform.

Based on our findings, even though we could not match the

speed of the K20c GPU in our benchmarks, we could achieve

up to 3.4x better power efficiency in comparison to this GPU.

Compared to the Xeon CPU, we could beat its performance

in most, and power efficiency in all benchmarks that used

advanced optimization for FPGA. It is highly promising that

such performance and power efficiency can be achieved on

FPGAs, even with a “high-level” language such as OpenCL.

We also presented our preliminary results on the new

Arria 10 FPGA from Altera that utilizes the new

floating-point DSPs, for the compute-intensive LUD

benchmark, and showed that despite much lower available

memory bandwidth due to BSP issues, we can still achieve

2x speed-up compared to Stratix V, better performance

compared to the modern Xeon E5-2560 v3 CPU, and better

power efficiency compared to both this CPU and the modern

NVIDIA 980 Ti GPU.

Our work is still ongoing and we will continue porting the

rest of the benchmarks from the Rodinia suite for FPGAs

and apply more aggressive optimizations on the benchmarks

that only have gone through basic optimization so far.

Automatic or guided parameter space exploration for

multi-threaded kernels, which can significantly reduce

optimization time for such kernels compared to exhaustive

search, is a subject that needs further study. For

loop-pipelined kernels, automatic implementation of

optimization techniques such as sliding windows, based on

the characteristics of the algorithm, can be an interesting

path to extend this work. We believe that such research will

be an important foundation for performance portability

across different types of the current and future architectures.
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