
Int J Parallel Prog (2015) 43:752–785
DOI 10.1007/s10766-014-0320-y

pocl: A Performance-Portable OpenCL Implementation

Pekka Jääskeläinen · Carlos Sánchez de La Lama ·
Erik Schnetter · Kalle Raiskila · Jarmo Takala ·
Heikki Berg

Received: 7 February 2014 / Accepted: 5 August 2014 / Published online: 19 August 2014
© Springer Science+Business Media New York 2014

Abstract OpenCL is a standard for parallel programming of heterogeneous systems.
The benefits of a common programming standard are clear; multiple vendors can
provide support for application descriptions written according to the standard, thus
reducing the program porting effort. While the standard brings the obvious bene-
fits of platform portability, the performance portability aspects are largely left to
the programmer. The situation is made worse due to multiple proprietary vendor

P. Jääskeläinen (B) · J. Takala
Tampere University of Technology, Tampere, Finland
e-mail: pekka.jaaskelainen@tut.fi

J. Takala
e-mail: jarmo.takala@tut.fi

C. S. de La Lama
Knowledge Development for POF, Madrid, Spain
e-mail: carlos.sanchez@kdpof.com

E. Schnetter
Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada

E. Schnetter
Department of Physics, University of Guelph, Guelph, ON, Canada

E. Schnetter
Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
e-mail: eschnetter@perimeterinstitute.ca

K. Raiskila · H. Berg
Nokia Research Center, Espoo, Finland
e-mail: kalle.raiskila@nokia.com

H. Berg
e-mail: heikki.berg@nokia.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-014-0320-y&domain=pdf


Int J Parallel Prog (2015) 43:752–785 753

implementations with different characteristics, and, thus, required optimization strate-
gies. In this paper, we propose an OpenCL implementation that is both portable and
performance portable. At its core is a kernel compiler that can be used to exploit the
data parallelism of OpenCL programs on multiple platforms with different parallel
hardware styles. The kernel compiler is modularized to perform target-independent
parallel region formation separately from the target-specific parallel mapping of the
regions to enable support for various styles of fine-grained parallel resources such
as subword SIMD extensions, SIMD datapaths and static multi-issue. Unlike previ-
ous similar techniques that work on the source level, the parallel region formation
retains the information of the data parallelism using the LLVM IR and its metadata
infrastructure. This data can be exploited by the later generic compiler passes for effi-
cient parallelization. The proposed open source implementation of OpenCL is also
platform portable, enabling OpenCL on a wide range of architectures, both already
commercialized and on those that are still under research. The paper describes how the
portability of the implementation is achieved. We test the two aspects to portability by
utilizing the kernel compiler and the OpenCL implementation to run OpenCL appli-
cations in various platforms with different style of parallel resources. The results show
that most of the benchmarked applications when compiled using pocl were faster or
close to as fast as the best proprietary OpenCL implementation for the platform at hand.

Keywords OpenCL · LLVM · GPGPU · VLIW · SIMD · Parallel programming ·
Heterogeneous platforms · Performance portability

1 Introduction

Widely adopted programming standards help the programmer by reducing the port-
ing effort when moving the software to a new platform. Open Computing Language
(OpenCL) [33] is a relatively new standard for parallel programming of heteroge-
neous systems. OpenCL allows the programmer to describe the program parallelism
by expressing the computation in the Single Program Multiple Data (SPMD) style.
In this style, multiple parallel work-items execute the same kernel function in parallel
with synchronization expressed explicitly by the programmer. Another key concept
in OpenCL is the work-group which collects a set of coupled work-items possibly
synchronizing with each other. However, across multiple work-groups executing the
same kernel there cannot be data dependencies. These concepts allow exploiting par-
allelism in multiple levels for a single kernel description; inside a work-item, across
work-items in a single work-group and across all the work-groups in the work-space.

While the OpenCL standard provides an extensive programming platform for
portable heterogeneous parallel programming, the version 1.2 of the standard is quite
low-level, exposing a plenty of details of the platform to the programmer. Thus, using
these platform queries, it is possible to adapt the program to each of the platforms.
However, this means that to achieve performance portability, the programmer has to
explicitly do the adaptation for each program separately. In addition, implementa-
tions of the OpenCL standard are vendor and platform specific, thus acquiring the full
performance of an OpenCL application requires the programmer to become familiar
with the special characteristics of the implementation at hand and tune the program

123



754 Int J Parallel Prog (2015) 43:752–785

accordingly. This is a serious drawback for performance portability as manual opti-
mizations are needed to port the same code to another platform.

In our earlier work [28], we used kernel serialization for extracting instruction-
level parallelism for a statically scheduled processor template with the OpenCL ven-
dor extension interface used for providing seamless access to special function units.
This initial approach proved to be a good basis for a kernel compiler with improved
support for performance portability. In this article, we propose kernel compilation
techniques that expose the implicit parallelism of OpenCL multiple work-item (WI)
work-groups in a form that can be exploited in different types of parallel processing
hardware. We propose a set of compiler transformations, which together produce multi-
WI work-group functions that can be parallelized in multiple ways and using different
granularities of parallel resources, depending on the target. By separating the paral-
lel region extraction from the actual parallel mapping of the multi-WI work-groups,
we obtain a basis for improving the performance portability of OpenCL kernels. We
have realized the proposed transformations as a modularized set of passes using the
LLVM compiler infrastructure [35] and integrated them in an OpenCL implementation
called Portable Computing Language (pocl). We have used pocl to run applications
on different processor architectures with different parallelism capabilities to test the
applicability of the proposed approach.

The main contributions of this article are as follows:

– OpenCL kernel compilation techniques that separate the parallel region forma-
tion from multiple WI work-group functions from the actual platform specific
parallelization methods;

– a kernel compiler that works on the LLVM IR, thus can support more kernel
languages than OpenCL C via the Standard Portable Intermediate Representation
(SPIR) standard [34]; and

– a complete OpenCL implementation, which allows performance portability over
wide range of computing architectures with different styles and degrees of parallel
hardware.

The remainder of the article is organized as follows. The first section is an overview
to the OpenCL standard. It briefly describes its concepts that are relevant to understand-
ing the rest of the article. The higher level software architecture of our OpenCL imple-
mentation, pocl, containing the proposed transformation passes is given in Sect. 3. The
actual kernel compiler techniques are described in Sect. 4. Section 5 describes the vec-
torized mathematical functions used in pocl. Section 6 evaluates the applicability of
the proposed approach on several platforms and compares the performance to the
proprietary OpenCL implementations. Section 7 compares the proposed techniques
to the related work. Finally, conclusions and the planned future work are presented in
Sect. 8.

2 Open Computing Language

The OpenCL 1.2 framework specifies three main parts: The OpenCL Platform Layer
for querying information of the platform and the supported devices, the OpenCL
Runtime providing programming interfaces for controlling the devices by queuing

123



Int J Parallel Prog (2015) 43:752–785 755

Fig. 1 Vector dot product in
OpenCL C

them kernel execution and memory transfer commands, and theOpenCL Compiler for
compiling the OpenCL C kernels for each targeted device. OpenCL programs structure
the computational parts of the application into kernels defined in the OpenCL C kernel
language, and specify that there shall be no data dependencies between the “kernel
instances” (work-items, analogous to loop iterations) by default.

The example OpenCL C kernel in Fig. 1 can be executed on different width Sin-
gle Instruction Multiple Data (SIMD) hardware in parallel, parallelizing as many
work-items as there are parallel processing elements in the device. The call to
get_global_id(0) returns the index of the work-item in the global index space which in
this case maps directly to the index in the buffers. A difference to standard C notation
in this example is the use of the global qualifier in the kernel arguments. This is used
to mark the pointers to point to buffers in global memory. Other disjoint explicitly
addressed memory spaces in OpenCL C include the local memory visible to single
work-groups (groups of work-items within the global index space that can synchronize
with each other) at a time, the private memory visible only to single work-items, and
the constant memory for storing read-only data. The kernel can use vector datatypes,
e.g. float4 is a four element floating point vector.

The OpenCL runtime API (a C language API) is used to launch kernels and data
transfer commands in one or more compute devices with event synchronization. Thus,
the targeted OpenCL platform consists of a host device that executes the top level
program and one or more devices that perform the computation. Portability of OpenCL
programs across a wide range of different heterogeneous platforms is achieved by
describing the kernels as source code strings which are then explicitly compiled using
the runtime API to the targeted devices. Thus, even if the runtime part of the application
was distributed as a platform specific binary, the device programs can be recompiled
to each device using the OpenCL C compiler of the platform at hand. In the kernel
execution, the OpenCL programmer can describe two forms of parallelism: work-
item parallelism and work-group level parallelism. Parallelism within a single work-
item can be explicitly expressed using vector computations. In addition, the implicit
instruction level parallelism that can be described in traditional C functions is also
available: the programmer can define, e.g., for-loops inside work-items that can be
parallelized by the compiler or the hardware, if there are no dependencies restricting
the parallelization.

The important additional source of parallelism is the data level parallelism described
by multi-WI work-groups. In OpenCL 1.2, multiple work-items in a work-group that
execute an instance of the same kernel described in the OpenCL C programming lan-
guage can be assumed to be independent by default with only explicit synchronization

123



756 Int J Parallel Prog (2015) 43:752–785

Fig. 2 The subcomponents in the OpenCL implementation. The host layer includes parts that are executed
in the OpenCL host. The device layer is used as an hardware abstraction layer to encapsulate the device-
specific parts

constructs limiting the parallelism [33]. Thus, the device is free to execute the work-
items in parallel or in serial manner. Task and thread level parallelism can be also
exploited in OpenCL applications. Multiple work-groups are assumed to be indepen-
dent of each other, thus can be executed in parallel to exploit multiple hardware threads
or multiple completely independent cores. In addition, at the higher level of OpenCL
applications, separate commands in an out-of-order command queue, and commands
in different command queues can be assumed to be independent of each other unless
explicitly synchronized using events or command-queue barriers.

