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ABSTRACT
Convolutional neural nets (CNNs) have become a practi-
cal means to perform vision tasks, particularly in the area
of image classification. FPGAs are well known to be able
to perform convolutions efficiently, however, most recent ef-
forts to run CNNs on FPGAs have shown limited advantages
over other devices such as GPUs. Previous approaches on
FPGAs have often been memory bound due to the limited
external memory bandwidth on the FPGA device. We show
a novel architecture written in OpenCLTM, which we refer
to as a Deep Learning Accelerator (DLA), that maximizes
data reuse and minimizes external memory bandwidth. Fur-
thermore, we show how we can use the Winograd transform
to significantly boost the performance of the FPGA. As a
result, when running our DLA on Intel’s Arria 10 device
we can achieve a performance of 1020img/s, or 23img/s/W
when running the AlexNet CNN benchmark. This comes to
1382 GFLOPs and is 10x faster with 8.4x more GFLOPS
and 5.8x better efficiency than the state-of-the-art on FP-
GAs. Additionally, 23 img/s/W is competitive against the
best publicly known implementation of AlexNet on nVidia’s
TitanX GPU.
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1. INTRODUCTION
Convolutional neural nets (CNNs) have become widely

adopted in various computer vision applications including
driver assist and image classification. More recently, FPGAs
have shown promise in efficiently implementing CNNs [21,
16, 13, 20, 11, 2, 12, 14, 4]. Unfortunately, the vast majority
of FPGA implementations of CNNs have only implemented
the convolutional layers limiting the benefit of the approach
since other layers may quickly become the bottleneck of the
neural net [20]. There has been work in implementing all the
layers on the FPGA [20, 16, 13], however, when compared
to some of the best results publicly known for GPUs [3, 9],
FPGA performance have fallen short significantly.
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One of the reasons that FPGAs have not been able to
achieve good performance against GPUs is due to their lim-
ited external memory bandwidth. CNNs are often solved
using matrix-multiplication based approaches, which require
large amounts of data to be moved between the compute
units and external memory [16]. Additionally, previous FPGA
architectures for CNNs have not been able to take advantage
of the peak operations of the device leading to low perfor-
mance [21, 16, 13, 20].

To address the problems above, we introduce a novel ar-
chitecture described in OpenCL and provide the following
contributions:

• A methodology to minimize bandwidth of convolutional
and fully-connected layers by caching all intermediate feature-
maps on-chip in stream-buffers. In conjunction with batch-
ing images during fully-connected layers, which is similar
to what is used in [20], we are able to reduce the external
bandwidth requirements by an order-of-magnitude for both
the convolutional and fully-connected layers.

• A design space exploration methodology that leverages an-
alytical models for resource usage and throughput and is
able to find the optimal architecture configuration, for a
specific FPGA device and CNN, to get maximum through-
put.

• An approach that leverages the Winograd transformation
to reduce the multiply-accumulate operations of the convo-
lutions [18].

Due to the contributions above we are able to imple-
ment all layers of AlexNet [7] on Intel’s Arria 10 FPGA and
achieve over 10x better throughput and 8.4x more GFLOPS
than the state-of-the-art FPGA implementation of AlexNet [20].
Furthermore, we show that, to the best of our knowledge,
this is the first FPGA implementation whose performance
per watt is competitive against the same generation highly-
optimized TitanX GPU results [3, 9, 10].

The rest of the paper is organized as follows. Section 2 has
background on CNNs and related work. Section 3 describes
the DLA architecture. Section 4 describes our analytical
model for design space exploration. Finally, Sections 5 and 6
describe our results.

2. BACKGROUND
Deep neural networks are machine learning algorithms

that are inspired by the structure and function of the hu-
man brain. They consist of several interconnected artificial
neurons that are modeled after the neurons of the human
nervous system. An artificial neuron accepts numerical in-
put from other neurons, and produces an output. For DNNs,
the output is computed as a dot-product of its inputs and its
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unique set of learnable weights. Subsequently, a non-linear
activation function (e.g. tanh, ReLU, sigmoid) is applied to
the dot-product result. This output is then used as input
by other neurons. Neural networks have been used to solve
many complex problems to which robust solutions cannot
be designed by hand such as image recognition, handwrit-
ten text, gesture, and speech recognition; game-playing and
decision making (e.g. AlphaGo); face identification; and ob-
ject detection.

2.1 Convolutional Neural Networks
Convolutional neural networks (CNNs) are neural net-

works that excel in classifying images and videos. They have
garnered a considerable amount of attention in recent years
due their ability to achieve state-of-the-art results in image
recognition and object detection. CNNs are neural nets that
consist primarily of convolution layers in which each neuron
is connected only to a small, nearby region of neurons in the
previous layer. This local connectivity is intentionally de-
signed into the network topology with the goal of exploiting
the local correlation in the input data. This connectivity re-
striction, together with the additional property that groups
of neurons within one convolution layer also share learnable
weights, allows the outputs of neurons in the layer to be
computed using 3-dimensional convolution.

Although a CNN can be described from a neuronal per-
spective, it is more instructive, for the discussion that fol-
lows, to view it as a directed graph of computational layers.
Each node represents a layer that accepts one or more n-
dimensional arrays as input, performs some computation,
and produces one or more n-dimensional arrays as output.
The edges of the graph represent the producer-consumer re-
lationships between the layers of the network. The data
arrays that layers within the network consume and produce
are often referred to as feature maps.

