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ABSTRACT
An indispensable part of our modern life is scientific com-
puting which is used in large-scale high-performance sys-
tems as well as in low-power smart cyber-physical systems.
Hence, accelerators for scientific computing need to be fast
and energy efficient. Therefore, partial differential equations
(PDEs), as an integral component of many scientific com-
puting tasks, require efficient implementation. In this re-
gard, FPGAs are well suited for data-parallel computations
as they occur in PDE solvers. However, including FPGAs
in the programming flow is not trivial, as hardware descrip-
tion languages (HDLs) have to be exploited, which requires
detailed knowledge of the underlying hardware. This issue
is tackled by OpenCL, which allows to write standardized
code in a C-like fashion, rendering experience with HDLs
unnecessary. Yet, hiding the underlying hardware from the
developer makes it challenging to implement solvers that
exploit the full FPGA potential. Therefore, we propose in
this work a comprehensive set of generic and specific op-
timization techniques for PDE solvers using OpenCL that
improve the FPGA performance and energy efficiency by or-
ders of magnitude. Based on these optimizations, our study
shows that, despite the high abstraction level of OpenCL,
very energy efficient PDE accelerators on the FPGA fabric
can be designed, making the FPGA an ideal solution for
power-constrained applications.

1. INTRODUCTION
Scientific computing is an integral part of our modern life

enabling for instance artificial intelligence, improved health
care or accurate weather forecasts. Yet, nowadays scientific
computing is not only used on large-scale high-performance
servers but also in low-power domains due to the growing
interest in cyber-physical systems including autonomously
operating smart devices [1]. Consequently, there is a strong
demand for fast but low-power accelerators.

A key component in many scientific computing domains
are Partial Differential Equations (PDEs). Solving PDEs
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efficiently is challenging and often requires numerical ap-
proaches based on the discretization of the problem space [2].
By this mean, the complex mathematical problem can be
transformed into systems of linear equations (SLEs). These
typically consist of millions of variables, and use special stor-
age formats to avoid storing coefficients that are zero. As a
result, solving these systems is computationally and storage-
wise expensive [3], and a high memory bandwidth is key for
high-performance solutions. However, due to irregular mem-
ory access patterns, efficient implementations w.r.t perfor-
mance as well as energy demand are often challenging.

Traditionally, PDE solvers are implemented for many-core
systems (CPUs), by dividing the problem space into several
subdomains as well as by parallelizing the fundamental al-
gebraic operations required by the iterative SLE solvers. In
recent years also general purpose graphics processing units
(GPGPUs) are gaining interest, and are now often used as
accelerators, thanks to their superior performance and en-
ergy efficiency for massive data-parallel operations, such as
the aforementioned algebraic operations [4].

Another group of accelerators are Field Programmable Gate
Arrays (FPGAs). Similar to CPUs and GPGPUs, FPGAs
use the most recent manufacturing technologies, and with
plenty configurable logic blocks they are well suited for data-
parallel computations [5]. On top, even high-end FPGAs re-
quire less power than medium-class GPGPUs [6], and thus
seem to be ideal candidates for power-constrained applica-
tions such as smart sensor systems1. Yet, FPGAs have been
left out as accelerators for PDEs, so far. One reason is that
writing efficient code for a heterogeneous platform using FP-
GAs has been very challenging, due to the lack of a universal
programming framework. Consequently, separate codes had
to be written for the host processor, for the accelerator and
for the interfaces. This requires deep knowledge of the un-
derlying FPGA architecture and use of hardware description
languages, which is a major hurdle for software developers.

However, recently, both Altera and Xilinx, started to pro-
vide OpenCL support for their FPGAs [7, 8]. OpenCL is
a framework for writing programs that execute across het-
erogeneous platforms [9]. By that means, OpenCL allows
to write standardized C-like code for the host as well as for
the accelerators, and thus relaxes the programming chal-
lenge for FPGAs. However, the increased level of abstrac-
tion makes it challenging to implement solvers at maximum
performance or energy efficiency, as the developer has no
direct influence on low-level characteristics such as resource

1E.g, a system steering an autonomous battery-powered ve-
hicle based on sensor and camera input
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usage, placement or timing constraints. Nevertheless, it was
already demonstrated using OpenCL that FPGAs are very
efficient platforms for DNA sequencing, FFT calculations,
neural network implementations, image processing and op-
tion pricing [10–15]. While this is a great promise, the ques-
tion of how well FPGAs are suited for solving PDEs effi-
ciently using OpenCL remains unanswered.

Therefore, in this paper, we propose a set of effective op-
timization strategies for fast and energy efficient OpenCL-
based FPGA implementations of PDE solvers. These include
vendor-specific as well as vendor-independent techniques,
data-set optimizations, algorithmic enhancements as well as
data-flow and control-flow tuning to overcome the aforemen-
tioned implementation challenges for PDEs. The resulting
implementations can be accessed at our project website [26].
In addition, we provide a comprehensive study of the effi-
ciency of FPGAs for solving PDEs using OpenCL including
a comparison with CPUs and GPGPUs. Our results of Xil-
inx and Altera FPGAs, show that our proposed optimiza-
tion techniques improve performance and energy efficiency
by orders of magnitude. As a result, very energy efficient
solutions can be designed using OpenCL, despite the high
abstraction level. For instance, our Altera FPGA is 2x more
efficient than a quad-core processor, and 35% more efficient
than a GPGPU with FPGA-like power consumption. Yet,
conventional multi-core CPUs and high-performance GPG-
PUs still provide better performance. Nevertheless, thanks
to the lower power consumption (≈ 30 Watt), FPGAs are the
ideal candidates for power-constrained domains. Finally, the
results also highlight fundamental differences among both
manufacturers in terms of code implementation and opti-
mization, as well as in terms of performance and efficiency.

The rest of this paper is organized as follows. The mathe-
matical problem of our case study is introduced in Section 2,
followed by a comprehensive discussion of the implementa-
tion for Xilinx and Altera in Section 3. Afterwards, the ex-
perimental results are presented and discussed in Section 4.
Finally, Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Partial Differential Equations
Solving PDEs is a core component in many scientific com-

puting domains. Consequently, there is a diversity of PDEs.
Nevertheless, solving PDEs follows typically the same main
steps, which are problem discretization, transforming the
PDE into systems of linear equations and finally solving
these systems. Hence, findings for one PDE and one solver
apply to many other cases [3].