3 Portable OpenCL Implementation

The proposed kernel compilation techniques are included in our OpenCL implementa-
tion, pocl. We give an overview of its software architecture before going to the details
of the transformations. The software architecture of pocl is modularized to encourage
code reuse and to isolate the device specific aspects of OpenCL to provide a plat-
form portable implementation. The higher-level components of pocl are illustrated in
Fig. 2. The implementation is divided to parts that are executed in the host and to those
that implement device-specific behavior. The host layer implementation is portable
to targets with operating system C compiler support. The device layer encapsulates
the operating system and instruction-set architecture (ISA) specific parts such as code
generation for the target device, and orchestration of the execution of the kernels in
the device.

123



Int J Parallel Prog (2015) 43:752–785 757

Most of the API implementations of the OpenCL framework in pocl are generic
implementations written in C which call the device layer through a generic host–device
interface for device-specific parts. For example, when the OpenCL program queries
for the number of devices, pocl returns a list of supported devices without needing
to do anything device-specific yet. However, when the application asks for the size
of the global memory in a device, the query is delegated down to the device layer
implementation of the device at hand.

The device layer consists of target-specific implementations for functionality such
as target-specific parts of the kernel compilation process, the final execution of the
command queue including uploading the kernel to the device and launching it, querying
device characteristics, etc. The responsibilities between the device-specific and generic
parts in the currently supported device interfaces are as follows:

basic A minimal example CPU device implementation. The execution of kernels
happens one work-group at a time without multithreading. This driver
can be used for implementing a device on a POSIX-compliant operating
system for the case where the host and the device are the same.

pthread Similar to ’basic’ except that it uses the POSIX threads [25] library to exe-
cute multiple work-groups in parallel. This is an example of a device layer
implementation that is capable of exploiting the thread level parallelism
in multi-work-group execution.

ttasim A proof-of-concept implementation of a simulated heterogeneous acceler-
ator setup. The driver simulates customizable Transport-Triggered Archi-
tecture (TTA) [15] based accelerators executing the kernels. The proces-
sors are simulated by calling the instruction set simulator of theTTA-based
Co-designEnvironment (TCE) [17]. The driver performs the memory man-
agement of the device memories at the host side, and controls the kernel
execution at the device.

cellspu Another (experimental) heterogeneous accelerator device. This controls
a single Synergistic Processing Elements (SPE) in the heterogeneous
Cell [20] architecture running a Linux-based operating system. It uses
the libspe for interfacing with the SPE.

It should be noted that each of the previous device layers provide varying levels of
portability themselves. For example, the pthread device layer implementation can be
used with Symmetric Multi-Processing (SMP) systems that run an operating system
which supports the pthreads API, regardless of the underlying CPU architecture. The
ttasim driver, on the other hand, assumes a specific communication mechanism through
explicit messages and buffer transfers using DMA commands.

One important responsibility of a device layer implementation is resource man-
agement, that is, ensuring the resources of the device needed for kernel execution
resources are properly shared and synchronized between multiple kernel executions.
The allocation of the OpenCL buffers from the device memory requested via the clCre-
ateBuffer and similar APIs is also part of the resource management responsibility of
the device layer.

For assisting in memory management, pocl provides a memory allocator implemen-
tation calledBufallocwhich aims to optimize the allocation of large continuous buffers

123



758 Int J Parallel Prog (2015) 43:752–785

typical in OpenCL applications. There are two main motivations for the customized
kernel buffer allocator: (1) exploit the knowledge of the “throughput computing” work-
loads of OpenCL where the buffers are usually relatively big to reduce fragmentation,
and (2) offer a generic memory allocator for devices without such support on device.

The working principle of the allocator is similar to memory pools in that a larger
region of memory can be allocated at once with a singlemalloc call (or at compile time
by allocating a static array). Chunks of this region are then returned to the application
using a fast allocation strategy tailored for the OpenCL buffer allocation requests. As
the allocation of the initial region can be done in multiple ways, the same memory
allocator can be also used to manage memory for devices without operating systems.
In that case, the host only keeps book of all the buffer allocations using Bufalloc for
a known available region in the device memory and the device assumes all the kernel
buffer pointers are initialized by the host to valid memory locations. The memory
allocation strategy is designed according to the assumption that the buffers are long
lived (often for the whole lifetime of the OpenCL application) and are allocated and
deallocated in groups (space for all the kernel buffer arguments reserved and freed with
successive calls to the allocator). These assumptions imply that memory fragmentation
can be reduced by allocating neighboring areas of the memory for the successive
allocation requests. A simple first fit algorithm is used in finding free space for the
buffer allocation requests.

The internal book keeping structure of Bufalloc is split to chunks with a
free/allocated flag and a size. The chunks are ordered by their starting address in
a linked list. The last chunk in the list is a sentinel that holds all the unallocated mem-
ory. When a buffer allocation request is received, the linked list is traversed from the
beginning to the end until an unallocated chunk with enough space is found. This
chunk is then split to two chunks; one having the exact size of the buffer request that
is returned to the caller, and another carrying the rest of the unallocated space in the
original chunk. The allocation strategy has a customizable greedy mode which always
serves new requests from the last chunk (end of the region) if possible. This mode
results more often in the successive kernel buffer allocation calls being allocated from
continuous memory space given the original allocated region is large enough.

4 Performance Portable Kernel Compiler

The performance portability in our approach is obtained with an OpenCL kernel com-
piler which exposes the parallelism in the kernels in such a way that it can be mapped
to the diverse parallel resources available in the different types of computing devices.
In this section, we discuss the kernel compiler and provide details of the work-group
function generation.

4.1 Compilation Chain Overview

The pocl kernel compiler is based on unmodified Clang [1] and LLVM [5] tools.
Clang parses the OpenCL C kernels and produces an LLVM Intermediate Represen-
tation (IR) for the pocl kernel compiler passes. The generated LLVM IR contains the

123



Int J Parallel Prog (2015) 43:752–785 759

representation of the kernel code for a single work-item, matching the original OpenCL
C kernel description as an LLVM IR function.

The kernel description can be thought of as a description of a thread which executes
independently by default, and which is synchronized explicitly across other work-
items in the same work-group by the programmer-defined barriers. The thread is then
spawned as many times as there are work-items in the work-group, in the Single
Program Multiple Data (SPMD) parallel program style.

Whether this single work-item program description can be executed directly on the
device depends on the execution model of the target. If the target device is tailored
to the SPMD style of parallelism it might be able to input a single kernel description
and apply the same instructions over multiple data automatically. This is the case with
many of the GPUs which implement an execution model called Single Instruction
Multiple Threads (SIMT). SIMT devices make it the responsibility of the hardware
to spread the execution of the kernel description to multiple work-items that consist
the work-group. Each SIMT core contains an independent program counter, but share
the same instruction feed, so that the same kernel instruction is broadcast to all the
cores with the same program counter value. Thus, the cores wait for their own separate
part of the kernel in case of diverging execution, and continue with parallel execution
whenever the work-items converge [41].

For Multiple Instructions Multiple Data (MIMD) or architectures with Single
Instruction Multiple Data (SIMD) instructions, on the other hand, the semantics of
a multi-WI work-group execution must be created by the compiler or the threading
runtime. A straightforward implementation of OpenCL kernel execution on a MIMD
device would simply spawn as many threads as there are work-items for the ker-
nel function, and implement the work-group barriers using barrier synchronization
primitives. However, as OpenCL is optimized for high throughput massively parallel
computation, this type of thread level parallelism is usually too heavy for work-item
execution. Creating, executing, barrier-synchronizing and context switching hundreds
or thousands of threads for each kernel invocation would incur so large overheads that
the performance benefits of parallel work-item execution are easily ruined for at least
the smaller kernel functions.

Moreover, in order to improve the performance portability of the OpenCL programs,
it is desirable to map the work-items in a work-group over all the parallel resources
available on the device at hand. For example, if the target supports SIMD instructions
as instruction set extensions, the compiler should attempt to pack multiple work-items
in the work-group to the same vector instructions, one work-item per vector lane. In
case of in-order superscalar or Very Long Instruction Word (VLIW) style Instruction-
Level Parallel (ILP) architectures it might be beneficial to “unroll” the parallel regions
in the kernel code in such a way that the operations of several independent work-items
can be statically scheduled to the multiple function units of the target device. On the
other hand, if vectorization across the work-group is not feasible, for example, due to
excessive diverging control flow in the kernel, the most efficient way to produce the
work-group execution might be to execute all the work-items serially using simple
loops and rely on the work-item vector datatypes for vector hardware utilization. This
alternative minimizes the instruction cache footprint and might still be able to exploit
instruction parallel execution of multiple work-items in case of out-of-order hardware.

123



760 Int J Parallel Prog (2015) 43:752–785

Fig. 3 A high level illustration of pocl’s kernel compilation chain. The source code of the kernel is read
by Clang which produces an LLVM IR for the single work-item kernel description. Alternatively, a pre-
built SPIR bitcode binary can be used as an input. The OpenCL C built-in functions are linked at the
LLVM IR level to the kernel after which the optional work-group function generation is done. In case
the target can execute the SPMD single work-item kernel description directly for all work-items in the
work-group (as is the case with most GPUs), or the local size is one, this step is skipped. The work-group
function generation is the last responsibility of the pocl’s kernel compiler; it helps the later target-specific
passes (such as vectorization) by creating parallel work-item loops which are annotated using LLVM
metadata

An overview of the kernel compilation process of pocl is depicted in Fig. 3. First,
the OpenCL kernel (if given in source form) is fed to the Clang OpenCL C frontend
which produces an LLVM IR of the kernel function for a single work-item. SPIR is
an alternative input format which allows to skip the Clang phase.