In AlexNet, a convolution layer accepts a 3-dimensional ar-
ray with depth C, height H, and width W as input, and
produces a 3-dimensional array with depth K, height P ,
and width Q. The output feature map is computed by con-
volving the input feature map with K filters, and applying
an activation function element-wise to the result. Each fil-
ter is also a 3-dimensional array with depth C, height R,
and width S which consists of learnable weights. The con-
volution of the input feature map with one filter produces
one 2-dimensional array referred to as a channel or plane of
the output feature map. The entire output feature map is
obtained by concatenating depth-wise the K channels pro-
duced by convolving each of the K filters with the input
feature map. An illustration of the images is shown in Fig-
ure 3.

2.2 AlexNet
AlexNet [7] consists of the following layers:

• Convolution - The previous section describes the func-
tionality of convolution layers. In AlexNet, all convolution
layers use the ReLU or ramp function f(x) = max(0, x)
as their activation function. In addition, each convolution
layer also has K scalar bias terms that are added to corre-
sponding output feature map channels before applying the
ReLU function.

• Cross-channel local response normalization - A nor-

malization layer scales each element in its input feature map
by a factor that is a function of the elements at the same
location in adjacent channels as the element being normal-
ized. The dimensions of the output and input feature maps
are identical.

• Max pooling - A max pooling layer strides a two-dimensional
window across each channel of the input feature map and
propagates the element of maximum value in the window
through to the output feature map. Compared to the input
feature map, the output feature map has the same depth,
smaller height, and smaller width.

• Fully-connected(dense) - A fully connected layer is a
convolution layer in which H = R and C = W = S = 1
(which in turn implies that P = Q = 1). That is, the height
and width of each filter is equal to the height and width of
the input feature map. Described from a neuronal perspec-
tive, a fully-connected layer is one in which each neuron is
connected to every neuron in the previous layer (hence the
name fully-connected). Since the input feature map and
each filter have the same dimensions, no striding occurs
when computing the output feature map. As a result, it is
more convenient to think of the output as a matrix-vector
product vo = Wvi where vi is a flattened version of the
input feature map containing ni = C×H×W elements, W
is a no = K by ni matrix in which row k is a flattened ver-
sion of the kth filter, and vo is the output feature map. It is
possible to process a batch of b different input feature maps
from b different images at once by replacing vi with an ni

by b matrix Vi in which column k is the flattened input fea-
ture map corresponding to the kth image in the batch. The
aforementioned equation then becomes Vo = WVi, where
Vo is an no by b matrix in which column k is the flattened
output feature map corresponding to the kth image in the
batch. This method of processing multiple images at once
in a fully-connected layer will feature prominently in the
upcoming discussion.

• Softmax - A softmax layer normalizes the values in the
input feature map by applying the softmax function to it.
Consequently, the sum of the elements in the output feature
map is unity.

At a high level, AlexNet consists of five convolution layers,
followed by three fully-connected layers, and a softmax layer.
There is a normalization layer after the each of the first two
convolution layers. Finally, there is a max-pooling layer after
the two aforementioned normalization layers, and between
the last convolution layer and the first fully-connected layer.
The final softmax layer outputs a 1000-element vector con-
taining probabilities that the input image belongs to each of
the 1000 possible classes in the ImageNet Large Scale Visual
Recognition Competition (ILSVRC [15]). More details re-
garding the structure and function of AlexNet can be found
in [7].

2.3 Related Work
FPGAs have been shown to be a practical means to solve

CNNs [21, 16, 13, 20, 11, 2, 12, 14, 4]. In [16], the au-
thors use a matrix-multiply approach to solve both convo-
lutional and fully-connected layers which is similar to GPU
and CPU approaches that convert 3D convolutions into 2D
matrix-multiplications. Written in OpenCL, they are able
to run all layers on the FPGA but unfortunately end up be-
ing severely external memory bound such that the average
GOPs they achieve is relatively low. To solve the memory
bottleneck, in [13] the authors introduce a singular value
decomposition approach to significantly reduce the data re-
quired, and hence memory bandwidth, of the fully connected
layers. They empirically show that this has approximately
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Figure 1: Intel FPGA SDK for OpenCL Host-Device Setup
and Flow.

.

1% impact on the overall accuracy of the neural network
when applied to image classification.

Conversely, the work in [21, 20] use a roofline model that
allows users to maximize compute resources on the FPGA
given the memory bandwidth constraints. In [20], the au-
thors describe Caffeine which is a runtime reconfigurable
CNN FPGA accelerator. In Caffeine, the throughput is im-
proved significantly over previous approaches by creating a
model to realistically reflect DDR transfers and also pro-
vide a convolutional MM representation where they are able
to maximize data reuse of weight filters by batching input
feature maps of the fully-connected layers. They show that
they are able to improve the performance of CNN on FPGAs
by 3x, and they are 1.5x more energy efficient than the K40
GPU. Unfortunately, when compared to nVidia’s last gener-
ation TitanX GPU [3, 9] the power efficiency of the FPGA
is still 5.8x worse. Additionally, the authors of [20] show
that the GOPs of each layer is relatively low where they are
only able to achieve 14.7% of the GOPs of the KU060 device
when running at 200MHz.

