
Accelerating Space Radiative Transfer on FPGA using OpenCL
Norihisa Fujita

University of Tsukuba
fujita@hpcs.cs.tsukuba.ac.jp

Ryohei Kobayashi
University of Tsukuba

Yoshiki Yamaguchi
University of Tsukuba

Yuma Oobata∗

University of Tsukuba
Taisuke Boku

University of Tsukuba
Makito Abe†

University of Tsukuba

Kohji Yoshikawa
University of Tsukuba

Masayuki Umemura
University of Tsukuba

ABSTRACT
One of the recent challenges faced by High-Performance
Computing (HPC) is how to apply Field-Programmable Gate
Array (FPGA) technology to accelerate a next-generation
supercomputer as an efficient method of achieving high per-
formance and low power consumption. Graphics Processing
Unit (GPU) is the most commonly used accelerator for HPC
supported by regularly executed high degree of parallel op-
erations which causes performance bottleneck in some cases.
On the other hand, there are great opportunities to flexibly
and efficiently utilize FPGAs in logic circuits to fit various
computing situations. However, it is not easy for application
developers to implement FPGA logic circuits for their appli-
cations and algorithms, which generally require complicated
hardware logic descriptions. Because of the progress made
in the FPGA development environment in recent years, the
High-Level Synthesis (HLS) development environment using
the OpenCL language has become popular. Based on our
experience describing kernels using OpenCL, we found that a
more aggressive programming strategy is necessary to realize
true high performance based on a “co-design” concept to
implement the necessary features and operations to fit the
target application in an FPGA design. In this paper, we
optimize the Authentic Radiation Transfer (ART) method
on an FPGA using OpenCL. We also discuss a method to
parallelize its computation in an FPGA and a method to
optimize the OpenCL code on FPGAs. Using a co-designed
method for the optimized programming of a specific applica-
tion with OpenCL for an FPGA, we achieved a performance
that is 6.9 times faster than that of a CPU implementation
using OpenMP, and almost the same performance as a GPU
∗Present affiliation is DOWANGO Co., Ltd.
†Present affiliation is Tohoku University.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
HEART 2018, June 20–22, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6542-0/18/06. . . $15.00
https://doi.org/10.1145/3241793.3241799

implementation using CUDA. The ART code should work
on a larger configuration with multiple FPGAs requiring
interconnections between them. Considering the current ad-
vanced FPGAs with interconnection features, we believe that
their parallelized implementation with multiple FPGAs will
achieve a higher performance than GPU.
ACM Reference Format:
Norihisa Fujita, Ryohei Kobayashi, Yoshiki Yamaguchi, Yuma
Oobata, Taisuke Boku, Makito Abe, Kohji Yoshikawa, and Masayuki
Umemura. 2018. Accelerating Space Radiative Transfer on FPGA
using OpenCL. In The 9th International Symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART
2018), June 20–22, 2018, Toronto, ON, Canada. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3241793.3241799

1 INTRODUCTION
In recent years, heterogeneous systems with a CPU and an
accelerator such as a GPU or an Intel Xeon Phi in the same
node have been widely used for HPC applications. In these
systems, CPUs are treated as latency-oriented processing
units and accelerators are treated as throughput-oriented
processing units because accelerators realize a high peak com-
putational performance by utilizing multiple cores and wide
Single Instruction Multiple Data (SIMD) units. In addition
to these accelerators, an FPGA has become recognized as
a device that is the middle of trade-off between CPUs and
accelerators. However, it is difficult for software developers
to develop computation logic using a traditional Hardware
Description Language (HDL). On the other hand, an efficient
performance per energy consumption in HPC has become a
critical issue, along with the absolute computing performance.
There is an acceleration limit when simply using the high
degree of operation level parallelism provided by GPUs.

Because of the progress made in the FPGA development
environment in recent years, the HLS environment has be-
come popular. HLS is a technology that makes it possible
to use a higher level language such as C, C++, or OpenCL
for an FPGA’s circuit. For example, Intel and Xilinx provide
the OpenCL Software Development Kit (SDK) as an HLS
solution. It supports not only circuit programming using
the OpenCL language but also controlling FPGAs using the
OpenCL standard APIs through PCIe from the host. We
evaluated the fundamental functionality, performance, and
productivity of the OpenCL SDK.

https://doi.org/10.1145/3241793.3241799
https://doi.org/10.1145/3241793.3241799

HEART 2018, June 20–22, 2018, Toronto, ON, Canada N. Fujita et al.