The LLVM IR function that describes the behavior of a single work-item in the
work-group is then processed by the pocl’s kernel compiler, which links the IR against
an LLVM IR library of device-specific OpenCL built-in function implementations at
the bitcode level. The function is converted to a work-group function (in case of a non-
SPMD execution model target) that generates a version of the function that statically
executes all the work-items of the work-group. This is done using the work-group
function generation passes of pocl.

123



Int J Parallel Prog (2015) 43:752–785 761

When compiling to SPMD-optimized hardware such as SIMT GPUs,1 the gen-
eration of the work-group function is not necessary as the hardware produces the
multiple parallel work-item execution. However, it is sometimes still beneficial to
merge multiple work-items to expose instruction-level parallelism in case the cores
contain multiple function units.

The work-group function is a version of the original kernel with data parallel regions
across the independent work-items exposed to the later phases of the compiler. It
consists of parallel “work-item loops” that execute so called “parallel regions” for all
work-items. The parallel regions are formed according to the barriers in the kernel.

Currently the work-group function generation is performed at kernel enqueue time,
when the local size is known. The known local size makes it possible to set constant
trip counts to the work-item loops, leading to easier static parallelization later on
in the compilation chain. For example, a vectorizer can then easily see whether the
trip counts can be covered evenly with the maximum size vector instructions in the
machine. Otherwise, it would always need to create a copy of the loop that iterates the
“overhead iterations” that could not be covered evenly with the vector instructions.
The drawback of this approach is that one work-group function needs to be generated
for each local size. If the same kernel is executed with a lot of different local sizes, it
leads to compilation time increase. We have not seen this is as a problem yet in our
test cases. However, it would be trivial to add a version of the work-group function
with variable trip counts in the work-item loops to produce a work-group function that
can be used with all local sizes, but might not be so efficiently parallelizable.

The produced work-group function is in a format that can be launched for different
parts of the work-space in parallel. This can be seen as an additional struct function
argument added to the work-group function that contains the work-space coordinates
among other information. In addition, the automatic local array visible in the original
kernel source is converted to a function argument to unify the handling of local buffers
which can be allocated both by the host and by the kernel.

Finally, the work-group function is passed to the code generator and assembler
which generate the executable kernel binary for the target device. The work-group
function is potentially accompanied with a launcher function in case of a heterogeneous
device. In that case the device contains its own main function which executes the work-
group function on-demand.

4.2 Generation of Parallel Work-Group Functions

The main responsibility of the kernel compiler of pocl is generating a new work-group
function out of the single work-item kernel function that is produced by the Clang
frontend. The work-group function executes the kernel code for all the work-items in
a work-group of a given size and exposes the parallel parts between work-items in
a way that can be potentially exploited by a target specific vectorization pass or an

1 At the time of this writing, pocl does not yet support popular commercial GPU targets. However, the
SPMD/GPU path of the kernel compiler has been tested by using research targets to ensure GPU-like
devices can be supported using pocl.

123



762 Int J Parallel Prog (2015) 43:752–785

instruction scheduler/bundler. In practice, the parallel loops are annotated with LLVM
metadata that retains the information of the parallel iterations for later phases such as
the loop vectorizer, which then does not have to prove the independence of the loop
iterations to perform vectorization.

Producing multi-WI work-group functions is not trivial due to the need to respect
the synchronization semantics of the work-group barriers inside the kernel code. That
is, the multiple work-item execution cannot be implemented by simply adding a loop
around the kernel code that executes the function for all the work-items, but the regions
between the barriers must be parallelized separately. Statically parallelizing kernels
with barriers inside conditional regions such as for-loops or if-else-structures adds
further complexity. In such cases the regions between barriers are harder to parallelize
due to the varying paths the execution can take to the barrier call. The pocl kernel com-
piler is modularized to parts that are reusable across several parallelization methods.
For example, all of the methods for implementing static parallel computation on the
device need to identify the parallel regions in the kernels (regions between barriers)
which can be then mapped to the parallel resources in multiple ways.

Throughout the following algorithm descriptions the kernels are represented as
Single Static Assignment (SSA) [16] Control Flow Graphs (CFG) [9] of the LLVM
IR. The relevant characteristics of the internal representation are as follows:

– Variable assignments and operations are abstracted as instructions. Instructions
have at most one result, and referring to an instruction means referring also to its
output value if it exists.

– A node in a CFG is a Basic Block (BB). A BB is a branchless sequence of instruc-
tions which is always executed as an entity, from the first instruction to the last.

– An edge in a CFG represents a branch in the control flow. These edges are defined
by the jump instructions in the source BB. This implies that creating a copy B ′ of
a basic block B which has an edge to basic block C results in B ′ also having an
edge to C .

– Both the source and the destination BBs of any CFG edge belong to the CFG.
This is important characteristics in order to differentiate between a CFG and a
sub-CFGs, defined below.

– Multiple exit BBs are allowed. Typically the exit BBs are blocks that return from
the function at hand.

We also define the term sub-CFG, to refer to a CFG which is a subgraph of another
CFG. A sub-CFG always has an associated CFG, and has essentially the same prop-
erties as CFGs, save that it might have edges leading to blocks that do not belong to
the sub-CFG but to the parent CFG.

There are two helper functions which are used in the algorithm descriptions later
in this section. Function CreateSubgraph finds all the nodes which can potentially be
visited when traversing from node A to node B. This function can be used to construct
a single-entry single-exit subgraph between two given nodes. It can be implemented
with a depth-first search starting from the desired subgraph entry A and keeping record
of all the nodes visited when traversing all the possible paths to the subgraph exit node
B and by ignoring edges back to an already visited node to avoid infinite loops.

123



Int J Parallel Prog (2015) 43:752–785 763

Function ReplicateCFG takes a CFG or a sub-CFG and replicates the whole graph.
Thus, it copies both the BBs in the and their edges creating an identical copy of the
graph as a whole.

4.3 Parallel Region Formation

The generation of static multi-WI work-group functions involves identifying the
regions between barriers that must be executed by all the work-items before pro-
ceeding to the next region. These regions are referred to as parallel regions or simply
regions in the rest of this article.

The work-items in the work-group can execute the code in the parallel regions
in any order relative to each other due to the the relaxed consistency model of the
device memory in the OpenCL 1.2 standard [33]. Thus, the multi-WI functions can
be implemented as “embarrassingly parallel” loops that iterate over all the work-item
local ids with a parallel region as the loop body. The parallel loops (later referred to as
WI loops as in work-item loops) often form the main source of fine-grained parallelism
available for the parallel computation resources in the targeted device.

The simplest scenario for forming the parallel regions is a kernel without barriers.
In such a case, creating a work-item loop whose body is the CFG of the whole function
is sufficient (see Fig. 4a). Thus, a single parallel region consisting the whole kernel
function is formed. The only requirement for this to work is that the original CFG has
a single entry point; (this is always true for the kernel functions as the function can be
entered only from one location), and a single exit point. The latter can be achieved by
a normalization transformation on the kernel function.

The parallel region formation for kernels with barriers is more complex. In the
following, the work-group barriers are classified to two categories. If a barrier is
reached in all the execution paths of the kernel control flow, that is, if the barrier
dominates the exit node, we call it an unconditional barrier. In case the barrier is placed
inside a conditional BB such as an if…else structure or a for-loop (the barrier does
not dominate the exit node), we call it a conditional barrier. Unconditional barriers
create separate parallel regions, sections of the CFG which the different work-items
can execute in parallel. In Fig. 4b, the unconditional barrier divides the whole CFG
into two regions. In order to comply with the barrier semantics, no work-item should
execute the region 2 until all of them have finished executing the region 1. Thus, two
WI loops must be created, one iterating over each parallel region; one before, and
one after the barrier. The parallel region formation algorithm for kernels with only
unconditional barriers is given in Algorithm 1.

4.4 Handling of Conditional Barriers

The algorithm for parallel region formation described so far can only handle kernels
which either have no barrier synchronization at all, or have only unconditional barriers.
According to OpenCL specification, “the work-group barrier must be encountered by
all work-items of a work-group executing the kernel or by none at all” [33]. In order
to describe the way how pocl handles kernels with conditional barriers, a few new
definitions are needed.

123



764 Int J Parallel Prog (2015) 43:752–785

entry

exit

WI loopCFG

entry

barrier

exit

WI loop

WI loopregion 1

region 2

(b)(a)

Fig. 4 Two basic cases of static work-group function generation: A kernel a without work-group barriers
and b with an unconditional barrier in the middle

Algorithm 1: Parallel region formation when the kernel does not contain condi-
tional barriers.

1. Ensure there is an implicit barrier at the entry and the exit nodes of the kernel function and that
there is only one exit node in the kernel function. This is a safe starting condition as it does not
affect any execution order restrictions.

2. Perform a depth-first-search traversal of the kernel CFG. Ignore the possible back edges to avoid
infinite loops and to include the loops of the kernel to the parallel region.

3. When encountering a barrier, create a parallel region by calling CreateSubgraph for the previously
encountered barrier and the newly found barrier.

Definition 1 (Barrier CFG) A reduced CFG with all the non-barrier instructions and
basic blocks eliminated. An example barrier CFG is shown in Fig. 5b. The barrier
CFG is formed by producing a graph with only the barrier, exit and entry nodes of
the original CFG. There is an edge between two nodes if and only if there is a direct
(no-barrier) path between the two nodes in the original CFG. Exit and entry nodes
contain implicit barriers.