Our approach differs from the previous work as we signif-
icantly reduce memory bandwidth without loss of accuracy
by caching all feature-maps on-chip. Additionally, we show
that our architecture is compute-bound, such that we can ef-
ficiently use all the DSP resources, and ensure that they are
occupied (i.e. doing useful work) the majority of the time
and leverage Winograd transforms to reduce the number of
required operations. Finally, we show how we use a design
space exploration methodology to find the optimal config-
uration of our architecture for a specific FPGA device and
CNN. All of these factors lead to a performance efficiency
that is competitive against nVidia’s TitanX GPU.

2.4 Intel FPGA SDK for OpenCL
The Intel FPGA SDK for OpenCL allows users to program

FPGAs with OpenCL. OpenCL is an open parallel program-
ming language that is vendor agnostic and is supported by
many vendors [6].

Currently, OpenCL uses a master-slave model where a
master host device is used to control all memory transfers
and execution of the kernels. A user is required to write
a host program, which calls a predefined OpenCL API to
control the accelerator device. On the device side, the user
writes OpenCL kernel functions that are compiled to the
accelerator. This model is illustrated in Figure 1.

One of the key challenges for using FPGAs is that they
have traditionally required a hardware design methodology.

Figure 2: OpenCL FPGA Platform on an Intel’s Device.

Because of the reconfigurable nature of FPGAs, timing-
sensitive components such as DDR memory controllers must
be timing closed to ensure they work correctly. The Intel
FPGA SDK for OpenCL avoids these problems by provid-
ing a pre-generated platform for the OpenCL programmer.
An illustration of the platform on the FPGA device is shown
in Figure 2. As illustrated, the platform has pre-placed com-
ponents whose resources are reserved for the platform, and
cannot be used for the algorithmic portion of the OpenCL
kernel code.

Our DLA is written with OpenCL, where OpenCL kernels
are used to define the DLA architecture, and the host run-
time is used to coordinate the data transfers of the images
with the kernel execution in an efficient manner.

3. DLA ARCHITECTURE
Our Deep Learning Accelerator (DLA) implements all lay-

ers of AlexNet on the FPGA and is defined using the Intel
FPGA SDK for OpenCL.

3.1 Design Goals
Our DLA is targeted for high-performance. In most CNN

topologies, the total amount of floating-point computation
is dominated by the convolution layers. For instance, in
AlexNet, convolutions are 92% of the total floating point
operations. Hence, the DLA hardware is optimized to max-
imize the throughput of the convolution layers by exploiting
parallelism in computations. Each convolution layer consists
of multiple nested loops that iterate over the dimensions
of input features, filters, and output features. As shown
in [21], it is possible to choose different combinations of these
loops to vectorize in order to speedup the convolution op-
erations. On the FPGA, vectorizing a loop means spatially
distributing the computations of that loop across multiple
DSP blocks that exist on the device. For maximum perfor-
mance, our DLA vectorizes the loops that provide sufficient
parallelism such that as many DSPs as possible are used ev-
ery cycle for useful computations. Additionally, the DLA
architecture ensures that the processing elements (PEs) are
able to solve both the convolutional and fully-connected lay-
ers without sacrificing performance.

Our DLA is also aimed to be flexible and achieve good
performance with other CNN topologies, besides AlexNet.
Hence, convolution loops are chosen for vectorization such
that enough parallelism exists not just in AlexNet but in a
wide range of CNN topologies. Consequently, adapting our
DLA for a different CNN topology will not require vectoriz-
ing different loops, but will just require changing the vector-
ization factors according to the dimensions of that topology.
This is similar to what is claimed in [20] and is not discussed
in detail in this work.
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Figure 3: The overview of Convolution Execution.

3.2 Convolution Layers
To improve throughput, parallelism is extracted from four

dimensions of a convolution layer: output feature columns
(Q), output feature maps (K), input feature maps (C), and
input feature columns (W ). The vectorization factors for
each of these dimensions are respectively referred to as Qvec,
Kvec, Cvec, and Wvec. Each cycle, Qvec horizontal output
features in Kvec output feature maps are computed by con-
volving an input feature region Wvec wide and Cvec deep.
This is illustrated in Figure 3, for Cvec > 1, Kvec = 3,
Wvec = 2, and Qvec = 1. The relationship between Wvec

and Qvec depends on the number of filter and feature pixels
that are multiplied per output result. For example, in equa-
tion 1, for each output, a vector of three feature and filter
pixels are used. In this case Wvec = Svec + Qvec − 1, where
Svec is the size of the filter vector (e.g. Svec = 3 in equa-
tion 1). If a larger Wvec is desired, a larger Svec is required
for each output computation.

Vectorizing the W and Q dimensions is also useful for
the arithmetic optimizations which will be discussed in sec-
tion 3.3. Because convolution layers usually process large
number of input and output feature maps, enough paral-
lelism can be extracted in these dimensions to use all the
DSPs by breaking up the convolution operations into indi-
vidual dot-products that are processed by PEs.