We selected a computational astrophysics application for
practical use of OpenCL. The purpose of this research is
to optimize the ART method on an FPGA using the Intel
FPGA SDK for OpenCL. The ART method is an important
algorithm used in the Accelerated Radiative transfer on Grids
using Oct-Tree (ARGOT) program, which solves space radia-
tive transfer problems to challenge the analysis of an early
stage universe where the stars and galaxies were made as the
first objects there. This paper discusses a method for paral-
lelizing its computation in an FPGA and the optimizations
used for OpenCL on an FPGA.

2 RELATED WORK
Some applications and benchmarks have been evaluated using
OpenCL on FPGAs. [8] reported that OpenCL code origi-
nally made for GPUs had poor performance on FPGAs and
OpenCL code must be optimized to target FPGA. [2] com-
pared the performances and resource usages between VHDL
and OpenCL with the same algorithm. The performance of
the OpenCL implementation was almost equal to that of the
VHDL implementation. However, the resource usage of the
OpenCL implementation was much larger than that of the
VHDL implementation. [4] compared the irregular memory
access performance in XSBench on FPGAs using OpenCL.
Intel Arria 10’s performance was 35% slower than that of an
8-core Xeon CPU, but the energy efficiency was 50% better
than the CPU.

The absolute performance of an FPGA is not comparable
with those of other accelerators such as GPUs. Therefore,
the type of computation that is offloaded to an FPGA is
important. In this study, we optimized space radiative transfer
code on an FPGA using OpenCL. Its algorithm is suitable
for FPGAs because of its complex memory access pattern.

3 ARGOT: SPACE RADIATIVE
TRANSFER CODE

ARGOT is an astrophysics code developed in the Center for
Computational Sciences (CCS) at University of Tsukuba. It
combines two algorithms to solve radiative transfer problems:
the ARGOT algorithm [6], which computes the radiative
transfer from point sources, and the ART algorithm [7], which
computes the radiative transfer from sources spreading out in
the target space. In this paper, we just focus on ART method
as the fundamental one. The ART method is based on a ray-
tracing method in a 3D space split into meshes. As shown
in Figure 1, multiple incident rays come from a boundary
and move in a straight direction parallel with each other,
without any reflection or refraction. Each ray is shot from the
center of a boundary mesh. A gas reaction is computed on
a mesh for each passage of the ray. The direction (angle) of
the ray is computed using the HEALPix algorithm [1]. The
number of meshes depends on the configuration of the target
problem. There will be between 1003 and 10003 meshes in
our target problems. The number of ray angles also depends
on the problem size. It will be at least 768, where resolution
parameter Nside = 8 in the HEALPix.

Figure 1: Ray tracing used in the ART Method. Blue
arrows show rays. Yellow cloud shows a gas used to
compute a reaction.

Because the ART method uses ray-tracing, the computa-
tion order in a ray must be sequential, while the computations
for different rays can be performed in parallel because there
is no computation dependency between any two rays. There
are two problems in implementing the ART method on an
SIMD-like architecture. First, the memory access pattern of
the mesh data varies depending on the ray direction, which
means hundreds or thousands of different patterns will be
possible. In some cases, to compute multiple ray interactions
in the SIMD manner, we have to access the mesh data in non-
continuous locations in memory, which causes a low cache hit
ration on the CPU and long latency in the GPU. Secondary,
integrations on mesh data caused by two rays closed to each
other will be conflicted. We have to use atomic operations
or compute non-near rays in parallel to keep the computa-
tions correct. The former method degrades the computation
performance while the latter method causes more scattered
memory access patterns.

Because of this ART method’s characteristics, we consider
that SIMD-style processors such as CPUs and GPUs are
unsuitable for this algorithm. On the other hand, FPGAs
can access their on-chip internal memory with low latency
and high bandwidth for random accesses. In addition to its
performance, we can program memory access patterns as a
part of the FPGA hardware. Therefore, we consider that the
use of the ART method on an FPGA is suitable.