Definition 2 (Predecessor barrier) Given a barrier b, its predecessor barriers are all
the barriers which can be visited in a path leading to b from the entry node. They

123



Int J Parallel Prog (2015) 43:752–785 765

barrier

exit

entry

barrier

A

C

B

D

E

F G

H

I

barrier barrier

exit

entry

(b)(a)

Fig. 5 a An example CFG with two conditional barriers and b its reduced barrier CFG

correspond to predecessor nodes in the reduced Barrier CFG. Every barrier except the
implicit barrier at the entry node has at least one predecessor barrier.

Definition 3 (Successor barrier) Given a barrier b, its successor barriers are all the
barriers that might be reached on any path from b to the exit node. They correspond to
successor nodes in the reduced Barrier CFG. Every barrier except the implicit barrier
at the exit node has at least one successor barrier.

Definition 4 (Immediate predecessor barrier) A barrier node preceding a given bar-
rier node in the Barrier CFG.

Definition 5 (Immediate successor barrier) A barrier node succeeding a given barrier
node in the Barrier CFG.

Assuming there is at least one exit node in the kernel function, we can state that:

Proposition 1 If there is a conditional barrier in a kernel CFG, then there is at least
one other barrier which has more than one immediate predecessor barrier.

123



766 Int J Parallel Prog (2015) 43:752–785

Proof Let U = {ui } be the set of all the unconditional barriers in the Barrier CFG
and C = {c j } the non-empty set of all the conditional barriers. The implicit barrier
on the exit node has to be in U (exit node is not conditional), thus there is at least one
edge e from a node c j ∈ C to a node ui ∈ U , otherwise there would be no path from
any conditional barrier to the exit node. This would make all the nodes in C dead or
unreachable basic blocks because if a node in C is executed at least by one work-item,
all work-items must execute it after which the control shall proceed. Otherwise, as
there is only one exit node in the kernel CFG, there must be an infinite loop after the
conditional barrier and the kernel outcome is undefined. Moreover, e can not be the
only edge leading to ui , as then c j would dominate ui , which could only happen if
both c j and ui were of the same kind (conditional or unconditional). Hence, there are
at least two different edges leading to ui in the Barrier CFG, thus ui has at least two
immediate predecessor barriers.

A barrier with two predecessor barriers makes it impossible to apply Algorithm 1
for forming the parallel regions. According to the simple algorithm, upon reaching a
conditional barrier, a parallel region should be formed between the preceding barrier
and the previously reached one, but in this case there would be ambiguity on which
one is the preceding barrier. For example, in Fig. 5a, when reaching the exit node, the
work-item loop iterating over the parallel region might have to branch back to either A,
F, orG, depending on the execution path chosen by the first work-item (which the other
work-items must follow, according to the OpenCL work-group barrier semantics).

In order to form a single entry, single exit parallel regions in the presence of con-
ditional barriers, we apply a variant of tail duplication [37] to the set of basic blocks
reachable from the conditional barrier at hand. This produces a new CFG with the same
behavior as the original CFG, but in which each barrier can have only one immedi-
ate predecessor barrier, enabling the single entry single exit parallel region formation
similarly as with unconditional barriers. The used tail duplication process is described
in Algorithm 2.

Algorithm 2: Tail duplication for parallel region formation in the case of condi-
tional barriers in the kernel.

1. Perform a depth-first traversal of the CFG, starting at the entry node.
2. Each time a new, unprocessed conditional barrier is found, use CreateSubgraph to produce a

sub-CFG from that barrier to the next exit node (duplicate the tail).
3. Replicate the created sub-CFG using ReplicateCFG.

In order to reduce code duplication, merge the tails from the same unconditional barrier paths.
That is, replicate the basic blocks only after the last barrier that is unconditionally reachable from
the one at hand.

4. Start the algorithm again at each of the found barrier successors.

The result of applying tail replication to the example CFG in Fig. 5 is shown in
Fig. 6a. From its reduced barrier CFG (Fig. 6b) it can be seen that no barrier has more
than one immediate predecessor barrier after this transformation has been performed,
thus making the parallel region formation unambiguous.

It should be noted that the resulting tail replicated graph has irreducible loops [23];
multiple work-item loops share the same basic blocks which leads to branches from

123



Int J Parallel Prog (2015) 43:752–785 767

WI loop

barrier barrier

exit

entry

exit exit

barrier

exit

entry

barrier

A

C

B

D

E

F G

I

HH

I I

exitexit

barrier

exit

entry

barrier

A

C

B

D

E

F G

I

HH

I I

exitexit

WI loop

WI loop

WI loop

WI loop

(c)(b)(a)

Fig. 6 a Example CFG after tail replication, b its reduced barrier CFG, and c parallelized version

a work-item loop to another. For example, the basic blocks A, B and D form a par-
allel region and from B, there’s a branch to the middle of another parallel region’s
(ABEH I ) work-item loop. Removing branches from a work-item loop to another
can be done by leaning on the definition of the OpenCL C work-group barriers: if
at least one work-item takes the branch after B that can lead to a barrier, the rest of
the work-items must follow. This fact can be exploited by “loop peeling” the first
iteration of the work-item loop. This iteration is then the only one that evaluates the
work-item dependent condition that chooses which parallel region should be executed
by the rest of the work-items. Figure 7 depicts the CFG after loop peeling has been
applied to the conditional barrier parallel regions. The peeled basic blocks are marked
with dashed outline boxes. The peeled paths select the parallel region work-item loop
that is then executed with the branch selecting the conditional barrier removed. The
benefit for parallelization is apparent; for static multi-issue ILP targets the work-item
loops contain now longer branchless traces from which to issue instructions to the
parallel function units. In general, longer branchless traces produce more freedom to
the compiler instruction scheduler which helps to hide latencies.

4.5 Barriers in Kernel Loops

OpenCL allows kernel loops to have barrier synchronization inside loops. The seman-
tics of a loop with a barrier (later referred to as b-loops) is similar to the conditional
barriers: if one work-item reaches the barrier, the rest of them have to. The barrier

123



768 Int J Parallel Prog (2015) 43:752–785

Fig. 7 The kernel CFG after
loop peeling applied to remove
irreducible control flow from the
work-item loops. The “peeled”
basic blocks are marked with
dashed boxes. This CFG does
not contain the explicit barrier
markers as the work-item loops
itself implement the work-group
barrier semantics

call at each kernel loop iteration is considered to be a separate barrier instance, that is,
the barrier of each iteration must be reached by all the work-items before proceeding
to the next iteration. The parallel region formation for b-loops can be reduced to the
“regular” parallel region formation case by adding certain implicit barriers to the loop
construct. The implicit barriers are added using the following assumptions:

1. All OpenCL kernel loops can be converted to natural canonical loops which have
a single entry node, the loop header, that computes the loop condition and just one
loop latch which jump back to the loop header. This can be assumed because the
OpenCL standard declares kernels with irreducible control flow implementation-
defined [33] and it is possible to convert irreducible loops (e.g. those produced by
an earlier optimization) to reducible loops, e.g., via node splitting [29]. Additional
transformations (included in LLVM passes) can canonicalize loops, ensuring that
they have exactly one back edge.

2. All work-items execute the iterations of b-loops in lock-step, one parallel region
at a time. Thus, the loop iteration count is the same for all work-items executing
the b-loop.

3. If the b-loop has early exits, they have been converted to converge to a single loop
exit basic block.

123



Int J Parallel Prog (2015) 43:752–785 769

Fig. 8 Adding implicit barriers to kernels with b-loops to produce unambiguous parallel regions; a the
original single work-item kernel CFG with the b-loop, b the kernel CFG with implicit barriers added to
make parallel region formation unambiguous, and c the work-group function CFG with the work-item loops
added to iterate the parallel regions. The original kernel loop edges are colored grey

With the above assumptions, the following implicit barriers can be added in order
to ensure unambiguous parallel region formation for b-loops:

1. End of the loop pre-header block. This is the single block preceding the loop
header. That is, synchronize the work-items just before entering the b-loop.

2. Before the loop latch branch. The original loop latch branch is retained, thus a
parallel region must be formed before it and the original loop branch preserved.

3. After the PhiNode region of the loop header block. This creates a parallel region
for updating the induction variables and other loop-carried variables in the original
kernel.
Due to the b-loop iteration-level lock step semantics, the induction variable updates
are redundant for all the work-items and can be combined by the standard common
subexpression elimination [14] optimization implemented by the LLVM. Depend-
ing on the target, however, the induction variables of the work-items might not be
beneficial to be combined to a single variable, but duplicated, to avoid the need to
broadcast the single induction variable across all the vector lanes.

Figure 8 shows how the implicit barriers direct the parallel region formation in a
kernel with a b-loop. The explicit (programmer-defined) barrier is shown with a solid
outline box, and the implicit barriers added by the compiler are highlighted with dashed
boxes. It should be emphasized that the original b-loop branches in the single work-
item kernel (the gray edges in Fig. 8) are not replicated during the work-group function
generation. This enforces the semantics of the iteration level lock step execution of
b-loops: When a single work-item stops iterating the loop or begin a new iteration, so
shall the others.

123



770 Int J Parallel Prog (2015) 43:752–785

Fig. 9 A kernel with inner loops; a snippet from the DCT kernel of the AMD OpenCL SDK code sample
suite. Note how the work-item loop surrounds the inner-loop which constitutes a parallel region

4.6 Horizontal Inner-Loop Parallelization

The loop constructs in OpenCL C kernel descriptions, written by the programmer, are
like C loops with sequential execution semantics. Therefore, in order to parallelize the
loops the same loop carried dependency analysis as in sequential programs is needed.
In case of multi-WI work-groups, these “inner loops” can be sometimes parallelized
“horizontally” across work-items in the work group, thus leading to a more easily
parallelized program (the work-item loop is a parallel loop). In other words, the loop
iterations could be executed in lock step for each work-item before progressing to the
next iteration. For example, the imaginary kernel in Fig. 9 does not parallelize well
without extra treatment.