As a case study for PDEs we use the Poisson’s equation
in this work. The Poisson’s equation occurs in various ap-
plication domains, e.g. in electrostatics and mechanical en-
gineering. One well known problem described by this PDE
is the calculation of the electric potential for a given charge
distribution. The equation in two dimensions is:

−∆u(x, y) = −
(
∂2

∂2x
+

∂2

∂2y

)
u(x, y) = f(x, y), (1)

where u(x,y) is the unknown potential, f(x,y) is the known
boundary condition and x and y are spatial coordinates.
This PDE can be converted to an SLE by discretizing the
continuous problem space with finite differences methods.
The resulting SLE is:

A~u = ~b, (2)

where A is the Laplace matrix, ~b represents the boundary
condition and ~u is the unknown vector, which represents, in
the case of electrostatics, the electrical potential. It is worth
mentioning, that the Laplace matrix is sparse, containing
only up to 5 non-zero entries per row for the case of a 2D
problem (see Figure 1).

2.1.1 Conjugated Gradient Method
To solve this sparse SLE, iterative schemes like the Conju-

gate Gradient (CG) method are advantageous [16]. The CG
scheme is one of the most powerful iterative solvers suited for
symmetric, positive-definite and sparse matrices [16], which
all are properties of the Laplace matrix. The CG method is
also a good choice for a case study, as it has many similarities
to other iterative solvers, like the multigrid method [3], as
it contains many fundamental algebraic operations like ba-
sic vector operations. Hence, the results of this work, have
great importance for other iterative solvers implemented us-
ing FPGA-based OpenCL platforms.

The idea of the CG algorithm is to update the current
approximation of the solution by a new vector with respect
to the A-orthogonal projection of the residual r = b−Au [3].
The corresponding algorithm is depicted in Algorithm 1,
where A is the input matrix and b is the right hand side
of the system, the initial guess is given by vector u0 and the
residual is denoted by r. Moreover, the discrete L2-norm of
a vector r is given by ‖r‖ :=

√
rT r. Each iteration of the

CG method gives a new approximate solution uk where the
stopping criterion is evaluated by means of the correspond-
ing residual rk = b − Auk, which is implicitly calculated in
Step 6 r = r − αAd (for more information see [3]).

2.2 OpenCL
Traditional methods to design FPGA-based accelerators

involve register-transfer level descriptions, using hardware
description languages like VHDL, Verilog or SystemC. Work-
ing with these languages is a time-consuming process, as
they are akin to assembler languages and require detailed
hardware programming knowledge as well as the understand-
ing of underlying architecture for efficient use of hardware
resources. To avoid such low-level programming languages,
the biggest vendors of FPGAs, Altera and Xilinx, have re-
cently released OpenCL frameworks with FPGA support [17].
Within these frameworks, it is possible to create high-level
FPGA implementations without the requirement of deal-

Algorithm 1 CG algorithm

INPUT: A, b, u0

1: r0 = b−Au0

2: d0 = r0
3: repeat

5: αk =
rTk rk
dTkAdk

6: rk+1 = rk − αkAdk
7: uk+1 = uk + αkdk

8: βk =
rTk+1rk+1

rTk rk
9: dk+1 = rk+1 + βkdk

10: k = k + 1
11: until ‖rk+1‖ ≤ ε
OUTPUT: uk+1
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Figure 1: Laplace matrix (top) as the representation of the discretized solution for the Poisson’s equation
using a finite differences method. Each row is referred to the application of the discretized Laplacian operator
on a grid point of the problem space (below), which takes the shape of a stencil with weights of -1 and 4.

ing with hardware description languages. Thus, investiga-
tions have been carried out, examining the potential of this
new approach. As a result, in several application domains,
FPGA implementations have been proposed as a mean to in-
crease energy efficiency [10–15] (see Section 2.3 for details).

OpenCL specifies a C-like programming language, which
enables the user to execute programs across heterogeneous
platforms, through writing standardized code, without the
need to refer to the underlying hardware. In order to im-
plement designs, the OpenCL framework provides an ap-
plication programming interface (API), which gives a host
program running on a CPU platform, control over an accel-
erator. In the specific case of an FPGA accelerator, the host
is able to load precompiled designs into the FPGA fabric,
initiate data transfers and launch computations. In that re-
gard it is important to note that software developers do not
have to define the interfaces between host and accelerator,
or between accelerator and memory. All interfaces as well
as communication between host and accelerator are handled
through the OpenCL framework. This is also a major ad-
vantage over other high-level synthesis approaches, as these
focus only on the FPGA implementation. Because of that,
in such high-level synthesis approaches, the software devel-
opers need to define all interfaces, and, more importantly,
also need to implement all communication routines between
host and accelerator manually.

Another major advantage of OpenCL is its task-based and
data-based parallelism capability, potentially leading to de-
signs with decent performance on a variety of platforms.
Therefore, OpenCL partitions the original problem size into
smaller junks (so called work-items), which represent single
computation threads, dispatched to the accelerator and run
in parallel. These work-items are grouped together into a
work-group, whose size can be predefined. The size of a
work-group is a design decision, and depends on the par-
ticular hardware structure (i.e. available resources) of the

accelerator. Moreover, we observed that the optimal work-
group size depends also on the FPGA vendors. For Xilinx,
the optimal work-group size was one, whereas Altera uses
work-group sizes related to the problem size. Section 3.2
discusses this issue in depth.

Another main difference between the Altera and Xilinx
OpenCL SDK is the use of optimization techniques. They
are described in the next section along with implementation
details of the CG algorithm. However, apart from these
differences, both vendors provide the same platform model,
consisting of multiple kernels and compute units (CUs). Each
kernel can process data and deploys (multiple) CUs for par-
allel computing. The kernel design has to be determined be-
fore runtime using ahead-of-time-compilation. In contrast,
OpenCL-based CPU and GPU platforms use just-in-time-
compilation at runtime. This is because CPUs and GPUs
have fixed architectures, whereas FPGAs are reconfigurable
and their configuration is a time-consuming process (includ-
ing high-level synthesis, timing analysis, place-&-route) that
is not suitable for runtime compilation. In fact, the compila-
tion of the CG solver requires several hours and an extensive
amount of memory, which makes the process of optimizing
the implementation very time consuming and costly.