The PEs act as dot-product solvers for the features and
filter weights. Each PE receives the same input features, il-
lustrated as a 1×Wvec×Cvec stick in Figure 3, and convolves
them with the filter weights, of size 1 × Svec ×Cvec, to pro-
duce a vector of Qvec output features for one output feature
map. Hence, at any given time Kvec PEs will be comput-
ing Kvec different output feature-maps. In other words, K
output feature maps are computed in K/Kvec tiles. Convo-
lution layers are mapped onto the architecture in Figure 3
in a time-multiplexed fashion, i.e. layers are executed one
at a time in succession. This is possible because the sizes of
Cvec, Kvec, Qvec and Wvec can be independent of the image
size, filter size, and number of input maps and output maps,
thus solving different convolution layers simply requires dif-
ferent sequences of 1 × Wvec × Cvec sticks of input feature
maps and filter data to be read and sent to the PEs.

Our DLA takes advantage of the mega-bytes of on-chip
storage available on the FPGA device by storing the fea-

tures and the filter weights in on-chip RAMs. The features
are stored in a double buffer and data is broadcast to PEs in
a daisy-chain fashion every cycle. The daisy-chain structure
is formed by the PEs where each PE receives a stick of in-
put feature data for processing, and also passes the data to
an adjacent PE (PE daisy-chain arrangement illustrated in
Figure 7). This is much more efficient for placing the DLA
on the FPGA since the FPGA is a 2D grid of logic. The out-
puts of the PEs are stored back into the double buffer. The
filters are stored in caches inside the PEs. The purpose of
the on-chip storage is to avoid unnecessary external memory
accesses because the amount of features and filter weights
loaded every cycle depends on the vectorization parameters
and can easily exceed the available external memory band-
width. On-chip storage allow the re-use of data by taking
advantage of the temporal data locality. More specifically,
double buffers allow the re-use of the input feature maps be-
cause same input features are convolved with different filters
to compute different output feature maps. In addition, fil-
ter caches allow the re-use of the filter weights because same
filter weights are convolved with different input features to
compute each output feature map.

3.3 Arithmetic Optimizations
In addition to providing parallelization, vectorizing on W

and Q allows multiple multiply-accumulate operations to be
simplified through Winograd transformations as described
here [18]. Lavin et al. [8] showed that Winograd’s minimal
filter algorithms [18] can be used to derive algorithms for
CNNs. These algorithms can be applied when the convolu-
tion stride is 1 and can reduce the arithmetic complexity,
resulting in faster execution. It has also been shown that
the reduction in arithmetic complexity can exceed what can
be achieved with other FFT-based methods for small fil-
ters. The AlexNet topology uses small 3 × 3 filters in most
of its convolution layers, hence, can take advantage of the
Winograd transformations. Furthermore, because the cur-
rent trend is towards deeper CNN topologies with small fil-
ters (e.g. GoogLeNet [17]) other CNN topologies can also
take advantage of the Winograd transformations.

o0 = (f0, f1, f2) · (i0, i1, i2)

o1 = (f0, f1, f2) · (i1, i2, i3)

o2 = (f0, f1, f2) · (i2, i3, i4)

o3 = (f0, f1, f2) · (i3, i4, i5)

(1)

In our DLA, each PE generates four horizontal output pixels
in parallel (i.e. Qvec = 4) where each output is formed by
doing a dot-product between three filters and three inputs
as shown in equation 1. In standard convolutions, this re-
quires 12 multiplications and additions every cycle which is
shown in equation 1 where oi is an output pixel, fi is a filter
weight, and ii is an input pixel. With the Winograd mini-
mal filtering algorithms, we perform the four dot-products
in equation 1 with only six multiplications and additions
using techniques described in [18], and denoted as F (4, 3).
All Winograd arithmetic transformations are done on-chip
and the flow is illustrated in Figure 4 which shows how we
transform three filter coefficients and six feature inputs into
six Winograd filters and six Winograd input features (i.e.
Wvec = 6). The six values are multiplied together to form
six Winograd outputs, which then are transformed back to
four output features.
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Figure 4: Winograd Flow

Figure 5: The overview of a PE.

3.4 PEs
Figure 5 shows an overview of a single PE hardware. It

consists of dot-product units, accumulators, and caches.
Each dot-product unit multiplies and accumulates the Wino-

grad transformed input features and the filter weights. The
vector size of the dot-product unit is determined by the
Cvec parameter as shown in Figure 5. Each PE contains
Wvec of such dot-product units. Hence, a sub-region of size
1 × Wvec × Cvec is convolved every cycle. Once the total
input feature region is convolved, Qvec output features are
completed.

Each dot-product unit takes as input Cvec × Wvec fea-
tures, Cvec × Wvec transformed filter weights, and an init
bus as shown in Figure 5. To support Winograd, we take
Cvec × Svec filters and convert them to Cvec × Wvec trans-
formed filter weights. The init bus is set to zero when reset is
set, which represents the start of a new output feature com-
putation. If reset is not set, then init is set to the current
accumulator value so that the accumulator is incremented
by the dot-product result. If the done signal is set, the dot-
product result is sent out. This happens when the very last
dot-product is completed for an output feature. Otherwise,
the result of the dot-product continues to be stored in the
accumulator.