The variable loop iteration count makes parallelism extraction hard as the inner
loop cannot be unrolled to increase the number of parallel operations within one
work-item. However, if the inner loop was treated like a loop with a barrier inside, the
parallelization would be done across the work-items, effectively leading to a structure
as shown in Fig. 10. Thus, the desired end result is a loop interchange between the
inner loop and the work-item loop surrounding that parallel region.

The legality of this transformation is similar to the legality of having a barrier
inside the loop; all of the work-items have to iterate the loop the same amount of
times. Therefore, additional divergence and variable uniformity analysis is needed in
order to add such implicit barriers that enforce the horizontal parallelization.

The uniformity analysis resolves the origin of the variables in the LLVM IR. The
operands of the producer instruction of the variable are recursively analyzed until a
known uniform root is found. Uniform variable is one that is known to contain the
same value for all the work-items in the work-group. Such a uniform root is usually a

123



Int J Parallel Prog (2015) 43:752–785 771

Fig. 10 A kernel with the inner loop horizontally parallelized. Here the work-item loop surrounds the
inner-loop body, yielding a nicely parallelized region

constant or a kernel argument. The uniformity analysis is used to prove that the loop
exit condition nor the predicates in the path leading to the loop entry do not depend
on the work-item id. That is, the work-item execution does not diverge in such a way
that the implicit barrier insertion would be illegal. Only then the implicit loop barrier
is inserted to enforce the horizontal inner loop parallelization.

4.7 Handling of Kernel Variables

Variables of two different scope can be defined in OpenCL C kernel functions: The
per work-item private variables and the local variables which are shared among all the
work-items in the same work-group. While the private variables are always allocated
in the OpenCL kernel function definition, there are two ways to allocate local variables
in OpenCL kernels: From the host side through the clSetKernelArg API (a local buffer
argument in the kernel function), and from the kernel side through “automatic local
variables” (variables prefixed in the OpenCL C description with the local address
space qualifier). Both of these cases are handled similarly by pocl by converting the
latter case of automatic locals to an additional work-group function argument with
a fixed allocation size. The additional work-group function argument for automatic
locals is visible in the example kernel of Fig. 3. A third function argument has been
added for storing the automatic float array of size four.

What should be noted is that local data is actually thread-local data from the point
of view of the implementation when multiple work-groups are executed in parallel
in multiple device threads sharing the same physical address space where the local
data is stored. In order to ensure thread safety, e.g. the pthread device driver of pocl
handles all local data by allocating the required local buffers in the “kernel launcher
thread” which calls the work-group function. The same local space is reused across
the possible multiple work-groups executing in the same device thread.

Private variables, however, need additional processing during the work-group func-
tion generation. As the original kernel function describes the functionality of a single
work-item, the private variables in the produced multi-WI work-group function need
to be replicated for all the work-items. In another point of view, if one considers each
work-item to be an independent thread of execution, each of the threads must have their
own separate private context that needs to be used during the execution. The straight-
forward way to produce such context space for the work-items is to create a context

123



772 Int J Parallel Prog (2015) 43:752–785

Fig. 11 Two cases of private variable lifespans: variable a is a temporary variable used only in one parallel
region, while b spans across two parallel regions. The work-group function generation result is presented
in pseudo code for clarity; in reality the processing is done on the LLVM internal representation and the
actual variables seen by the kernel compiler might not match the ones in the input kernels due to earlier
optimizations

data array for each original private variable. In this array, an element stores the private
variable for a single work-item. Thus, as many elements as there are work-items in
the work-group are needed.

Private variables have different life times that affect the need to store them in a
context data array. Some of the private variables are used only within one parallel
region while some span multiple regions. In case the lifetime does not span multiple
parallel regions, there is no need to create a context array for it as the variable is
used only during the execution of the work-item loop iteration. Such variables can
be sometimes allocated to registers for their whole lifetime instead of storing them to
memory. Figure 11 presents the two cases in a simple kernel which has two parallel
regions due to the barrier in the middle. Variable a is used only in the first parallel
region, thus, it can stay as a scalar within the produced work-item loop. In contrast, b
is used also in the latter parallel region and has to be stored in a context array. In order
to exploit the varying variable lifespans, each private variable is examined and if it is
used on at least one parallel region different from that in which it is defined, a context
array is created. Then, all uses of the variable are replaced by uses of an element of the
newly created array. This analysis is straightforward in the SSA format; each variable
assignment defines a new virtual variable of which uses can be found quickly.

Additional optimization the kernel compiler performs on the private variables of the
work-group functions is the merging of uniform variables. The idea is similar to the
Loop-Invariant Code Motion (LICM) [8]: sometimes the work-items in the work-item
loop use variables that are invariant, i.e., the value does not change per work-item. In
such cases, context data space can be saved by merging the variables to a single scalar
variable that is shared across the work-items. If this is left to a later LICM optimization
on the work-item loop, it might not succeed due to the need to analyze the accesses to
the context array locations to prove the values are the same.

The kernel compiler uses the same uniformity analysis as was described in Sect. 4.6
to detect and merge such variables. In some cases this optimization is counter-
productive in case it leads to the need to broadcast values across the lanes of SIMD-
based machines, which might be expensive. In that case it can be more efficient to also
replicate the uniform values just to avoid the communication costs. Taking advantage
of this machine-specific property is left for future work.

123



Int J Parallel Prog (2015) 43:752–785 773

5 Vectorized Mathematical Library Functions

OpenCL extends the usual mathematical elemental library functions found in C (e.g.
sin, cos, sqrt) to accept vector arguments as well. To achieve good performance for
computationally bound kernels, efficient, vectorized implementations for these are
needed. We designed Vecmathlib [44] as a pocl sub-system to address this need. Vec-
mathlib provides efficient, accurate, tunable, and most importantly vectorized mathe-
matical library functions. It seeks to design new algorithms for calculating elemental
functions that execute efficiently when interspersed with other application code. This
is in contrast to many other libraries, such as e.g. IBM’s ESSL or Intel’s VML, which
are designed to be called with arrays of many (thousands) of elements at once.

Vecmathlib is implemented in C++, and intended to be called on SIMD vectors, e.g.
those provided by SSE or AVX instruction sets, or available on ARM, Power7, and
Blue Gene architectures. The same algorithms also work efficiently on accelerators
such as GPUs. Even for scalar code, Vecmathlib’s algorithms are efficient on standard
CPUs.

Vecmathlib consists of several components:

– Type traits, defining properties of the available floating-point types (such as
half, float, double) and their integer equivalents (short, int, long), extending
std::numeric_limits;

– Templates for SIMD vector types over these floating-point types, called
realvec<typename T, int D> ;

– Generic algorithms implementing mathematical functions; these algorithms act on
SIMD vectors to ensure they are efficiently vectorized;

– Particular vector type definitions depending on the system architecture, provid-
ing e.g. realvec<double,2> if Intel’s SSE2 instructions are available. These
definitions use efficient intrinsics (aka machine instructions) if available, or else
fall back to a generic algorithm.

Thus Vecmathlib directly provides efficient vector types for those vector sizes that
are supported by the hardware. Other vector sizes are then implemented based on
these, so that e.g. realvec<float,2> may be implemented via extension to
realvec<float,4> (with two unused vector elements), orrealvec<float,8>
operations may be split into two realvec<float,4> if necessary. This happens
transparently, so that OpenCL’s types float2 or float8 have their expected prop-
erties.

5.1 Implementation

Low-level mathematical functions such as fabs, isnan, or signbit are implemented via
bit manipulation. These algorithms currently assume that floating point numbers use
the IEEE layout [19,26], which happens to be the case on all modern floating-point
architectures. For example, fabs is implemented by setting the sign bit to 0.

Mathematical functions where the inverse can be calculated efficiently, such as
reciprocal or square root (where the inverses can be determined via a simple multi-
plication), are implemented via calculating an initial guess followed by an iterative

123



774 Int J Parallel Prog (2015) 43:752–785

procedure. For example, sqrt(x) is implemented by first dividing the exponent by two
via an integer shift operation, and then employing Newton’s root finding method [42]
via iterating rn+1 := (rn + x/rn)/2 where rn is the current approximation. This
algorithm doubles the number of accurate digits with every iteration.

Most mathematical functions, however, are calculated via a range reduction fol-
lowed by a polynomical expansion. For example, sin(x) is calculated by first reducing
the argument x to the range [0; 2π) via the sine function’s periodicity, then reducing
the range further to [0;π/2] via the sine function’s symmetries, and finally expand-
ing sin(x) into Chebyshev polynomials [42] that minimize the maximum error in this
range [38].

5.2 Vectorizing Scalar Code

Instead of implementing vectorized mathematical functions (that take vector argu-
ments), it would be advantageous to implement vectorizable functions (that take scalar
arguments), and which would then automatically be vectorized by the compiler. For
example, the SLEEF library [45,46] takes this approach. This would certainly simplify
the implementation of Vecmathlib itself. However, this is unfortunately not possible for
the following reason: the high-level algorithms depend on low-level functions such as
e.g. fabs, floor, or signbit. Whether these low-level functions are provided efficiently
by vector hardware, or whether they need to be calculated via bit manipulation, is
architecture dependent. We assume that LLVM’s vectorizer will in the future be able
to vectorize such calls. The logic required for this is exactly the logic already found
in Vecmathlib, so one obvious way to implement this functionality in LLVM is via
utilizing Vecmathlib.

6 Performance Evaluation

For evaluating the current performance of the proposed approach implemented in pocl,
we used the suite of example applications available in the AMD Accelerated Parallel
Processing Software Development Kit [7]. The example applications in the AMD APP
SDK suite allow timing the execution and to iterate the benchmark multiple times.
Multiple execution iterations are used to reduce cache effects to numbers and to allow
the kernel compilers to amortize the kernel compilation time across kernel executions.