4 INTEL FPGA SDK FOR OPENCL
4.1 Overview
Intel provides the Intel FPGA SDK for OpenCL for their
FPGA products. This makes it possible to design an FPGA
circuit using the OpenCL language. It provides an all-in-
one development environment that contains an OpenCL to
HDL compiler and an OpenCL runtime library for the host
and driver to control an FPGA over a PCIe bus from the
host. A design generated by the compiler contains not only
circuits from OpenCL kernels but also peripheral controllers
such as DDR memory and PCIe. Therefore, we can use an
FPGA by writing OpenCL code and do not have to write
any HDL code. We can manage FPGAs through the OpenCL
standard’s Application Programming Interfaces (APIs).

An HLS environment is necessary to open the FPGA
use for a wide range of application programmers and to
reduce the effort needed to program their codes. Therefore,

Accelerating Space Radiative Transfer on FPGA using OpenCL HEART 2018, June 20–22, 2018, Toronto, ON, Canada

we need to find the advantages and disadvantages of the HLS
environment for various applications.

4.2 Inter Kernel Communication using
Channel

“Channel” is one of the extensions of the Intel SDK for the
OpenCL language. It makes it possible to exchange data
between two kernels without any external memory access. A
channel can directly connect two kernels with an optional
First-In-First-Out (FIFO) buffer.

When two kernels are connected through a channel, the
data can be transferred between them without reading or
writing on external memory. Instead of that, they are trans-
ferred through the buffer inside an FPGA chip to reduce the
latency and increase the bandwidth.

4.3 Launching Kernels Automatically
using Autorun Attribute

The “autorun” attribute is another extension for the OpenCL
language. In the standard OpenCL environment, OpenCL
kernels must be managed by the host and invoked explic-
itly. If a kernel has an autorun attribute, it will be started
automatically after the FPGA becomes ready without any
interaction from the host.

Autorun kernels are commonly used in combination with
the channels described in the previous subsection. If a kernel
uses no global memory access and uses channels only as
its input or output, we can make it as an autorun kernel.
This programming model is similar to a daemon in a general
operating system, where a daemon is started automatically
in the background and uses network sockets to do its work.

In general, if an FPGA design consists of multiple kernels
connected to each other by channels, we have to start or finish
a large number of kernels even for a stream of computation.
Each API call to manage the execution of a kernel has control
overhead, including PCIe communication overhead. Therefore,
it is important for us to keep the overhead small by using the
autorun attribute. Because autorun kernels are controlled
inside the FPGA, they have low control overhead and low
resource usage on the FPGA. No connection between the
host and the FPGA is required for them.

5 ART ON FPGA IMPLEMENTATION
5.1 Implementation Overview
The basic strategy of our implementation is to allocate mul-
tiple computation kernels into an FPGA and connect them
using channels. Each kernel computes the reaction between
a mesh and a ray in its own computation space. During this
computation, a ray traverses multiple computational kernels
and takes different meshes in the space depending on its
location. If a ray leaves a kernel’s space, its data will be
transferred to the kernel for a neighboring mesh through a
channel.

Figure 2 shows the design outline of our implementation.
The “memory reader” reads the mesh and ray data from

Memory
Reader Buffer PE Array

(2x2x2)
Memory
WriterBuffer

External Memory
(DDR4)

PE Array
(2x2x2)

DDR4
Memory

Memory
Reader

Memory
Writer

Buffer

Buffer

Channel
Memory Network

Fig. 5: Design Outline of ART on FPGA.

each other. Each kernel computes reaction between a mesh and a ray
on its own computation space which is dedicated to each kernel. While
computing, a ray is traversed among multiple compute kernels depend-
ing on its location. If a ray goes out from kernel’s space, its data will be
transferred to a neighbor kernel through a channel.
Figure 5 shows the design outline of our implementation. “Memory Reader”
reads mesh data from DDR4 memory which is seen as a global memory
from OpenCL language. “Memory Writer” is a counterpart to the reader
and updates mesh data by the result of computation. It has both of read
and write memory access because it computes integration of gas reaction.
“Buffer” is a mesh data buffer to improve memory access performance.
“PE Array” is an array of PEs (Processing Element). PE computes the
kernel of ART method. The array is consists of multiple kernels. We show
the detail of PE network in the next subsection.
Since our implementation is work-in-progress, it lacks some features from
the CPU implementation. While computation in an FPGA, all mesh data
must be put into its internal BRAM (Block Random Access Memory).
The FPGA implementation does not support to replace mesh data in-
volved by progression of its computation. Therefore, problem size which
an FPGA can solve is limited by the size of BRAM. The CPU implemen-
tation supports inter-node parallelization using MPI (Message Passing
Interface), but the FPGA implementation does not support any network-
ing functionality and uses only one FPGA.