2.3 Related Work
As OpenCL is a new alternative to include FPGAs as

accelerators, there exist only few studies on the efficiency
of OpenCL-based FPGA implementations. Yet, there is
an increasing interest, as OpenCL promises to significantly
shorten the software development time. Recently, [11] pre-
sented an OpenCL compilation framework which generated
high-performance hardware for FPGAs, paving the way for
further studies. Among these was [15], which presented an
OpenCL-based approach to use FPGAs as energy efficient
data center accelerators. In [13], it was demonstrated, how
the OpenCL design of a genome sequencing algorithm, im-

249



DRAM Off-Chip DRAM

CPU

Kernel 1

CU01

B
R

A
M

CUN1

B
R

A
M

Kernel M

CU0M

B
R

A
M

CUNM

B
R

A
M

FPGA

...... ...
PCIe

Figure 2: OpenCL platform with an FPGA acceler-
ator: The CPU acts as host, provides the data for
computation through the PCI-Express bus and con-
trols the FPGA using the OpenCL-API. After the
host has invoked the kernel execution the data is
loaded from off-chip DRAM to local (BRAM) mem-
ory, and the FPGA starts processing the data.

plemented on a Xilinx FPGA, could surpass the performance
and energy efficiency of CPU and GPU platforms. Fur-
ther work has shown, how FPGA-based FFT accelerators
can be realized [10]. The results supported the possibil-
ity of using FPGAs to achieve higher energy efficiency than
GPUs under the means of OpenCL. Furthermore, [12] imple-
mented Black-Scholes simulation for option pricing for Al-
tera FPGAs, which were more energy efficient than compa-
rable GPU platforms. Most recently, [14, 18] demonstrated
that OpenCL also allows the efficient implementation of neu-
ral networks and sparse matrix calculations on FPGAs.

However, up to now, there is no work related to solving
complete PDEs or optimizing the solver efficiency on FPGAs
using OpenCL. For that reason, here we propose a compre-
hensive set of optimization schemes to improve the perfor-
mance and energy efficiency of FPGAs for solving PDEs us-
ing OpenCL. In addition, we analyze the performance and
energy efficiency of this implementation compared to tradi-
tional approaches for CPUs or GPGPUs.

3. OPTIMIZATION SCHEMES FOR FPGA-
BASED PDE SOLVERS USING OPENCL

For solving the discretized Poisson’s equation, the CG
method is implemented on the FPGA using OpenCL. Essen-
tially, three kernel functions are required for the complete
CG algorithm (Algorithm 1), which are representative for
many PDE solvers [3]:

• Scaleadd() (line: 1,6,7,9): ~z = a · ~x+ ~y

• Dotc() (line: 5,8): a = ~xT · ~y
• LaplaceApply() (line: 1,5,6): ~y = A · ~x

In a first step, each of these kernels is designed standalone,
and optimized with respect to performance. As the power
consumption of FPGAs is dominated by leakage power [19],
performance improvements directly result in a better energy
efficiency. Moreover, the performance is limited by the mem-
ory bandwidth2. Hence, it is necessary to achieve a through-
put as close as possible to the theoretical peak bandwidth,
to realize good performance and energy efficiency.

To reach the maximum memory bandwidth is very chal-
lenging, in particular on FPGAs using OpenCL (see Sec-
tion 4 for details). Therefore, we propose in the following

2Caused by the external DDR3-DRAM memory interface of
the FPGA boards. Maximum on Xilinx FPGA and Altera
FPGA is 10.6 GB/s or 21.2 GB/s, respectively.

a set of optimization techniques which include data-set op-
timizations, algorithmic enhancements, as well as data-flow
and control-flow tuning. Some of these optimizations can
be applied to the kernel designs as annotations in the code,
represented as specific directives, while others require code
and data restructuring. Hence, the use of these techniques
is a challenging task, in particular, as not all optimization
schemes always result in higher but decreased performance.
For instance, excessive resource utilization can lead to re-
duced clock speeds resulting in degraded performance.

Another optimization challenge is the integration of the
three kernels into one combined design, to load them onto
the FPGA via one single bitstream. This step is required,
as switching between different bitstreams is inefficient due
to the switching overhead of more than 400ms (for our ker-
nel design) compared to kernel execution times that are in
the range of 10-60 ms. However, the integration of all ker-
nels into one design is not trivial, as all resources have to
be shared among the kernels. This can cause timing errors
or excessive resource utilization, which in turn can lead to
reduced clock frequencies. As a result, it is challenging to
maintain the standalone kernel performance, even if mul-
tiple kernels are integrated in one single bitstream. Thus,
optimizations and design complexity have to be carefully
traded-off to achieve the best performance.

In the following, our proposed optimization strategies are
described. Some of them are vendor-independent approaches,
while there are also a couple of vendor-dependent schemes,
that are required, as both companies follow different princi-
ples for their OpenCL SDK.

3.1 Vendor-Independent Optimizations
The proposed vendor-independent optimizations apply to

the Xilinx and Altera OpenCL SDKs. However, the exact
implementation way may differ. In addition, some of them
are supported by OpenCL constructs and specific vendor
commands, while others (in particular avoidance of branches
and irregular memory access) need to be applied manually.

• Loop Unrolling: Loop Unrolling is a very effective
tool to improve the performance of loops on FPGAs
with no data dependency. If a loop is unrolled N
times, N loop iterations are run in parallel leading to
a speedup of N-times in best case. This leads to an
improved performance, but more FPGA resources are
utilized. To enable this feature, one can use either
the directive attribute ((opencl unroll hint(N))) or
implement the unrolling manually.

• Loop Pipelining: Like Loop Unrolling, this tech-
nique implements another form of data parallelism,
where all sequential operations in a loop are kept busy
at all times. Instead of waiting until the complete loop
has finished computation, new data is requested after
the current operation block in the loop was processed,
as shown Figure 3. The performance is increased at
the cost of additional resources required for storing in-
termediate results after each block. For Xilinx FPGAs
Loop Pipelining can be triggered with the pragma at-
tribute ((xcl pipeline loop)) and should be used when-
ever possible (see Figure 4), whereas the Altera com-
piler automatically employs this optimization.