The benchmark suite was executed on various platforms supported by pocl. The
same unmodified benchmark suite was also executed using the best found vendor
implementation of OpenCL for the platform at hand for giving an idea where the
performance is at in comparison to the most commonly used implementations. It
should be noted that this version of the benchmark has been optimized for previous
generation AMD GPUs with VLIW lanes. For example, many of the cases use explicit
vector code which has to be scalarized by the pocl kernel compiler for more efficient
horizontal work-group vectorization.

The processors in the tested platforms and their available parallel computation
resource types are summarized in Table 1. Pocl framework exploits the parallel
resources as follows: (a) thread-level parallelism (TLP); multiple work-groups in mul-

123



Int J Parallel Prog (2015) 43:752–785 775

Table 1 Different types of parallel computation resources exploited in the tested platforms

TLP ILP DLP

Intel Corei7 [27] 4 cores, 2 threads each 8-issue out-of-order AVX2 (8 float, 4 double)

ARM Cortex-A9 [12] 2 cores Out-of-order NEON

Power processor element 2 threads 2-issue in-order AltiVec

TTA n/a Static multi-issue n/a

The resources are categorized to the type of parallelism they serve: thread-level parallelism (TLP),
instruction-level parallelism (ILP), and data-level parallelism (DLP)

tiple hardware threads or cores, (b) instruction-level parallelism (ILP); dynamic or
static multi-issue cores enable concurrent execution of multiple operations from each
parallel region (from the same work-item or from multiple work-items), and (c) data-
level parallelism (DLP); SIMD instruction sets allow executing either intra-kernel
vector instructions directly or lock-step executing matching operations from multiple
work-items.

6.1 Intel x86-64

The first evaluated platform is the most popular instruction set architecture used in
current personal computers and work stations, the Intel 64bit x86 architecture. For
benchmarking this platform we used a workstation with an Intel Core i7-4770 CPU
clocked at 3.4 GHz. The workstation had 16 GB of RAM and ran the Ubuntu Linux
12.04 operating system. The kernel execution time performance results are given in
Fig. 12. There were two proprietary OpenCL implementations on the platform we
could compare against, one from AMD and another from Intel. This benchmark set
indicates great performance can be achieved using pocl despite the fact that there are
several performance opportunities that are under implementation. For several of the
benchmark applications pocl already outperforms the available proprietary implemen-
tations. However, a few bad results stick out from the results:BinarySearch andNBody.
We analyzed the cases and listed the additional optimizations that should help to reach
the vendor implementation performance also for these cases. They are discussed in
the Conclusions and Future Work section later.

6.2 ARM Cortex-A9

ARM CPUs are currently the standard choice for general purpose processing in mobile
devices. We benchmarked the ARM platform using the PandaBoard with Ubuntu Linux
12.04 installed as the operating system. The PandaBoard has an ARM Cortex-A9 [12]
CPU which is an out-of-order multiscalar architecture with a NEON [11] SIMD unit.
The CPU is clocked at 1 GHz, and the platform has 1 GB of RAM. On this platform we
could not compare against a vendor supplied OpenCL implementation as ARM does
not supply one (as of February, 2013) for their CPUs, but only for their Mali GPUs.
Benchmarking results against FreeOCL [4] (albeit it is not a performance-oriented

123



776 Int J Parallel Prog (2015) 43:752–785

Fig. 12 Benchmark execution times (smaller is better) with Intel Core i7, in a Linux environment. The
benchmark runtime achieved with pocl is compared to the two available proprietary implementations for
the platform

implementation) are shown in Fig. 13. The BinomialOption test case failed to work
with FreeOCL.

6.3 STI Cell Broadband Engine/Power Processing Element

The Cell Broadband Engine [20] is a heterogeneous multiprocessor consisting of a
PowerPC and 8 Synergistic Processing Units (SPU’s). pocl can utilize the PowerPC
via the basic and pthreads drivers. The spu driver in pocl can execute programs on the
SPU processors. However, a majority of the test cases failed with compiler errors due
to the immature state of the LLVM SPU backend. Also, as LLVM has removed the
SPU backend since the 3.2 release, the benchmarks were not run on the SPU parts of
the Cell. The PowerPC of the cell was benchmarked on a Sony Playstation 3, running
the Debian sid operating system. The IBM OpenCL Development Kit v0.3 [24] was
used as a benchmark reference on this platform. The reference benchmarks were run
using the ’CPU’-device in both the OpenCL implementations, i.e. the SPUs were not
used. The comparative results varied significantly (see Fig. 14) with pocl performing
the best in the vast majority of the benchmarks.

123



Int J Parallel Prog (2015) 43:752–785 777

Fig. 13 Benchmark execution times (smaller is better) with ARM Cortex-A9, 1GB RAM in Ubuntu Linux

6.4 Static Multi-issue

An important feature of the pocl kernel compiler is its separation of parallelism expos-
ing transformations (parallel region formation) and the actual parallelization of the
known-parallel regions to the processor’s resources. The platforms in the previous
benchmarks have exploited the parallelism available in dynamic multi-issue CPUs,
their SIMD extensions and multiple cores or hardware threads. Static multi-issue
architectures are interesting especially in low power devices as they reduce the hard-
ware logic needed to support parallel computation and they rely on the compiler to
exploit the parallel function units in the machine [18]. In order to test how well the
proposed kernel compilation techniques can exploit the parallelism in VLIW-style
machines, we designed a Transport Triggered Architecture (TTA) processor with mul-
tiple parallel function units. For this, the publicly available processor design toolset
TCE (TTA-Based Co-design Environment) [6,17] was used.

Transport Triggered Architecture (TTA) is a VLIW architecture with a programmer
exposed interconnection network [15]. It exposes the instruction level parallelism
statically like the traditional VLIWs but adds more instruction scheduling freedom
due to the transport programming model. For this benchmark we used a pocl device
layer implementation that accesses the instruction set simulator engine of TCE for
modeling a TTA-based accelerator device. The simulator engine is instruction cycle

123



778 Int J Parallel Prog (2015) 43:752–785

Fig. 14 Benchmark execution times (smaller is better) with STI CellBE @ 3.2GHz, 256MB RAM running
Debian sid. Both OpenCL implementations utilize the PowerPC processor only

Table 2 Computational
resources in the TTA datapath
used in the ILP benchmark

Resource #

Integer register files (1rd+1wr port, 32 regs each) 4

Boolean register files (1rd+1wr port, 16 regs each) 5

Integer ALUs 4

Float add+sub units 4

Float multiplier units 4

Load-store units (for global and local) 9

count accurate, thus allows measuring the scalability of scheduling the multi-WI work-
group functions statically to function units. The processing resources in the designed
TTA are listed in Table 2.

The test application used here was the unmodified DCT benchmark from the AMD
SDK. This benchmark is a good example which benefits from the inner loop hori-
zontal parallelization of the kernel compiler to improve the exploitable parallelism
(see Sect. 4.6). The kernel has two loops without barriers and have an iteration count
given as the kernel argument. Thus, without the horizontal parallelization transfor-
mation, the loops could not be unrolled and are executed for each work-item in a

123



Int J Parallel Prog (2015) 43:752–785 779

Table 3 Performance benchmark results, showing execution time in cycles (lower is better)

Type Vector size Impl. (cycles) Overhead (cycles) Exp (cycles) Sin (cycles) Sqrt (cycles)

Float 1 libm 2.6 38.3 47.5 13.2

SSE2 2.3 12.9 12.4 12.1

4 libm 27.5 433.6 474.3 92.0

SSE2 9.3 52.4 41.6 21.8

Double 1 libm 2.3 23.9 33.2 17.5

SSE2 2.3 23.1 21.6 18.2

2 libm 6.2 92.2 127.1 51.8

SSE2 4.6 52.5 41.8 21.9

This compares a naive, scalarizing implementation via libm to Vecmathlib for exp, sin, and sqrt. The column
“overhead” shows the approximate overhead of the benchmarking harness. Note that scalarization by itself
is expensive since it requires vector shuffle operations (see overhead column). Note also that, in many
cases, Vecmathlib is more efficient than calling libm even in the scalar case. On this system, exp and sin
are implemented via a generic algorithm, whereas sqrt is implemented via a machine instruction

Table 4 Performance benchmark results, showing execution time in cycles (lower is better)

Type Vector size Impl. (cycles) Overhead (cycles) Exp (cycles) Sin (cycles) Sqrt (cycles)

Float 1 libm 0.3 30.1 18.4 6.9

4 libm 1.4 485.6 302.6 114.1

Altivec 1.3 13.4 33.9 8.7

The qualitative results are similar to Table 3. On this system, exp and sin are implemented via a generic
algorithm, whereas sqrt profits from a special machine instruction

sequence with very limited instruction-level parallelism. The kernel execution time
without the horizontal parallelization was 53.5 ms and 10.2 ms (scaled to 100 MHz)
when the horizontal inner loop parallelization pass was used. Thus, the ILP increase
when exploiting the kernel parallelization pass was roughly fivefold.

6.5 Performance of the Built-in Functions

We evaluated the speed of certain mathematical functions implemented using the Vec-
mathlib for various vector sizes on an Intel Core i7 (with SSE4.2 vector instructions)
and on a PS3 (with Altivec vector instructions). We compared scalarizing the func-
tion calls and marshalling them to libm, which presumably provides an optimized
scalar calculation, to Vecmathlib’s vectorized implementation. Results are presented
in Tables 3 and 4. The benchmarks used the -ffast-math option, and each calcu-
lation was repeated 10,000,000 times in a loop to obtain more accurate measurements.