The accumulators are implemented as shift-registers. At
any given cycle, each shift-register location contains the par-
tial sum that belongs to a specific output feature. The size
of this shift-register depends on the latency L of the dot-
product unit. That is, the same shift-register value that is
used as the init value in the dot-product will be updated

(a) A single stream buffer.

(b) The array of stream buffers.

Figure 6: Stream buffer hardware.

with the result of the dot-product, L cycles later. Hence, at
any given cycle, each PE keeps L different partial sums that
belong to L different output features for each dot-product
unit. Because each dot-product unit is fully-pipelined, L
different output computations are interleaved. That is, for
L consecutive cycles, input features and filter weights for
different output features will be fed into a dot-product unit
in a sequence. In our implementation, we interleave both in
the W (Lw) and H (Lh) direction.

Filter weights are stored in PE caches implemented in on-
chip RAMs. Every cycle, Wvec × Cvec transformed filter
weights are loaded from these caches and fed onto the dot-
product units. Hence, Wvec×Cvec caches, or memory banks,
are used in order to get the necessary on-chip memory read
bandwidth. A single filter weight can be loaded from each
cache every cycle.

Filter weights are stored in the caches before the cor-
responding convolution layer starts. To avoid idle com-
putation cycles, the DLA uses double-buffering and over-
laps convolutions with the PE cache updates. While filter
weights are loaded from the caches for a particular convolu-
tion layer, filter weights for the next convolution layer are
also prefetched onto the caches.

Every cycle, the Wvec outputs of each PE are sent to the
ReLU unit for the Winograd output transform as explained
in Section 3.3.

3.5 Stream Buffers
Stream buffers shown in Figure 6 are implemented in on-

chip RAMs in order to store the feature data and to stream
it to PEs. Each stream buffer is double-buffered similar
to filter caches. Before the first convolution layer starts,
the images are loaded from the DDR and stored in buffers.
During the convolution layer execution, while feature data
for a convolution layer is being streamed into the PEs, the
outputs of convolutions are simultaneously stored into the
buffers. There are a total of Wvec×Cvec stream buffers. The
width of feature maps is divided into Wvec buffers, and the
depth is divided into Cvec buffers. Hence, a total of Wvec ×
Cvec stream buffers provide sufficient on-chip bandwidth for
streaming an input feature region of size 1×Wvec ×Cvec to
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PEs every cycle. The output features, on the other hand,
are generated in a different layout. More specifically, each
PE generates Qvec features in a cycle, hence, a total region
of 1×Qvec×Kvec is generated in a cycle. A crossbar network
is generated in order to store this region in 1 ×Wvec ×Cvec

buffers.

3.6 Shared Exponent FP16
Using half-precision (FP16) instead of single-precision (FP32)
floating point operations can significantly reduce the re-
source requirement of each PE. However, although FP32 is
natively supported on Arria 10’s DSP blocks, FP16 is not,
which leads to additional logic use. To reduce this over-
head, we use a shared exponent technique which allows us
to perform the multiplications in fixed-point, which signifi-
cantly reduces the overhead required to perform the FP16
dot-products. This technique works by leveraging the fact
that Arria 10 DSP blocks can be fractured into two 18 × 18
integer multipliers [1] such that before sending the feature
and filter data into each PE, we transform all the values
into 18-bit numbers, using the maximum exponent found
in the group. Since the exponent matches for all the num-
bers, they can be treated as fixed-point numbers and can
be sent directly to the 18 × 18 integer multipliers. After
the dot-product is performed, the number is shifted back to
10-bits, and the exponent and sign bit is added back to the
top 6 bits, reforming the 16-bit floating point value, which
is stored back into the stream buffer. Note that the shared
exponent transform is performed on the data prior to enter-
ing the PEs and thus only need to be applied once and can
be shared across all PEs.

3.7 Fully Connected Layers
The DLA executes the fully-connected layers on the same

PEs described in section 3.4. This approach makes the most
efficient use of the dot-product units since these units are
kept busy during the convolution and the fully-connected
layers.

Due to the different characteristics of computations in
fully-connected and convolutional layers, PEs need to be
configured differently. Specifically, the ratio of the total fil-
ter weights used in computations to the total amount of the
computation is significantly higher in fully-connected layers
than in convolution layers. In other words, there is signifi-
cantly less re-use of the fully-connected layer filter weights
during the classification of a single image. Hence, storing
these filters in PE caches does not give any benefits. More-
over, loading these filters from DDR uses significantly more
bandwidth, which may become a performance bottleneck.

In order to alleviate the above issues, the DLA processes
fully-connected layers in image batches. After all convolu-
tion layers are completed layer by layer for a single image,
the last layer will dump the image back out to external mem-
ory to batch up the images. Once a large enough batch of
images are available, the batch of images is processed to-
gether during each of the fully-connected layers. This allows
sharing the fully-connected filter weights between the classi-
fication of different images, and hence, reducing the external
memory bandwidth usage. In other words, filters are shared
and same filter weights are multiplied with different image
features to produce the output features of different images.
This is in contrast to the convolution layers where features
are shared and same features are multiplied with different fil-

ter weights to produce different output feature maps. Hence,
during the fully-connected layers, filter weights are streamed
into the PEs and PE caches store the features for different
images that are pre-loaded before computation starts. The
caches are sized to accommodate not only the convolution
filters but also the batches of images that need to be pro-
cessed in parallel during fully-connected layers.