• Data Parallelism: OpenCL enables the use of k-way
single-instruction multiple-data (SIMD), which is sup-
ported by the FPGA vendors for a set of basic vector
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Figure 3: Loop Pipelining

operations like vector scaling. With vectorized pro-
cessing, the throughput can be increased by a factor
of k, which is typically 2,4,8 or 16. These k-way SIMD
operations are induced by using vectorized data types.
For instance, if 16-way SIMD is desired with floating
point numbers, the data types have to be declared as
float16. One float16 vector is the maximum data which
can be transferred per clock cycle from the off-chip
DDR3-DRAM memory to the on-chip local memory of
the FPGA, as the related interface (for DDR3) is 512
bit wide (16 * 4 Byte (float) = 512 bit). Using vector-
ized processing widens the data path of the kernel as
each operation is extended to process vectors instead
of scalars, resulting in increased throughput but also
resource utilization. Nevertheless, using float16 data
types is key to achieve the best performance on FPGAs
(see Figure 4 and Figure 5).

• Replication of Compute Units: The OpenCL frame-
work supports the replication of compute units (CUs),
which represent the implementation of a specific kernel
function. Using this method, subsequent work-groups
can be run in parallel instead of sequentially. As for the
k-way SIMD technique, in the ideal case, the through-
put can be increased by the number of replications.
However, this only holds if the memory interface is
not the performance bottleneck, otherwise the perfor-
mance improvements are very limited. Moreover, us-
ing N CUs increases the resource utilization by more
than N-times, due to additional control logic required
to dispatch data to the different CUs. As a result,
the number of CUs has to be carefully traded-off with
resource demand. In case of PDE solvers, the Dotc-
kernels highly benefit from using multiple CUs (see
Figure 4 and Figure 5).

• Dataflow-Driven Design: The kernel implementa-
tions for FPGAs have to be designed under a data-
flow-driven approach, using as few control structures
as possible to maximize performance. These dataflow-
driven designs are typically more efficient for FPGAs
as control-driven approaches used for CPU implemen-
tations. The reason for this is that FPGAs do not have
the sophisticated control-flow mechanisms of modern
CPUs such as branch prediction or branch target buffers.
As a result, the FPGA performance can be improved
by 2x based on our observations, if branches/jumps
are avoided. Thus, the use of control statements like
”if-else” has to be restricted.

• Regular Memory Accesses: Due to the fact that
the discretization matrix A is sparse, containing a huge
number of rows and columns, sparse matrix formats
like Compressed Sparse Row (CSR) are typically de-
ployed for storage, as the traditional storage format

would require terabytes of storage. Using these sparse
formats leads, however, to irregular, unaligned and
complex memory access patterns during the matrix
vector multiplications. Since FPGAs do not have big
caches these access patterns cause massive performance
drops, which is a major challenge for the design of ef-
ficient PDE solvers for FPGAs. In order to avoid this
undesirable behavior, we propose to implement sparse
matrix vector multiplications in form of stencils. This
means that indexes of the required vector elements as
well as the coefficients with which these vector ele-
ments are multiplied are hard coded in the OpenCL
kernel. This avoids loading the matrix elements and fa-
cilitates the access for the vector elements (for instance
it allows to use float16 data types). While this in-
creases the performance on one hand, it also decreases
the flexibility of the kernel, as then only one particular
stencil is supported (in our case the 2D-Laplace stencil
shown in Figure 1) instead of an arbitrary matrix.

3.2 Vendor-Specific Optimization Techniques
The aforementioned optimization techniques are key to

improve the performance and energy efficiency of Altera and
Xilinx FPGAs. Yet, both vendors follow different design
philosophies, and thus require also very specific optimization
schemes on top of the vendor-independent techniques.

A first important difference between Altera and Xilinx is
the usage of the concept of work-items. For GPU devices,
hundreds of work-items are used to represent the execution
threads, which are dispatched to different cores and run in
parallel. While this concept leads to high-performance de-
signs for the Altera OpenCL SDK, it is not efficient for the
Xilinx SDK. The best performance for the latter is achieved
using only one work-item per compute unit, which takes full
control of the data processing and data transfers.

Another Xilinx-specific optimization is that burst trans-
fers have to be used to transfer data between the on-chip
BRAMs and the off-chip memory. The reason is that each
of these transfers, controlled by the memory controller inte-
grated in the FPGA, consists of an initiation phase and the
actual transferring phase. The effort for the former phase
is always constant, regardless of the size of the transferred
data, producing some type of overhead. While this turned
out to be no issue for Altera FPGAs, it considerably limited
the performance of our Xilinx FPGA, where the initiation
phase takes about 50-70 clock cycles [20]. As a result, it
is very inefficient, to transfer small amount of data, as the
overhead dominates. We found out that fast transfer rates
can only be achieved using large burst sizes of 16KB and
more, in case of the Xilinx FPGA.

As a consequence of these differences between the Altera
and Xilinx OpenCL SDKs, separate kernel code has to be
written for Altera FPGAs and Xilinx FPGAs, which limits
the portability between both vendors. In the following, we
explain our proposed kernel designs comprising all aforemen-
tioned optimization techniques for both vendors in detail.
All OpenCL kernels can also be found on our website [26].

3.2.1 OpenCL Kernels for Xilinx FPGAs
For all three Xilinx kernels (Scaleadd, Dotc, LaplaceApply)

the optimization approaches are similar with regard to burst
transfers, float16 data type and loop pipelining. Therefore,
we will explain them using the Dotc-kernel as an example.
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As it can be seen in Listing 1 for the Dotc-kernel for Xilinx
FPGAs, all computations are carried out in a work group
with a single work item, as the required work-group size is
set to 1 · 1 · 1 = 1 (Line 2). The required data for pro-
cessing needs to be loaded and stored with burst transfers,
implemented as pipelined loops (Line 11,16). We observed,
that without burst transfers, the performance decreases by
of 100x to 1000x. As a result of the pipelined loops, in
each iteration one float16 vector is loaded into local BRAMs,
processed and stored. This concept is advantageous, as the
external memory interface is 512 bit wide [20], which corre-
sponds to one float16 vector3. Thus, the maximum possible
bandwidth can be achieved, in the case of perfect pipelined
loops. Consequently, the design challenge is to reach an
initial interval of 1, meaning that the loop can request new
data every clock cycle. However, in practice, only an interval
of 3 can be reached. To compensate this drawback, multi-
ple compute units are deployed (here: 4 CUs), to perform
calculations in parallel, and thus improve the throughput.