It is clearly evident that Vecmathlib’s implementation is in all cases at least as
efficient as libm, even in the scalar case. For vector types, Vecmathlib is always sig-
nificantly more efficient, since scalarizing (disassembling and later re-assembling) a
vector is an expensive operation in itself. In particular for single precision, Vecmathlib

123



780 Int J Parallel Prog (2015) 43:752–785

is significantly faster (for exp and sin) than libm; this is presumably because libm’s
implementation uses the Intel fexp and fsin machine instructions which always
uses double precision, whereas Vecmathlib evaluates these functions only for single
precision. For the scalar sqrt function, there is almost no speed difference, because
both libm and Vecmathlib employ the SSE2 sqrtss instruction.

7 Related Work

There has been previous work related the kernel compiler transformations. For exam-
ple, Whole Function Vectorization (WFV) [30,31] is a set of vectorization techniques
tailored for efficient vectorization of SPMD descriptions such as the OpenCL work-
group functions with multiple work-items. Similar approach is used in the Implicit
Vectorization Module of Intel’s OpenCL SDK [43]. These solutions rely on a certain
type of parallel computation resources during the kernel compilation such as vec-
tor instruction set extensions and perform the vectorization by expanding the scalar
operations to their vector counterparts, whenever possible. This style of “monolithic
approaches” are platform specific with limited support for performance portability.
That is, when adding support to new devices with different parallel hardware, larger
part of the kernel compiler has to be updated. The approach taken by pocl is to split
the work-group vectorization to a generic step that identifies the parallel regions, con-
verts the regions to data parallel loops, and retains the parallelism information to the
later stages of compilation. The later stages are the same as in a standard vectorizing
compilation. Therefore, when porting pocl to a new platform that supports LLVM,
minimal effort is needed to get a working and efficient implementation.

Extracting parallelism from sequential programs, especially from loops that are not
(known to be) parallel is a challenge that has received extensive attention in the past
decades. As an example of one of the more recent works, the techniques proposed
by Nicolau et al. enhance the thread level parallelism of loops with inter-iteration
dependencies by intelligent placement of post andwait synchronization primitives [39,
40]. In the case of the compilation flow presented in this article, the key problem is
not the extraction of parallelism from a serial program because the input kernels are
parallel by default and explicitly synchronized by barriers. The complexity is in finding
at compile time the parallel regions of multiple instances of the work-item descriptions,
and this parallelism is typically mapped to finer grain resources such as vector lanes
or function units. However, the work of Nicolau et al. could be used to enlarge the
found parallel regions to make their execution more efficient in machines that execute
work-items from a single work-group in separate threads or cores.

The earliest mentions we found of the idea of generating “work-group functions”
that execute multiple work-items in parallel to improve the performance of SPMD
optimized programs on non-SPMD hardware has been published previously in the
context of CUDA [47]. The same idea is referred to as “work-item coalescing” for
OpenCL in [36]. The MCUDA ideas can be applied directly to OpenCL kernels as
the concept of SPMD descriptions with barrier synchronization is identical in both
languages. These previous works present the key idea of identifying regions that are
parallel and executing them for all work-items. The previous works are implemented

123



Int J Parallel Prog (2015) 43:752–785 781

as source-to-source transformations which is great for portability, but lacks the per-
formance portability benefits. The feature that impacts the performance portability
aspect the most is the transfer of parallelism information. In case of source to source
approaches, the information is lost as the parallel regions are converted to serial loops,
ending up with the usual alias analysis complexity present in, e.g. C loops. The trans-
ferring of parallel loop data using the LLVM IR metadata enables pocl to maintain the
information of the data parallel regions in work-group and benefit the later optimiza-
tion stages. We also perform additional parallelism-improving optimizations such as
inner-loop parallelization of kernels without barriers by selectively converting them to
kernels with implicit barriers, effectively parallelizing the outer loop (work-item loop).
Finally, a major drawback of the source-based approaches is the language-dependence.
With the introduction of the SPIR standard [34], it is now possible to define OpenCL
kernels using multiple alternative languages. Because SPIR uses LLVM IR, the pro-
posed kernel parallelization techniques apply to kernels loaded from SPIR binaries as
well.

There are also previous attempts to provide portable OpenCL implementations. One
of the well known ones is Clover [3], which is an OpenCL implementation providing
GPU computation support using open source drivers. Clover implements the work-
group barriers using light weight threads (or “fibers“). A similar fiber-based approach
is Twin Peaks [21,22], which proposes using optimized setjmp/longjmp functions for
implementation. The drawback with the fiber approach is that the light weight threads
do not allow implicit static parallelization of multi-WI work-groups [2]. Therefore,
the performance portability and ”scaling“ is limited with these solutions. After all, the
main source for parallelism in OpenCL kernels is the ability to execute operations from
multiple work-items in any order, also statically using fine grained parallel resources
such as SIMD or VLIW instructions. This cannot be achieved when threads with
independent control are spawned for work-items. There are also overheads in the
fiber approach due to the context switches itself, but it is clear that the capability to
horizontally parallelize work-groups has the main performance benefit in the proposed
work.

FreeOCL [4] is an open source implementation of the OpenCL 1.2. The target of
FreeOCL is stated as “It aims to provide a debugging tool and a reliable platform
which can run everywhere.” FreeOCL relies on an external C++ compiler to provide a
platform portable implementation, but again does not provide a kernel compiler with
static parallelization of work-items to improve performance portability. Like several
other implementations, it relies on the fiber approach for implementing multi-WI
work-group execution.

The proposed approach attempts to improve the performance portability over a wide
range of platforms; the pocl kernel compilation does not rely on any specific parallel
computation resources (unlike WFV, which relies on vectorization). This is apparent in
its separation of the compiler analysis that expose the parallel regions between work-
group barriers from the generic parallelization passes (such as vectorization or VLIW
scheduling). This style of modularized kernel compilation improves the performance
portability of the OpenCL implementation thanks to the freedom to map the parallel
operations in the best way possible to the resources of the device at hand.

123



782 Int J Parallel Prog (2015) 43:752–785

The proposed solution uses static program analysis to avoid using threads with
independent control flow for executing multiple work-item kernels with barriers, which
allows improved performance portability compared to fiber-based approaches like
Clover and Twin Peaks. For improving the platform portability aspect, the proposed
solution uses only C language for the the host API implementation (instead of C++
as used in Clover) in order to allow porting the code to a wider range of embedded
platforms without extensive compiler or runtime support.

8 Conclusions and Future Work

In this article, we described a modular performance portable OpenCL kernel compiler
and a portable OpenCL implementation called pocl. The modular kernel compiler
provides an efficient basis for kernel compilation on various devices with parallel
resources of different granularity. The kernel compiler is constructed to separate the
analysis that expose the parallelism from multi-WI work-groups and to more standard
optimizations that perform the actual static parallelization of the parallel regions to
different styles of fine-grained parallel computation hardware, such as SIMD, VLIW,
or superscalar architectures. The data parallelism information of multiple work-item
work-group functions is transferred using LLVM IR metadata for later compilation
phases. The experiments on different processor architectures showed that pocl can
be used to port OpenCL applications efficiently and it can exploit various kinds of
parallelism available in the underlying hardware. The pocl framework can also be
used as an experimentation platform for the popular OpenCL programming standard,
and it provides an OpenCL implementation framework for engineers designing new
parallel computing devices.

The pocl kernel compiler itself is fully functional and usually very efficient. It was
shown that most of the benchmarked applications were faster or close to as fast as the
best proprietary OpenCL implementation for the platform at hand.

At its current state, most of the performance improvements to the kernel compiler
of pocl will be language generic in nature. They can be implemented to the LLVM
infrastructure and as a result benefit also non-OpenCL programs.

For example, we plan to add selective scalarization of vector code inside loops.
That is, in case the loop vectorization cannot be applied for some reason, the original
vector code added by the programmer should be left intact to still allow exploiting
some SIMD instructions. Same applies to the aggressive inlining of built-ins and
other functions. The current way of inlining everything to the kernel function can be
counter-productive due to the larger instruction cache footprint in case it does not
improve the vectorization or other form of static parallelization of the work-items.
This will be more the case in the future as larger and larger kernels are implemented
using OpenCL. We plan to more intelligently choose when to inline and when not on
work-item loop basis. A method similar to the one presented in [13] could be used.
All of the worst-performing cases presented in Sect. 6 would benefit from these.

Another bottleneck we identified is the limited support for if-conversion [10] in
the current LLVM version. The inability to predicate some otherwise statically par-
allelizable work-item loops is one of the biggest slowdowns in the worst performing

123



Int J Parallel Prog (2015) 43:752–785 783

benchmark cases. Related to this, there are several OpenCL-specific optimizations we
plan to experiment with. For example, improving the parallelization of kernels with
diverging branches (parts executed only by a subset of the work-items) is one of the
low-hanging fruits. There is some previous work available that is targeted towards
enhanced load-balancing which could be adapted to improving the fine-grained par-
allelization on machines with limited support for predication as well [32].

Acknowledgments The work has been financially supported by the Academy of Finland (funding decision
253087), Finnish Funding Agency for Technology and Innovation (Project “Parallel Acceleration”, funding
decision 40115/13), ARTEMIS joint undertaking under Grant Agreement No. 641439 (ALMARVI), by NSF
awards 0905046, 0941653, and 1212401, as well as NSERC grant 2012-RGPIN-1505. In addition to the
financial supporters, the authors would also like to thank the constructive comments and references pointed
out by the reviewers.

References

1. Clang: A C language frontend for LLVM. http://clang.llvm.org/. Online; Accessed 5 Feb 2014
2. Clover Git: Implementing barriers. http://people.freedesktop.org/steckdenis/clover/barrier.html.