4.2 Parallelization using Channel in an FPGA

We describe the structure in “PE Array” shown in Figure 5. A PE Array
is consists of PEs and BEs (Boundary Element) as shown in Figure 6.
It shows the PE Array network on the x-y dimension. We do not show
connections for z dimension to keep the figure simple. We also have a
similar connection to x-y dimension for z dimension.

Figure 2: Design Outline of ART on FPGA.

the DDR memory, which is seen as a global memory in the
OpenCL language. The “memory writer” is the counterpart
to the reader. It writes ray data to the memory and updates
mesh data based on the computational results. Because the
ART algorithm computes the integration of a gas reaction,
both read and write memory accesses are required for the
mesh data. The “buffer” is a mesh data buffer used to improve
the memory access performance. The “PE array” is an array
of Processing Elements (PEs). A PE computes a kernel using
the ART method, and the array consists of multiple kernels.
We show the details of the PE network in the next subsection.

Iout
ν (n̂) = Iin

ν (n̂)e−Δτν + Sν(1 − e−Δτν) (1)
Equation (1) shows the computation of the ART method.

ν, Iin
ν , Iout

ν , n̂, Δτ , and Sν describe the frequency, the incom-
ing radiative intensity, the outgoing radiative intensity, the
direction of the ray, the optical depth on the mesh, and the
source function of the mesh, respectively. The target space
is divided into 3D meshes, and Equation (1) is computed
on each mesh. All computations use single precision floating
point and implemented by Digital Signal Processors (DSPs)
in an FPGA including the exponent functions.

In our implementation, the “buffers” and “PE array” ker-
nels shown in Figure 2 are marked as “autorun” kernels. The
remaining kernels are regular kernels and controlled by the
host. We cannot make them autorun kernels because of their
global memory access. Applying the autorun attribute to
kernels reduces the number of kernels managed by the host.
As a result, the control overhead is decreased, and the total
computational performance is increased.

Because our implementation is a work-in-progress, it lacks
some features from the CPU implementation. The CPU
implementation supports inter-node parallelization using a
Message Passing Interface (MPI), but the FPGA implemen-
tation in the current version does not support any networking
functionality and uses only one FPGA.

5.2 Parallelization using Channel in
FPGA

We next describe the structure of the ‘PE array” shown in
Figure 2. A PE array consists of PEs and Boundary Elements
(BEs), as shown in Figure 3. A PE is a computation kernel
for the ART method, while a BE is a unit for the boundary
processing of ray tracing. Figure 3 shows a PE array network
on the X and Y dimensions. The actual computation is
performed on 3D space, but we just show 2D version for easy
understanding.

In our implementation, the problem space for an FPGA
is divided into small blocks, as shown in Figure 4. Each

HEART 2018, June 20–22, 2018, Toronto, ON, Canada N. Fujita et al.

PE BEBE PE

96bit x2
(read,write)

Channel

PE PE BEBE

BEBE

BEBE

y

x
Ray Data

Figure 3: Network of PEs and BEs in X and Y di-
mensions.

(16x16x16) (8x8x8)

mesh

Figure 4: Decomposing large space into small ones.

PE usescthe ART method for a computation on every small
block. They are connected by two channels and exchange
ray data with each other. We need to have two channels to
support bi-directional communication between two elements
because a channel supports one-sided communication only.
A BE handles the ray I/O to or from a neighbor boundary.

Generally speaking, the __local memory access complexity
in OpenCL has an impact on the kernel performance and
resource usage of the kernel. We can expect four levels of
complexity in OpenCL programming, as described below. If
the compiler can analyze the memory access pattern at the
compile time and the pattern is linear access in a loop, it will
be stall-free and can read or write data on every clock cycle.
If the pattern is random access or depends on runtime values,
it may stall, resulting in a performance degradation because
of stalls and increasing the resource usage. If the compiler
cannot determine the memory access pattern statically at the
compile time, the Initiation Interval (II) of a loop containing
memory access becomes greater than one, and its throughput
becomes poor. If the memory access is more complex than
the previous case, the compilation time will also be very long,
with more than hours to enlarge the design turn-around time.