For the other two Xilinx kernels (Scaleadd, LaplaceApply)
the optimization approaches are very similar. However, the
LaplaceApply-kernel poses some special challenges. First,
the implementation of 16-way SIMD operations is not trivial.
This is due to the fact, that despite of using the 2D-Laplace
stencil, still irregular memory accesses exist (only five non-
continuous vector elements are accessed per operation as
shown in Figure 1). To resolve this issue, the stencil (i.e.,
4m− s− n− e− w) is implemented with the help of scalar
products on float16-data as follows:

out = ~m · (0, . . . , 0,−1, 4,−1, 0, . . . , 0)

out + = ~n · (0, . . . , 0, 0,−1, 0, 0, . . . , 0)

out + = ~s · (0, . . . , 0, 0,−1, 0, 0, . . . , 0),

where ~m, ~n and ~s are float16 input vectors for the different
rows required by the stencil routine (see Figure 1). Then,
each vector ~m, ~n and ~s is processed multiple times using
different right-hand vectors, which differ in the stencil posi-

3float16 = 16 floats = 16 * 4 Byte = 16 * 32 Bit = 512 bit

Listing 1: OpenCL Dotc-kernel for Xilinx [26]
1 #define BSIZE 2048 //to load 128KB in each burst
2 __kernel __attribute__((reqd_work_group_size(1,1,1)))
3 void kernel_dotc(__global const float16 *x, __global

const float16 *y, float out, const int nloops) {
4 int gid = get_group_id(0); // use of 4 CUs
5 float temp = 0.0f;
6 __local float16 x_loc[BSIZE]; // local BRAMs
7 __local float16 y_loc[BSIZE];
8

9 for (int loop = 0; loop < nloops; loop++){
10 __attribute__((xcl_pipeline_loop))
11 for (int bid=0; bid<BSIZE; bid++) {
12 //load data to local memory
13 x_loc[bid] = x[bid+(loop+gid*nloops)*BSIZE];
14 }
15 __attribute__((xcl_pipeline_loop))
16 for (int bid=0; bid<BSIZE; bid++) {
17 //load data to local memory
18 y_loc[bid] = y[bid+(loop+gid*nloops)*BSIZE];
19 //Carry out dot-product and accumulate
20 temp += dot(x_loc[bid],y_loc[bid]);
21 }
22 }
23 out[gid] = temp;
24 }

tion, i.e. in the places with the non-zero-elements to com-
pute all output elements. Furthermore, to minimize data
traffic, multiple rows are loaded at once to maximize reuse
of data in the local memory. The second challenge of the
LaplaceApply-kernel is that the boundary elements of the
grid require a special treatment, which leads to many if-else
statements in the kernel code. To eliminate these branches,
the input data is modified by adding an additional row of
zeros below the bottom row to the grid as well as one row of
zeros the top of the grid. By that means, the extra handling
of the bottom and top row is avoided.

As a result, this implementation is very demanding in
terms of resource utilization. In particular, the available
BRAMs can limit the performance, as it determines the size
of burst transfers as well as the amount of data that can be
reused locally for the stencil computations.

3.2.2 OpenCL Kernels for Altera FPGAs
Using the Altera OpenCL SDK the concept of work-items

is used differently, with multiple work-items per CU, result-
ing in completely different kernel designs as for Xilinx FP-
GAs. In general, the main idea behind our Altera kernels is
that each work-item only processes one float16 element. To
explain this further, the Dotc-kernel is used as example.

As it can be seen Listing 2, each work item (identified
by gid in Line 6), processes only one float16 pair (Line 16),
and stores the intermediate result in a local buffer. Thus, a
reduction in a log-2-manner has to be carried out (Line 18-
22), to obtain the final result. In comparison, the reduction
is not required for the Xilinx kernel, which consists of only
one work item which accumulates the intermediate results
in each clock cycle (Line 20). Moreover, as it can be seen
in the code, burst transfers are not required as explained
before, while loop unrolling is performed (Line 14).

For the other kernels (Scaleadd, LaplaceApply) a similar
implementation strategy is used. However, for the LaplaceAp-
ply-kernel, again some tricks are required to enable the us-
age of SIMD instructions, which, however, are different from

Listing 2: OpenCL Dotc-kernel for Altera [26]
1 #define BLOCK_SIZE 64
2 __attribute__((num_compute_units(4))) // use 4 CUs
3 // work-group with 64 elements
4 __attribute__((reqd_work_group_size(64,1,1)))
5 __kernel void cdot(__global const float16 *x, __global

const float16 *y, __global float *out, int size) {
6 int gid = get_global_id(0);
7 int lid = get_local_id(0);
8 int group = get_group_id(0);
9 int nl= get_local_size(0);

10 __local float intermed[BLOCK_SIZE];
11

12 // compute block-wise dot-products
13 intermed[lid] = 0;
14 #pragma unroll
15 for (int i = 0; i<16; i++)
16 intermed[lid] += x[gid][i]*y[gid][i];
17 // perform a binary-tree reduction
18 barrier(CLK_LOCAL_MEM_FENCE);
19 for (int i = (min(BLOCK_SIZE,nl))/2; i > 0; i /= 2) {
20 if (lid < i) intermed[lid] += intermed[lid + i];
21 barrier(CLK_LOCAL_MEM_FENCE);
22 }
23 //write result back
24 if (lid == 0) out[group] = intermed[lid];
25 }
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Figure 4: Performance optimization for the Xilinx
Dotc-kernel. The optimization techniques are ap-
plied on top of each other in the given sequence.

those proposed for the Xilinx kernel. Instead of using scalar
products, simpler vector-scaling routines are employed in
combination with a clever data partitioning. First, to elim-
inate branches for the boundary elements, these are com-
puted in separate kernels, which only compute the bound-
ary elements. The runtime of these kernels is negligible in
comparison to the main LaplaceApply-kernel, which com-
putes the results for all points within the grid (see Figure 1).
Hence, these kernels should be designed to consume as less
resources as possible, to not induce restrictions for the other
kernels. Second, all computations within the main kernel are
performed using SIMD instructions. Therefore, the rows ~n
and ~s are loaded as float16 vectors, while ~m contains now 18
float elements to include the left and right neighbors. Then,
the output vector (again float16) is calculated as

~out = 4 · ~m[1 : 16]− ~s− ~n− ~m[0 : 15]− ~m[2 : 17].