Online; Accessed 18 May 2013
3. Clover Git: OpenCL 1.1 software implementation. http://people.freedesktop.org/steckdenis/clover/

index.html. Online; Accessed 18 May 2013
4. freeocl: Multi-platform implementation of OpenCL 1.2 targeting CPUs. http://code.google.com/p/

freeocl/. Online; Accessed 18 May 2013
5. LLVM compiler infrastructure. http://llvm.org/. Online; Accessed 5 Feb 2014
6. TTA-based codesign environment (TCE). http://tce.cs.tut.fi. Online; Accessed 18 May 2013
7. Advanced Micro Devices Inc: Accelerated parallel processing (APP) software development kit (SDK)

v2.8 (2012)
8. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley

Longman Publishing Co. Inc., Reading (1986)
9. Allen, F.E.: Control flow analysis. ACM SIGPLAN Not. 5(7), 1–19 (1970)

10. Allen, J., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control dependence to data dependence.
In: Proceedings of ACM Symposium Principles of Programming Languages, Austin, TX, pp. 177–189
(1983)

11. ARM Ltd.: The ARM NEON™ general-purpose SIMD engine (2012). http://www.arm.com/products/
processors/technologies/neon.php

12. ARM Ltd.: The ARMCortex™ A9 processor (2013). http://www.arm.com/products/processors/
cortex-a/cortex-a9.php

13. Cammarota, R., Nicolau, A., Veidenbaum, A.V., Kejariwal, A., Donato, D., Madhugiri, M.: On the
determination of inlining vectors for program optimization. In: Proceedings of 22nd International
Conference on Compiler Construction, CC’13, pp. 164–183. Springer, Berlin (2013). doi:10.1007/
978-3-642-37051-9_9

14. Cocke, J.: Global common subexpression elimination. In: Proceedings of Symposium Compiler Opti-
mization, pp. 20–24. Urbana-Champaign, IL (1970)

15. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley, Chichester (1997)
16. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing static single

assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490
(1991)

17. Esko, O., Jääskeläinen, P., Huerta, P., de La Lama, C.S., Takala, J., Martinez, J.I.: Customized exposed
datapath soft-core design flow with compiler support. In: International Conference on Field Program-
mable Logic and Applications, pp. 217–222. Milan, Italy (2010)

18. Fisher, J.: Trace scheduling: a technique for global microcode compaction. IEEE Trans. Comput.
C–30(7), 478–490 (1981)

19. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Com-
put. Surv. 23, 5–48 (1991)

123

http://clang.llvm.org/
http://people.freedesktop.org/steckdenis/clover/barrier.html
http://people.freedesktop.org/steckdenis/clover/index.html
http://people.freedesktop.org/steckdenis/clover/index.html
http://code.google.com/p/freeocl/
http://code.google.com/p/freeocl/
http://llvm.org/
http://tce.cs.tut.fi
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://dx.doi.org/10.1007/978-3-642-37051-9_9
http://dx.doi.org/10.1007/978-3-642-37051-9_9


784 Int J Parallel Prog (2015) 43:752–785

20. Gschwind, M., Hofstee, H.P., Flachs, B., Hopkins, M., Watanabe, Y., Yamazaki, T.: Synergistic process-
ing in Cell’s multicore architecture. IEEE Micro 26, 10–24 (2006)

21. Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R., Zheng, B.: Twin peaks: a software
platform for heterogeneous computing on general-purpose and graphics processors. In: Proceedings of
International Conference on Parallel Architectures and Compilation Techniques, pp. 205–216. Vienna,
Austria (2010)

22. Gummaraju, J., Sander, B., Morichetti, L., Gaster, B., Howes, L.: Efficient implementation of GPGPU
synchronization primitives on CPUs. In: Proceedings of ACM International Conference on Computing
Frontiers, pp. 85–86. Bertinoro, Italy (2010)

23. Hecht, M.S., Ullman, J.D.: Flow graph reducibility. In: Proceedings of Annual ACM Symposium on
Theory of Computing, pp. 238–250. Denver, CO (1972)

24. IBM: OpenCL(TM) development kit for Linux on Power, v0.3 (2011)
25. IEEE, Piscataway, NJ: IEEE standard for information technology—portable operation system interface

(POSIX). Shell and utilities., 2004 edn. (2004). Std 1003.1
26. IEEE, Piscataway, NJ: Standard for floating-point arithmetic (2008). Std 754-2008
27. Intel Corp.: Desktop 4th Gen IntelCore™ Processor Family: Datasheet, Vol. 1 (2013). Doc. No. 328897-

004
28. Jääskeläinen, P., Sánchez de La Lama, C., Huerta, P., Takala, J.: OpenCL-based design methodology

for application-specific processors. Trans. HiPEAC 5 (2011). http://www.hipeac.net/node/4310
29. Janssen, J., Corporaal, H.: Making graphs reducible with controlled node splitting. ACM Trans. Pro-

gram. Lang. Syst. 19(6), 1031–1052 (1997)
30. Karrenberg, R., Hack, S.: Whole-function vectorization. In: Proceedings of Annual IEEE/ACM Inter-

national Symposium Code Generation and Optimization, pp. 141–150. Chamonix, France (2011)
31. Karrenberg, R., Hack, S.: Improving performance of OpenCL on CPUs. In: Proceedings of International

Conference on Compiler Construction, pp. 1–20. Tallinn, Estonia (2012)
32. Kejariwal, A., Nicolau, A., Saito, H., Tian, X., Girkar, M., Banerjee, U., Polychronopoulos, C.D.: A

general approach for partitioning N-dimensional parallel nested loops with conditionals. In: Proceed-
ings of 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’06, pp.
49–58. ACM, New York, NY, USA (2006). doi:10.1145/1148109.1148117

33. Khronos Group, Beaverton, OR: OpenCL Specification, v1.2r19 edn. (2012)
34. Khronos Group: SPIR 1.2 Specification for OpenCL (2014)
35. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis and transforma-

tion. In: Proceedings of International Symposium on Code Generation Optimization, p. 75 (2004)
36. Lee, J., Kim, J., Seo, S., Kim, S., Park, J., Kim, H., Dao, T.T., Cho, Y., Seo, S.J., Lee, S.H., Cho,

S.M., Song, H.J., Suh, S.B., Choi, J.D.: An OpenCL framework for heterogeneous multicores with
local memory. In: Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’10, pp. 193–204. ACM, New York, NY, USA (2010). doi:10.1145/
1854273.1854301

37. Maher, B.A., Smith, A., Burger, D., McKinley, K.S.: Merging head and tail duplication for convergent
hyperblock formation. In: Proceedings of Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 65–76. Orlando, FL (2006)

38. Muller, J.M.: Elementary Functions: Algorithms and Implementation. Birkhäuser, London (2006)
39. Nicolau, A., Li, G., Kejariwal, A.: Techniques for efficient placement of synchronization primitives. In:

Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’09, pp. 199–208. ACM, New York, NY, USA (2009). doi:10.1145/1504176.1504207

40. Nicolau, A., Li, G., Veidenbaum, A.V., Kejariwal, A.: Synchronization optimizations for efficient
execution on multi-cores. In: Proceedings of the 23rd International Conference on Supercomputing,
ICS ’09, pp. 169–180. ACM, New York, NY, USA (2009). doi:10.1145/1542275.1542303

41. Nvidia Corp., Santa Clara, CA: NVIDIA CUDA Compute Unified Device Architecture: Programming
Guide, v2.0 edn. (2008)

42. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art
of Scientific Computing. Cambridge University Press, Cambridge (2007)

43. Rotem, N.: Intel OpenCL SDK vectorizer. LLVM Developer’s Meeting (2011)
44. Schnetter, E.: Vecmathlib. http://bitbucket.org/eschnett/vecmathlib. Online; Accessed 5 Feb 2014
45. Shibata, N.: Efficient evaluation methods of elementary functions suitable for SIMD computation.

In: Journal of Computer Science on Research and Development, Proceedings of the International
Supercomputing Conference ISC10, vol. 25, pp. 25–32 (2010). doi:10.1007/s00450-010-0108-2

123

http://www.hipeac.net/node/4310
http://dx.doi.org/10.1145/1148109.1148117
http://dx.doi.org/10.1145/1854273.1854301
http://dx.doi.org/10.1145/1854273.1854301
http://dx.doi.org/10.1145/1504176.1504207
http://dx.doi.org/10.1145/1542275.1542303
http://bitbucket.org/eschnett/vecmathlib
http://dx.doi.org/10.1007/s00450-010-0108-2


Int J Parallel Prog (2015) 43:752–785 785

46. Shibata, N.: SLEEF (SIMD library for evaluating elementary functions). Web Site (2013). http://
shibatch.sourceforge.net/

47. Stratton, J.A., Stone, S.S., Hwu, W.M.W.: MCUDA: an efficient implementation of CUDA kernels for
multi-core CPUs. In: J.N. Amaral (ed.) Languages and Compilers for Parallel Computing, LNCS, vol.
5335, pp. 16–30. Springer, Berlin (2008). doi:10.1007/978-3-540-89740-8_2

123

http://shibatch.sourceforge.net/
http://shibatch.sourceforge.net/
http://dx.doi.org/10.1007/978-3-540-89740-8_2

	pocl: A Performance-Portable OpenCL Implementation
	Abstract
	1 Introduction
	2 Open Computing Language
	3 Portable OpenCL Implementation
	4 Performance Portable Kernel Compiler
	4.1 Compilation Chain Overview
	4.2 Generation of Parallel Work-Group Functions
	4.3 Parallel Region Formation
	4.4 Handling of Conditional Barriers
	4.5 Barriers in Kernel Loops
	4.6 Horizontal Inner-Loop Parallelization
	4.7 Handling of Kernel Variables

	5 Vectorized Mathematical Library Functions
	5.1 Implementation
	5.2 Vectorizing Scalar Code

	6 Performance Evaluation
	6.1 Intel x86-64
	6.2 ARM Cortex-A9
	6.3 STI Cell Broadband Engine/Power Processing Element
	6.4 Static Multi-issue
	6.5 Performance of the Built-in Functions

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References