The benefit of our design using channel parallelisms is
that each PE has its own dedicated Block RAMs (BRAMs)
declared as a __local memory in the OpenCL language for its
computation. The compiler can easily analyze the OpenCL
source and generate the best stall-free design.

5.3 DDR Memory Access
The previous section described how the computation is per-
formed on BRAMs distributed among PEs, which means
our implementation can solve only small problems because
the size of BRAM blocks in an FPGA is small. We consider
an FPGA capable of solving a mesh with a size of at least
1283 for problems solved by ARGOT. To obtain the best
performance on BRAMs, the size of the mesh should be 64

x

y

0

(A) (B)

(4)(1)

(2)

(3)

(5)

(6)

Figure 5: Ray buffer outline. Red boxes show the
output ray buffers, blue boxes show the input ray
buffers, and blue arrows show the rays to compute.

bytes, including padding. Therefore, a 128 MB memory space
is required for 1283 meshes, which cannot be fit inside an
FPGA.

We divide the entire large ART computation into small
steps based on the mesh size that can fit into the BRAMs in an
FPGA. Once a small block is computed, the next small block
will be computed sequentially. Figure 6 shows the pseudo code
of the implementation using DDR memory. It only shows the
algorithm, without showing the implementation in detail. The
algorithm is divided into multiple kernels that are connected
by channels, as described in the previous subsection.

We implement two kinds of kernels that access the DDR
global memory to solve large problems. One of these is used
to replace mesh data involved during the progression of the
computation. The BRAMs in a PE for mesh data work like
an addressable cache: mesh data are read from the DDR
memory, stored into BRAMs (A in Figure 6), used in ART
computations on the BRAMs (B in Figure 6; no DDR access
in this phase), and written into the DDR memory (C in
Figure 6).

The other DDR access modules are used for ray data. The
memory access for ray data is more complex than that for
mesh data. Ray buffers are allocated on the DDR memory
to store ray data. They are not stored in BRAMs because
they need larger size than that of BRAMs. Figure 5 shows a
2D simplified image of the memory access for ray data. The
figure shows nine boxes, each of which shows a small block
containing meshes. The central box with solid lines (A) shows
the current small block computation (shown as variable b in
Figure 6). Rays are read from two blue input buffers (1 and
2) and written into two red output buffers (3 and 4). The
input and output buffers are changed depending on which
small box is computed. If we compute on block B, buffers
4 and 5 are inputs, and buffer 6 is an output. There is no
output buffer on the right hand side of block B because rays
go outside of the domain and are discarded.

6 PERFORMANCE EVALUATION
6.1 Evaluation Environment
We used the Pre-PACS version X (PPX) system for the per-
formance evaluation in this study. This system is a prototype

Accelerating Space Radiative Transfer on FPGA using OpenCL HEART 2018, June 20–22, 2018, Toronto, ON, Canada

for dir in ray_directions [] {
for b in small_blocks [] {

A: mesh_load (b)
for i in ipix(dir) {

for iray in rays(ipix) {
r = ray_load (iray)
for m in compute_path (r) {

C: compute reaction between r and m
}
ray_store (iray , r) }}

B: mesh_store (b) }}

Figure 6: Pseudo code of DDR implementation.

Table 1: Evaluation Environment
CPU Intel Xeon E5-2660 v4 × 2

CPU Memory DDR4 2400 MHz 64 GB (8 GB × 8)
GPU NVIDIA Tesla P100 (PCIe)

Host OS CentOS 7.3
Host Compiler gcc 4.8.5
OpenCL SDK Intel FPGA SDK for OpenCL 16.1.2.203

CUDA CUDA 8.0.61
FPGA BittWare A10PL4 (10AX115N3F40E2SG)

FPGA Memory DDR4 2133 MHz 8 GB (4 GB × 2)

system for the next generation of PACS series supercomput-
ers at University of Tsukuba. Table 1 lists the environmental
specifications of PPX. A CPU and an FPGA are connected
by PCIe Gen.3 x8 lanes, while a CPU and a GPU are con-
nected by PCIe Gen.3 x16 lanes. To avoid the performance
degradation caused by a PCIe access over a Quick Path In-
terconnect (QPI), the closest CPU to the device is used for
the FPGA and GPU evaluation.