Third, to minimize data transfer and maximize data reuse
within the main LaplaceApply-kernel, each work-item cal-
culates four float16 output vectors, namely two neighboring
float16 packages for two adjacent rows. Processing more
than four packages was not possible for our Altera FPGA
due to resource limitations (available logic elements).

3.3 Impact of the Optimization Techniques
To highlight the potential of our proposed optimization

schemes, we implemented the Dotc-kernels using different
optimization strategies. As it can be seen from the corre-
sponding results in Figure 4 for our Xilinx FPGA, a speedup
of 620x can be achieved compared to the naive design us-
ing all techniques. Moreover, it is also noticeable that all
schemes are necessary to obtain the best performance, as
using SIMD instructions improves the baseline performance
by 9x, loop pipelining adds another 10x, and using mem-
ory bursts as well as multiple compute units brings another
2.5x each. In this regard it is important to note that the
sequence matters with which the optimization techniques
are applied. In other words, using a different sequence of
these optimization schemes will change the speedup values
of each approach, however, the final combined value will re-
main the same. In addition it is worth to note that the
results clearly show that the theoretical optimal speedup is
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Figure 5: Performance optimization for the Altera
Dotc-kernel. The optimization techniques are ap-
plied on top of each other in the given sequence.

often not achievable (e.g. 16x for float16, or 4x with 4 CUs).
This is due to dependencies in the control and data flow as
well as due to timing adjustments during the compilation
process, which lead to different clock frequencies for differ-
ent designs containing different optimization levels.

The performance of the Dotc-kernel for the Altera FPGA
also shows significant improvements using the proposed opti-
mization schemes. Yet, the overall speedup is just 59x. The
reason, why the Altera version benefits less than the Xil-
inx implementation is that the Altera OpenCL compiler al-
ready optimizes the naive implementation using for instance
pipelining. Consequently, the naive kernel achieves a band-
width of 300 MByte/s, 30x more than the Xilinx version.
Again, a very effective measure is to use multiple CUs and
float16. In addition, it is very important to use appropriate
sizing for the work-group sizes, as only in this case float16
and multiple CUs can be as effective as illustrated. For in-
stance, with a work-group size of 512 instead of 64 (see List-
ing 2) the performance drops from 17.7 GB/s to 14.6 GB/s.

4. RESULTS
4.1 Hardware Configuration

To evaluate the performance and efficiency of FPGAs,
we use Xilinx (ADM-PCIE-7V3) and Altera (Terasic DE5-
NET) PCIe-Boards and compare them against CPUs and
GPGPUs. In this regard, we selected a low-power GPGPU
using conventional DDR3-RAM (Intel HD Graphics) as well
as a high-performance model equipped with very fast GDDR5-
RAM (Nvidia GTX 980) to have a comprehensive analysis.
The used platforms are listed in Table 1. For the CPU plat-
form, OpenMP was deployed, which is an implementation of
multithreading, capable of assigning computation threads to
different processors to achieve parallelism and consequently
increasing throughput. The Intel HD Graphics was accessed
through the OpenCL framework, same as for the FPGAs
(Xilinx SDAccel 2016.1 and Altera Quartus 15.1). In con-
trast, for the GTX 980, CUDA (v7.5) was used, which is,
akin to OpenCL, a parallel computing platform. For the
GPGPUs and the CPU, we used the Paralution library [21],
which provides very efficient CG implementations. The im-
plementations of the OpenCL kernels for the FPGA accel-

Table 1: Listing of platforms used for benchmarking of the CG method
Platform Specification API Theoretical Memory Bandwidth Technology

CPU Intel Core i5-4590 4 cores @ 3.3GHz OpenMP 21.2 GB/s (dual-DDR3-1333) 22nm

GPU
Intel HD Graphics 4600 20 exec. units @ 1.15 GHz OpenCL 21.2 GB/s (dual-DDR3-1333) 22nm
Nvidia GeForce GTX 980 2048 CUDA Cores @ 1.1 GHz CUDA 224 GB/s (256-bit GDDR5 @3.5 GHz) 28nm

FPGA
Xilinx Virtex 7 XC7VX690T @ 200 MHz OpenCL 10.6 GB/s (DDR3-1333) 28nm
Altera Stratix V GX 5SGXEA7 @ 300 MHz OpenCL 21.2 GB/s (dual-DDR3-1333) 28nm
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Table 2: Standalone kernel performance in GB/s.
Naive Optimized Speedup

Xilinx Altera Xilinx Altera Xilinx Altera

ScaleAdd 0.06 3.6 9.1 17.5 1492x 5x
Dotc 0.01 0.3 6.6 17.7 623x 59x

LaplaceApply 0.03 0.01 6.6 11.5 2000x 1150x

erators are published under [26]. All these devices are run
on the same hardware platform, which uses an Intel Core
i5-4590 as host CPU. More details about the specifications
can be found in [22,23]. All measurements were carried out
with a vector size of 226 (≈ 67 million), which is a reasonable
problem size for discretized PDEs.

4.2 Performance Measurements
The performance of all kernels within the CG solver is

limited by the available memory bandwidth, which itself is
constraint by the maximum transfer rate of the employed
memory devices. Thus, as a comparable measure, the ratio
of achieved bandwidth to maximum bandwidth was used
and expressed in percentage.

Using the aforementioned optimization methods, the per-
formance of the Xilinx standalone kernels surpassed 6 GB/s,
while more than 11 GB/s were achieved on the Altera board.
In this regard, Table 2 lists the speedup between naive and
optimized kernel designs. As it can be seen from the data,
our proposed optimization strategies have a significant ef-
fect and boost the performance by orders of magnitude.
However, neither for Altera nor for Xilinx, these standalone
kernels could be combined into one single bitstream due to
resource and timing constraints. Yet, having a single bit-
stream is essential to enable high performance, as switch-
ing between different bitstreams is inefficient (please see
Section 3 for more details). Therefore, the designs of the
LaplaceApply-Kernel had to be simplified. In case of Xilinx
the compute units were reduced from 3 to 1, as otherwise
not enough BRAMs were available for the other kernels. For
Altera the kernel was modified to process only one float16
package instead of four (see Section 3.2.2), as otherwise the
resource demand is that high (more than 80% of all logic ele-
ments), that the clock frequency drops from 300 MHz to less
than 250 MHz which causes performance penalties for the
other kernels and results in an overall worse performance.