The fully-connected layers are executed with the following
configuration (summarized in Table 1).

1. No Winograd transformations are applied because features
and filters are convolved to generate only a single output.

2. Before starting the compute, features are pre-loaded into
the PE caches. For instance, if the image batch size is
Sbatch, each PE will store N different image features, where
N is equal to Sbatch/Kvec.

3. During fully-connected layer computation, the Wvec/N dot-
product units in each PE are used to process one image.

4. Each cycle, F unique filter weights are loaded from the
DDR and streamed into the PEs, where F is equal to
(Wvec/N)×Cvec. Each PE receives the same filter weights
and multiplies them with different image features.

5. Similar to the convolution configuration, L different output
computations are interleaved.

6. Wvec/N partial sums in each PE are summed to produce
N outputs from each PE.

Configuration Convolution Fully-Connected
Winograd Transformation Yes No
Batch Size 1 Sbatch

Streamed Data Features Filters
Cached Data Filters Features
Dot-Products per Image Wvec Wvec/N

Table 1: Configuration of PEs during convolution and fully-
connected layers.

3.8 Overall Architecture
CNN algorithms often include other layers in addition

to convolution and fully-connected layers. For instance,
AlexNet contains normalization, max-pooling, and ReLU
layers. Hence, our DLA contains additional hardware to
support these different types of layers to enable the entire
topology to be executed on the FPGA.

Figure 7 shows the DLA hardware support for all the
AlexNet layers. The PEs, as discussed earlier, perform the
dot-products for convolution and fully-connected layers. The
StreamBuffer unit manages the stream buffers, applies the
Winograd transformations to features, and streams the trans-
formed features to the first PE. The StreamBuffer unit also
fetches the filter data from DDR and sends it to the PEs.
The features are forwarded through all the PEs via the daisy-
chained input connections between them. The outputs of the
PEs are sent to the ReLU unit again via daisy-chained out-
put connections. ReLU unit applies the Winograd output
transformations and non-linearity functions. The through-
put of ReLU unit and all the subsequent units are higher
than the total throughput of the PEs in order to avoid stalls.
The outputs of the ReLU unit are sent to the normalization
unit, which applies the normalization formula across the fea-
ture maps. Because PEs compute feature maps in tiles, nor-
malizing a tile requires buffering of convolution outputs from
the previous tile. The outputs of the normalization unit are
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Figure 7: Overall DLA Architecture.

sent to the pooling unit which computes the maximum value
in a window. Because each feature map is pooled indepen-
dently, no data buffering is necessary between the feature
map tiles. If more convolution layers are to follow, the out-
put of the pooling unit is stored back onto the stream buffer
for further processing. Following the last convolution layer,
the outputs of the pooling unit are stored to external mem-
ory. At the start of the fully-connected layers, these features
are read back from external memory and loaded onto the PE
caches as described earlier. Also, the ReLU output is sent
directly to DDR, without applying Norm or Pool.

The DLA includes several control signals, such as stream
buffer read/write addresses, PE cache read/write addresses,
PE done/reset signals, normalization/pooling bypass sig-
nals, etc. These signals are generated by the sequencer
unit which is configured according to the topology of the
CNN algorithm being executed. The sizes of input/output
images, intermediate features, filters, normalization/pooling
windows, convolution strides, etc. are used in calculating the
exact cycles certain actions are taken at or the addresses that
are accessed. Hence, executing a different CNN algorithm
on the same hardware requires just changing the sequencer
configuration.

In AlexNet, the normalization and pooling operations are
not always performed after every convolution layer. Hence,
these units can be by-passed depending on the topology that
is being executed. This makes extending this architecture to
support software configurability relatively straightforward
because the sequence of layers bypassed can be changed after
the FPGA is programmed and is similar to the work in [20].

All the units described above are written as OpenCL ker-
nels. Each kernel executes independently and concurrently.
The connections between the kernels are implemented as FI-
FOs using the Intel channel API.

4. DESIGN SPACE EXPLORATION AND AN-
ALYTICAL MODELS

One of the benefits of our architecture is that the resource
usage of the PE array, stream buffers, and filter caches can
be analytically modeled using the Cvec, Kvec, Wvec, and
Qvec parameters.

For 16-bit floating point precision, equation 2 models the
DSP usage for all the PE elements, which assumes that each
DSP block can perform two 16-bit floating point multiplies
and two 16-bit floating point adds and no Winograd. If
Winograd is applied, we divide equation 2 by 2 and add on
a constant factor of 200. The constant factor is an over esti-
mate, and accounts for the on-chip Winograd transforms
as shown in Figure 4 and the value chosen is applicable

to the F (4, 3) Winograd transforms we use. The stream
buffers and filter caches M20K usage can be modeled using
equation 3 and 4 respectively, which assumes a given M20K
can store 1024 16-bit floating point values by forming a 2
word wide by 512 deep memory [1]. Equation 3 models the
number of M20Ks required to store the largest input and
output feature map for any given layer (represented by the
MAX(Depthin +Depthout)). C is the number of input fea-
ture maps for a given layer, H and W are the feature map
height and width. Equation 4 models the number of M20Ks
required to store all filter weights for a single output feature
map. This is scaled up by the number of PEs (i.e. Kvec)
since each PE processes one output feature map at any given
time. Note that for the filter caches the depth is not con-
sidered since the filters don’t require the entire M20K depth
(i.e. there are less than 512 words needed).