We used a benchmark program that contained the core
computation of the ART method extracted from the AR-
GOT program for the performance evaluation. The mesh
data input to the benchmark are generated by a pseudo ran-
dom generator, and the input ray data are generated by the
HEALpix library in the same way as the ARGOT program
because the computation cost of the ART method does not
depend on mesh data but depends on the ray data.

The problem size used for the evaluation ranged from 163

to 1283. The current implementation used a design with
8 PEs (23), and each PE had BRAMs for an 83 meshes.
Therefore, 163 meshes are stored in an FPGA in each step.
Nside, which is a parameter used to determine the resolution
in the HEALpix, is set at 8, which generates 768 of different
angles of rays (768 is the number of angles, not the number of
rays). for the ray tracing. In this evaluation, the computation
time on a CPU is measured and included the cost of launching
and synchronizing the device, both for FPGA and GPU
implementations. We do not measure the time for the data
transfer between the host and the devices because they are the
same for the FPGA and GPU (or advantageous for the GPU
because of the larger lane size on PCIe). We use “mesh/s”
as a unit for the performance evaluation. This indicates how
many meshes are traced by rays in a second.

6.2 Resource Usage
Table 2 lists the resource usage values of FPGA implementa-
tions. ALMs and registers are fundamental elements used to
represent logic circuits, M20K and MLAB are the distributed
BRAM, and DSP is a block used for floating point number
operations. “freq.” means the operation frequency in the clock
domain for OpenCL kernels.

There is a large difference in resource usage between the 163

implementation and the 323 implementation. This difference
is caused by the DDR control kernels described in section 5.3.
They are not necessary in the 163 implementation because
the problem size is small, and all of the meshes can be stored
in an FPGA’s BRAM.

As listed in the table, ALMs and registers are the greatest
resource users in this design, with 40% of the total ALMs and
registers used, which becomes a bottleneck when attempting
to increase performance. To achieve the best performance,
it is desirable to use all of the DSP blocks in an FPGA to
compute the ART method by increasing the number of PEs.
From the DSP point of view, we expect to implement 32
PEs using 84% of the DPSs. However, because 40% of the
ALMs and registers are used with an 8 PE design, we cannot
implement enough PEs to utilize all of the DPSs. We have
to optimize the OpenCL code to decrease the resource usage
in the design.

The frequency differs between the 323, 643, and 1283 cases
by the OpenCL compiler. These source codes are almost the
same, but there are slight differences in the constants such as
the loop count or problem size. Verilog HDL codes generated
by the OpenCL compiler is not human readable, and it is too
difficult for us to understand how kernels are implemented
as circuits.

6.3 Performance Evaluation
Table 3 and Figure 7 show the performance comparison
between the CPU, GPU, and FPGA implementations. The
CPU implementation is written in C and uses OpenMP
for the thread parallelization. “CPU(14C)” represents the
CPU implementation running with 14 OpenMP threads and
“CPU(28C)” represents the double count of threads. The
evaluation environment has two Xeon CPUs, and each CPU
has 14 cores. where these two cases correspond to single or
double CPU sockets. The GPU implementation is based on
the CPU implementation but written in CUDA.

The FPGA implementation achieves 1283 M mesh/s, 1165
M mesh/s, 1111 M mesh/s and 1134 M mesh/s on 163, 323,
643 and 1283, respectively. The CPU implementation is the
slowest and 6.8 times slower than the GPU implementa-
tion and 6.9 times slower than the FPGA implementation.
Although the fastest problem size for a CPU is 643, it is
still slower than either the FPGA or GPU. We believe that
the performance degradation from 643 to 1283 is caused by
decreasing the cache hit rate.

The 163 case on the GPU is more than 10 times slower
than the 643 and 1283 sizes. Their problem sizes are too small

HEART 2018, June 20–22, 2018, Toronto, ON, Canada N. Fujita et al.