Table 3 contains the throughput of each kernel (as part of
a single bitstream in case of the FPGA platforms) in com-
parison between the platforms (see Table 1 for details). The
Xilinx kernels are inferior to the Altera kernels, due to the
fact that the available bandwidth is smaller (single-channel
vs. dual-channel4), and some optimization strategies had to
be discarded for the LaplaceApply-kernel, as just discussed.
The Altera FPGA delivers a performance in the same range

4Please note that this restriction does not apply to all Xil-
inx PCIe boards. For instance, the ADM-PCIE-KU3 sup-
ports also dual-channel memory access under OpenCL which
should result in 2x of the performance of the ADM-PCIE-
7V3 used in this study

as the Intel Core and the Intel Graphics platforms. How-
ever, as expected, it could not beat the Nvidia GTX 980,
which was superior in all kernel computations.

For all platforms, the LaplaceApply-kernel had the lowest
throughput because of the irregular memory accesses. In
contrast, the Scaleadd-kernel achieved the best performance
due to its simplicity, except for the Nvidia and Altera plat-
forms. A possible explanation, why these platforms achieve
a better performance executing the Dotc-kernel is that this
kernel requires only read operations, while the Scaleadd-
kernel uses read and write memory accesses. In addition,
it is obvious that the FPGAs have more problems with the
LaplaceApply-kernels compared to the other platforms. This
is due to the fact that these kernels require more control-flow
operations as well as less regular memory accesses. CPUs
and GPGPUs can handle these challenges much better due
to their sophisticated microarchitectures and caches.

4.3 Power Measurements & Energy Efficiency
In addition to the performance measurements, also the

power consumption was measured in order to determine the
energy efficiency for each kernel and platform. Two methods
were used for this purpose: a power meter pluggable in out-
lets, and Intel CPU registers for the CPU power consump-
tion [24]. Using these tools, the total power consumption
can be divided into the following components:
• System idle: Contains the power consumption of the

host computer with its CPU, the DRAM and all other
peripheries excluding the FPGA (GPU) board and
without running any computations.
• FPGA (GPU) idle: Is related to the power consump-

tion of the FPGA board (GPU) plugged into the host
computer when no computations are running. This is
essentially the difference of the idle system power with
and without accelerator.
• CPU computation: Is the power consumption of the

CPU cores which are exclusively used for the CG com-
putation tasks. This value is obtained by reading out
the corresponding power monitor registers inside the
CPU and by subtracting the CPU power consumption
during idle (included in System Idle).
• FPGA (GPU) computation: Is the power consumption

which is required to carry out the CG computation in
addition to the FPGA (GPU) idle power consumption.
The data is obtained by measuring the total system
power while computations are running, and then the
idle and CPU consumption is subtracted.
• Host memory: This is the power consumed by the re-

quired host memory to execute the CG solver. There-
fore, the total system power is measured with four
memory modules and then with only one module to
determine the consumption per module. This is then
used to obtain the total memory power consumption.

With the help of this classification we are able to break
down the power consumption and estimate only the power

Table 3: Throughput of the optimized kernels for each platform in GB/s and as percentage compared to the
peak memory transfer rate. Moreover, the execution time for one iteration of the CG algorithm is given.

Vendor Xilinx Altera Intel Core i5 Intel Graphics Nvidia

Scaleadd 9.1 GB/s (85%) 17.5 GB/s (83%) 16.6 GB/s (78%) 17.9 GB/s (84%) 165 GB/s (67%)
Dotc 6.6 GB/s (62%) 17.7 GB/s (83%) 16.5 GB/s (77%) 16.5 GB/s (77%) 175 GB/s (73%)

LaplaceApply 2.8 GB/s (27%) 8.1 GB/s (38%) 11.2 GB/s (52%) 15.1 GB/s (71%) 143 GB/s (59%)

CG Runtime 710 ms 300ms 250ms 280ms 25ms
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Table 4: Accelerator power consumption for the kernels of each platform in Watt. ∗A + B means: A is
consumed by the accelerator incl. its memory, while the host CPU consumes B to manage the accelerator

Vendor Xilinx Altera Intel Core i5 Intel Graphics Nvidia

Scaleadd 35.3 + 18.7∗ 28.3 + 0.7 65 + 0 45.0 + 0.1 148.6 + 12.9
Dotc 35.8 + 18.7 27.5 + 0.7 66 + 0 45.4 + 0.1 153.6 + 12.9

LaplaceApply 37.8 + 18.7 27.8 + 0.7 71 + 0 45.6 + 0.1 230.1 + 12.9

CG 32.8 + 18.7 27.8 + 0.7 66 + 0 41.2 + 0.1 148.5 + 12.9

consumed by the CG computations as highlighted for the
case of the ScaleAdd-kernel in Figure 6. The corresponding
results for all kernels are presented in Table 4, which shows
several interesting facts:

1. The FPGAs have the lowest power consumption (less
than 30 Watt for the Altera board) making them ideal
candidates for power-constrained applications. In com-
parison, the Intel Graphics performing similar to the
Altera FPGA requires 45 Watt (including 15 Watt for
its memory) and the quad-core processor has a 2x
higher power consumption than the Altera FPGA. The
most power-hungry platform is the Nvidia GTX 980,
requires about 170 to 230 Watt for the kernels.

2. The consumption of the FPGA platforms is almost in-
dependent of the executed kernel, while there are sig-
nificant differences for the CPU and Nvidia GTX 980.
The reason for this behavior is that the power con-
sumption of the FPGAs is dominated by leakage power,
whereas dynamic power consumption is mostly respon-
sible for the CPU and GPU power consumption.