Ndsps = (Wvec −Qvec + 1) ×Qvec ×Kvec ×Cvec × 0.5 (2)

Nbanks = Wvec × Cvec

Depth = C ×W ×H/Nbanks

NM20K = CEIL(
MAX(Depthin + Depthout)

512 × 2
) ×Nbanks

(3)

Nbanks = Wvec × Cvec

NM20K = Nbanks ×Kvec/2
(4)

Expected throughput is modeled using the vector dimen-
sions (Cvec, Kvec,Wvec, and Qvec), feature map sizes, out-
put map sizes, filter sizes, and DDR bandwidth utilization.
For a single convolutional layer, the number of cycles to
process an image is shown in equation 5. Here, C is the
number of input feature maps, K is the number of output
feature maps, Q is the width of the output feature map,
P is the height of the output feature map. DSPeff rep-
resents the efficiency of the DSPs and models any quanti-
zation issues due to Qvec and interleaving width-wise (Lw)
and height-wise (Lh) as described in section 3.4, where we
ignore quantization effects on C and K for simplicity (e.g. if
Cvec does not divide C evenly). For example, if the output
image is 20 wide, and Qvec = 3 with no interleaving (i.e.
Lh = Lw = 1), on the 7th cycle, only the first two values of
Qvec will have useful output, the last value will be dropped.
In this case, the DSPeff = 20/(CEIL(6.67) × 3) = 95%.
Ncycles are the number of cycles required to generate all out-
put feature-maps for the layer, assuming there are no mem-
ory bandwidth constraints. BY TEreq are the total bytes of
prefetched filter weights required to be loaded from DDR
during the convolution layer where Rnext and Snext are the
filter dimensions of the next convolution layer, and Cnext is
the number of feature map layers in the next convolutional
layer, and BY TEddr are the total number of bytes that can
be transferred during the convolutional layer assuming that
there is one DDR memory interface that is 64 bytes wide.
Nreal is the estimated number of cycles required taking into
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account any DDR bandwidth limitations of the device.

DSPeff = Q/(CEIL(Q/(Qvec × Lw)) ×Qvec × Lw)×
P/(CEIL(P/(Lh)) × Lh)

Nflops = 2 ×K × C ×Q× P ×DSPeff

Ncycles = Nflops/(Ndsps × 2)

BY TEreq = Knext ×Rnext × Snext × Cnext × 2

BY TEddr = 64 ×Ncycles

Nreal = Ncycles ×BY TEreq/BY TEddr

(5)

For fully-connected layers, the number of cycles is shown
in equation 7 which calculates the cycles required for an
entire batch of images. Here, K and C are the number of
input and output feature maps for the fully-connected layer
and Sbatch is the batch size used. For fully-connected layers,
BY TEreq are the total bytes of the filter weights that need
to be loaded. Also, we ignore any quantization effects for
fully-connected layers, since empirically we show that DSP
efficiency is close to 100% (shown later in Table 2).

Sbatch = Kvec × 2

Nflops = 2 ×K × C × Sbatch

Ncycles = Nflops/(Ndsps × 2)

BY TEreq = C ×K × 2

BY TEddr = 64 ×Ncycles

Nreal = Ncycles ×BY TEreq/BY TEddr

(6)

To get the final throughput in terms of images per second,
we divide the clock frequency of the design by the total cycles
for all layers to process. For fully-connected layers, we have
to normalize to one image so we divide by the batch size,
Sbatch. We ignore the execution time of other layers, such
as Norm and ReLU, since these are executed concurrently
with the convolutional or fully-connected layers, and have a
negligible execution overhead.

Tall = fmax/(Σconv(Nreal) + Σfc(Nreal/Sbatch)) (7)

Using both the resource usage estimates and throughput
models, we can find the optimal Cvec and Kvec value for a
given FPGA device, assuming all other values are set by the
user (e.g. fmax, Wvec, etc). A curve of this is shown in the
results section in Figure 8.

5. EXPERIMENTAL EVALUATION
We evaluate our DLA by implementing the AlexNet topol-

ogy on Intel’s Arria 10 dev kit which contains a A10-1150
device (20nm). We use a batch size of 1 for convolution
layers, and 96 for the fully connected layers as described in
Section 3.7. We use only one bank of DDR4x64 at 1200MHz
with a total bandwidth of 17GB/s to reduce the power re-
quired for the FPGA. We compare against the work in [16]
and [20]. Additionally, we compare against the best known
results for nVidia’s TitanX GPU (28nm) taken from [3].
Note that nVidia used 28nm for its last generation GPU
and skipped the 20nm node, which is why TitanX is used
in this comparison. When measuring throughput, we mea-
sure the total system throughput, which includes all the data
transfers of the images to the FPGA using the ILSVRC data
set [15], which would be incurred in a real application, which
is not done in [20] nor [3]. In order to hide the latency of