Table 2: Resource usage and clock frequency of implementation.
size # of PEs ALMs (%) Registers (%) M20K (%) MLAB DSP (%) Freq. [MHz]

(16, 16, 16) (2, 2, 2) 132,283 31% 267,828 31% 739 27% 14,310 312 21% 193.2
(32, 32, 32) (2, 2, 2) 169,882 40% 344,447 40% 796 29% 21,100 312 21% 173.8
(64, 64, 64) (2, 2, 2) 169,549 40% 344,512 40% 796 29% 21,250 312 21% 167.0

(128, 128, 128) (2, 2, 2) 169,662 40% 344,505 40% 796 29% 21,250 312 21% 170.4

Table 3: Performance comparison between FPGA,
CPU, and GPU implementations. The unit is M
mesh/s.

Size CPU(14C) CPU(28C) P100 FPGA
(16,16,16) 112.4 77.2 105.3 1282.8
(32,32,32) 158.9 183.4 490.4 1165.2
(64,64,64) 175.0 227.2 1041.4 1111.0

(128,128,128) 95.4 165.0 1116.1 1133.5

0

200

400

600

800

1000

1200

1400

(16,16,16) (32,32,32) (64,64,64) (128,128,128)

Pe
rf

or
m

an
ce

 [M
 m

es
h/

s]

mesh size

CPU(14C)

CPU(28C)
P100(x1)
FPGA

Figure 7: Performance comparison between FPGA,
CPU, and GPU implementations.

for a GPU because of the insufficient parallelism for its 3584
CUDA cores.

Unlike the GPU implementation, the FPGA implementa-
tion’s performance is high for all problem sizes. We believe
that this characteristic of the FPGA comes from its pipeline
design. Because the performances per frequency for each prob-
lem size are almost the same (6.64 ∼ 6.70 mesh per cycle),
the performance differences on the 163, 323, 643, and 1283

problems are caused by the frequency differences. Therefore,
optimization to increase the kernel frequency is important.
The mesh data input and output are the dominant memory
loads of the ART method. The current implementation (8
PEs) is computation bound. However, if more PEs are used,
it will be memory bound. Even on the large problem sizes, the
FPGA implementation has almost the same performance as
GPU. Therefore, we consider the fundamental performance
of the FPGA implementation to be adequate compared to a
GPU.

7 NEXT STEP: PARALLELIZED FPGA
We confirmed that the FPGA performance was adequate
compared to a GPU. To increase the problem size and im-
prove the performance, we are planning to add networking
functionality to our ART implementation on the FPGA for
parallelization. In the GPU programming model, the GPU
is a sort of slave device that can only be controlled by the
host CPU, including the inter-node communication. Because

inter-node communications are also initiated by the CPU,
the CPU and the GPU must be synchronized before the
communication starts. If the NVIDIA GPU is combined with
the Mellanox HCA in a node, GPUDirect for RDMA (GDR)
[5] can be used as an improved communication protocol be-
tween nodes. This would reduce the communication latency
and increase its throughput. However, even if we can use
GDR, communications are initiated by the CPU, and the
communication overhead is not negligible when it occurs
frequently.

On the other hand, recent advanced FPGAs such as Intel’s
Stratix 10 are equipped with multiple very high speed (up to
100 Gbps per link) interconnection links (up to 4 channels).
Additionally, an HLS such as the OpenCL programming en-
vironment is provided, and there are several types of research
to involve them in FPGA computing. In [3], we showed the
basic feature needed to utilize a high speed interconnection
over an FPGA driven by OpenCL kernels. Therefore, even
though the performance of our implementation is almost the
same as that of the NVIDIA P100 GPU, the overall per-
formance with multiple computation nodes and a directly
connected FPGAs can easily overcome the deficiencies of the
GPU implementation, which requires host CPU control and
kernel switching for inter-node communication. The network-
ing overhead on FPGAs is much lower than that on GPUs.
Improving the current ART method implementation with
such an interconnection feature on an FPGA is our next step
toward high-performance parallel FPGA computing.

8 CONCLUSION
In this study, we optimized the ART method used in an
ARGOT program to solve a fundamental calculation in the
early stage universe with a space radiative transfer phenome-
non, on an FPGA using Intel’s FPGA SDK for OpenCL. We
parallelized the algorithm using the SDK’s channel extension
in an FPGA. We achieved a performance that was 4.89 times
faster than the CPU implementation using OpenMP, and
almost the same performance as the GPU implementation
using CUDA. It was important to take the FPGA architec-
ture into account, even though we used OpenCL, which was
the language for the software. Our implementation consisted
of multiple kernels (PEs, BEs, and so on), which came from
the FPGA architecture with distributed block memories in a
chip.