3. Another interesting observation is that in case of the
Xilinx platform the host CPU consumes a considerable
amount of power (18.7 Watt), while this does not hap-
pen when the Altera board is used (0.7 Watt). This
is because the host continuously polls the accelerator
about the status of computation using the Xilinx SDK
resulting in 100% load on two (out of four) CPU cores.
In contrast, using the Altera FPGA for acceleration,
almost no additional CPU power is required, as in-
terrupts are used instead of polling, and this is more
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(Note: PCIe accelerators require less host memory
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efficient in the case of long kernel runtimes5. Also
Nvidia’s CUDA solution uses polling, yet the CPU load
is less, resulting in less power demand for the host CPU
compared to the Xilinx solution.

As a result, the Altera platform has in this scenario the
best energy efficiency of all platforms using conventional
DDR3 memory (see Table 5), achieving a throughput of up
to 630 MB/Joule and requiring only 8.5 Joule per CG itera-
tion. This is more than 2x less than the quad-core CPU and
35% less than the Intel Graphics. Hence, if power consump-
tion is constrained, for instance because of cooling issues
that limit heat dissipation as in many mobile and IoT plat-
forms, an OpenCL-based FPGA solution is preferable over
a low-performance GPGPU considering energy efficiency as
well as raw power consumption.

The Xilinx platform has a worse energy efficiency, which
however is mostly due to the fact that our Xilinx FPGA uses
a single-channel memory interface resulting in only half the
memory bandwidth compared to the Altera platform, and
that polling is employed by the Xilinx SDK. Only the Nvidia
platform has an even better energy efficiency than the Altera
FPGA. Yet, it also has memory that offers a 10x higher
bandwidth compared to the Altera platform. Consequently,
the results of the Altera FPGA are very good.

In this regard it is worth noting that the energy efficiency
and performance of the FPGA solutions can be massively
improved if faster memory is used instead of conventional
DDR-memory. By that means, FPGAs could even become a
possible rival for high-performance GPGPUs. For instance
Altera’s new Stratix 10 generation supports “High Band-
width Memory” (HBM) [25], which offers transfer rates upto
1 TB/s. Consequently, the energy efficiency can increase
by 10x and more. In addition, the recent FPGAs also in-
clude integrated multi-core ARM-like processors, which can
be exploited for computations like the reduction inside Dotc-
kernel which do not perform that well on the FPGA. Never-
theless, compared to conventional CPUs, even the state-of-
the-art FPGA solutions can offer a better energy efficiency
(please note as before that the Xilinx solution has a poor
energy efficiency due to the low performance caused by the
single-channel memory interface, whereas all other solutions
use multiple memory channels).

5Please note that for very short kernel execution times in
the order of a few µs polling offers a performance advantage
over interrupts. However, as our kernels require several ms
for the computation, this advantage is negligible.

Table 5: Energy efficiency of each platform and kernel in MB/J and the resulting energy for one CG iteration.
Vendor Xilinx Altera Intel Core i5 Intel Graphics Nvidia

Scaleadd 169 604 256 438 1025
Dotc 105 628 252 400 1052

LaplaceApply 50 285 158 364 587

Joule/iteration 33.9 8.5 20.2 11.5 5.1
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4.4 Utilization
One important parameter for the OpenCL designs on FP-

GAs is the resource utilization. A design is not configurable
if resource constraints cannot be met. As shown in Table 6,
the utilization of the Altera FPGA is about 50% for the
logic elements. For the Xilinx FPGA, the utilization is in
the same range, apart from the BRAMs, which are required
for the burst transfers. Thus, efficient designs on the Xilinx
FPGA have to consider this by distributing the number of
BRAMs to the three kernel in an optimal way.

4.5 Portability of OpenCL Kernels
OpenCL enables the user to write code once and deploy

it on different devices without modifying the code. In this
work, this point has been examined by porting OpenCL pro-
grams between Xilinx SDK and Altera SDK. Our investi-
gations clearly show that none of the used kernels can be
ported efficiently without making significant modifications
in the kernel code. This is due to the fact that each opti-
mization technique applied, on the one hand increases per-
formance, but on the other hand decreases the flexibility to
reuse the code on other platforms. And second, a problem
arises when porting kernels designed for CPU- or GPU-based
platforms to FPGA-based platforms. This is because there
exist different compilation policies. On CPU- and GPU-
based platforms the kernel code is compiled at runtime and
thus each kernel can use all resources, while FPGA-based
platforms force the user to carry out offline compilations and
share resources among all kernels. Therefore, utilization of
resources must be determined before runtime which affects
the way the kernel code is designed. Thus, portability of
OpenCL code is only possible to a limited extent.

5. CONCLUSION
Scientific computing is of great importance for our mod-

ern life standard enabling high quality health care, ever im-
proving artificial intelligence and smart cyber-physical sys-
tems. Consequently, fast and energy efficient approaches for
scientific computing are required, in particular for power-
constrained application domains including for instance smart
sensor systems. This requires appropriate hardware accel-
erators, especially for solving partial differential equations
(PDEs) which are an essential element of many scientific
computing tasks. In this paper, we evaluated the advan-
tages of using FPGA-based accelerators for solving PDEs
using OpenCL. OpenCL allows to perform all necessary im-
plementations in a C-like language rendering knowledge of
the underlying hardware as well as hardware description
languages unnecessary. This, however, makes it also very
challenging to exploit the full FPGA potential and design
fast yet energy efficient solvers. To tackle this challenge we
proposed a comprehensive set of optimization techniques in-
cluding data-set optimizations, algorithmic enhancements as
well as data-flow and control-flow tuning schemes that im-
prove performance by orders of magnitude, and thus enable
designers to take full advantage from FPGAs. Yet, our com-
parison of Altera and Xilinx FPGA implementations show
that efficient OpenCL code requires fundamentally different

Table 6: Utilization of FPGA resources for CG
Vendor LUT Registers BRAMs DSPs

Altera 50% 25% 26% 31%
Xilinx 35% 15% 65% 18%

optimization approaches for Altera and Xilinx. As a byprod-
uct, portability of OpenCL designs between Altera and Xil-
inx, is not given and does not conserve high efficiency. Nev-
ertheless, the comparison with CPU- and GPGPU-platforms
also shows that FPGAs are more energy efficient than con-
ventional CPUs in solving PDEs and for power-constrained
systems FPGAs deliver competitive performance to GPUs
and offer even a better energy efficiency. Hence, FPGAs are
the ideal solution for power-constrained PDE accelerators.
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