Although the performance of the FPGA implementation
was comparable to that of the NVIDIA P100 GPU, there
is room to improve its performance. The most important
optimization is resource optimization. The performance could
be improved by implementing a larger number of PEs than

Accelerating Space Radiative Transfer on FPGA using OpenCL HEART 2018, June 20–22, 2018, Toronto, ON, Canada

in the current implementation. However, it would be difficult
to reduce the use of ALMs and registers because they are not
directly described in the OpenCL code. Both the resources
and frequency are important. We suppose that Arria 10 with
an OpenCL design can run at a frequency of 200 MHz or
higher. The frequency is restricted by the loop structure
in OpenCL. However, we have no method for fine tuning
because the OpenCL compiler completely hides the logic
used by loops from the user.

We will implement the network functionality in the ART
design to parallelize it among multiple FPGAs. We consider
networking using FPGAs to be an important feature for
parallel applications using FPGAs. Although GPUs have
higher computation performance FLOPS and higher memory
bandwidth than FPGAs, I/O, including networking, is a weak
point for GPUs because they are connected to NICs through
a PCIe bus. In addition to networking, we will attempt to run
our code on a Stratix 10 FPGA, which is the next generation
Intel FPGA. We expect to be able to implement more PEs
than the Arria 10 FPGA because it has 2.2 times more ALM
blocks and 3.8 times more DPS blocks.

ACKNOWLEDGEMENTS
This research is a part of the project titled “Development of
Computing-Communication Unified Supercomputer in Next
Generation” under the program of “Research and Develop-
ment for Next-Generation Supercomputing Technology” by
MEXT. We thank Intel University Program for providing us
both of hardware and software.

REFERENCES
[1] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen,

M. Reinecke, and M. Bartelmann. Healpix: A framework for high-
resolution discretization and fast analysis of data distributed on
the sphere. The Astrophysical Journal, 622(2):759, 2005.

[2] K. Hill, S. Craciun, A. George, and H. Lam. Comparative analysis
of opencl vs. hdl with image-processing kernels on stratix-v fpga. In
2015 IEEE 26th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pages 189–193,
July 2015.

[3] R. Kobayashi, Y. Oobata, N. Fujita, Y. Yamaguchi, and T. Boku.
Opencl-ready high speed fpga network for reconfigurable high
performance computing. In Proceedings of the International Con-
ference on High Performance Computing in Asia-Pacific Region,
HPC Asia 2018, pages 192–201, New York, NY, USA, 2018. ACM.

[4] Y. Luo, X. Wen, K. Yoshii, S. Ogrenci-Memik, G. Memik, H. Finkel,
and F. Cappello. Evaluating irregular memory access on opencl fpga
platforms: A case study with xsbench. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL),
pages 1–4, Sept 2017.

[5] NVIDIA Corporation. GPUDirect for RDMA, https://docs.nvidia.
com/cuda/gpudirect-rdma/index.html.

[6] T. Okamoto, K. Yoshikawa, and M. Umemura. argot: accelerated
radiative transfer on grids using oct-tree. Monthly Notices of the
Royal Astronomical Society, 419(4):2855–2866, 2012.

[7] S. Tanaka, K. Yoshikawa, T. Okamoto, and K. Hasegawa. A
new ray-tracing scheme for 3d diffuse radiation transfer on highly
parallel architectures. Publications of the Astronomical Society
of Japan, 67(4):62, 2015.

[8] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Mat-
suoka. Evaluating and optimizing opencl kernels for high perfor-
mance computing with fpgas. In Proceedings of the International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’16, pages 35:1–35:12, Piscataway, NJ, USA,
2016. IEEE Press.

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

	Abstract
	1 Introduction
	2 Related Work
	3 ARGOT: Space Radiative Transfer Code
	4 Intel FPGA SDK for OpenCL
	4.1 Overview
	4.2 Inter Kernel Communication using Channel
	4.3 Launching Kernels Automatically using Autorun Attribute

	5 ART on FPGA Implementation
	5.1 Implementation Overview
	5.2 Parallelization using Channel in FPGA
	5.3 DDR Memory Access

	6 Performance Evaluation
	6.1 Evaluation Environment
	6.2 Resource Usage
	6.3 Performance Evaluation

	7 Next Step: Parallelized FPGA
	8 Conclusion
	References