Layer Eff. GFLOPS Act. GFLOPS Eff.
Conv1 2,308 1,154 82.9%
Conv2 1,740 870 62.5%
Conv3 1,960 980 72.4%
Conv4 1,960 980 72.4%
Conv5 1,743 871 62.6%
Fc6 1,389 1,389 99.8%
Fc7 1,386 1,386 99.6%
Fc8 1,378 1,378 99.0%

Table 2: The average GFLOPS achieved of convolutional
and fully-connected layers and DSP efficiency when using
an 8 × 48 configuration. Shows both effective GFLOPS
(Eff. GFLOPS) due to Winograd and actual GFLOPS (Act.
GFLOPS).

the transfers, we pipeline the execution of the DLA with
the image data transfers from host to FPGA DDR mem-
ory. Also note that the data precision vary from fixed and
floating point in the studies in [16, 20, 3] and our work. Pre-
vious work [16, 5] have shown the limited impact of 16-bit
fixed point when compared to 16-bit floating point and is
not described here.

6. RESULTS
To illustrate the efficiency of our architecture, we show the

GFLOPS of the DLA for each fully-connected and convolu-
tional layer in Table 2 as well as the DSP efficiency. Here,
we define DSP efficiency as the percentage of time the DSP
is occupied and doing useful computation.

It is clear that for most layers, DSP efficiency and GFLOPS
are relatively high, which is required to be competitive against
the GPU. The DSP efficiency differs between layers because
vectorization factors (Wvec, Qvec, Kvec, Cvec, Svec) lead to
different quantization inefficiencies for different feature, fil-
ter and output dimensions as described in equation 5. For
instance, Conv2 has the lowest efficiency because it uses 5×5
filter weights which are sub-optimally vectorized with 1 × 3
tile sizes used. Moreover, FC layers have close to ideal effi-
ciency because the dimensions of their input features, filter
weights, and output features are large with respect to the
vectorization factors, i.e. how many features and filters are
loaded and how many output features are computed every
cycle as discussed in Section 3.7.

We should note that for Conv1, we achieve a high effi-
ciency even though the number of input feature maps for
the first layer is three, which is not wide enough to fill up
the vector 8 dot-product units in each PE (i.e. 3 is less than
Cvec = 8). In order to get around this limitation, we fold
the three input feature maps to create 48 sub-feature maps,
such that we can saturate the dot-product width.

Figure 8 plots the achievable throughput for various Cvec

and Kvec values, using the Arria 10 1150 device. Here, we
assume fmax is 300MHz, Qvec = 4, and Wvec = 6, and we
only explore positions where Kvec are even multiples of Cvec

(areas which are not even multiples are 0 in Figure 8), which
leads to a more efficient memory structure for the stream
buffers and filter cache. Note that the highlighted red circle
is one of the peak throughput numbers with Cvec = 8 and
Kvec = 48. This is our final configuration which achieves a
throughput of 1020 img/s.

To validate our analytical models presented in Section 4,
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Figure 8: Plot of expected throughput for various Cvec and
Kvec values.

Figure 9: A comparison of empirical data against analytical
model for A10-1150 device.

we plot predicted img/s given by our models and the mea-
sured performance, as shown in Figure 9. Note that in Fig-
ure 9 we scale down the model img/s predictions provided
by equations 5 and 7 by 16% to account for any inefficien-
cies in the pipelined data transfers and the overhead of data
movement between the host processor and FPGA, which is
included in the measured throughput values. 16% is used be-
cause this was measured as the average difference between
the system-level throughput and the FPGA device through-
put. As shown in the graph, our model throughput predic-
tions match very closely to the actual measurements.

6.1 Resource Usage
To show the impact of the shared exponent floating point

optimization described in Section 3.6, we show the resource
usage of a single PE using true half-precision dot-products
(Half-type) vs shared exponent dot-products in Table 3. The
shared exponent significantly reduces resource usage since
we can leverage the DSP fully, whereas when using the half-
type, a lot of logic must be used to normalize and compute
the 16-bit floating point multiplications and perform the dot-
product. Also, it should be noted that no impact to accuracy
was seen to the top-1 and top-5 error rate (56% and 79%
respectively) between our shared exponent implementation
and 32-bit floating point.

Table 4 shows the final resource usage of an 8×48 (Cvec×
Kvec) configuration running on the Arria 10 1150 device
running at 303MHz.

6.2 FPGA Comparisons to the state-of-the-art
Table 5 and Table 6 shows our comparisons against prior

FP16 config ALMs Reg
Half-type 10.7K 26K

Shared Exponent 3.3K 10.6K

Table 3: Resource usage of PE without shared exponent
optimizations (Half-type) and with shared exponent opti-
mizations.

ALMs Reg M20K DSPs Freq.
246K (58%) 681K 2487 (92%) 1476 (97%) 303 MHz

Table 4: Resource usage and clock frequency on the Arria 10
1150 device, for an 8×48 configuration running at 303MHz.

work on FPGAs and GPUs respectively. As Table 5 shows,
we achieve 8.4x more GFLOPS when compared to the latest
Ultrascale (KU 20nm [19]) result, which uses a batch size
32 for the fully-connected layers, and 19x more GFLOPS
than the latest Stratix V result, both running AlexNet. It
is important to note that in [20] the authors are only able
to use 50% of DSP resources and claim that this is due to
a limitation in SDAccel when using partial reconfiguration.
However, even if they were able to use 100% of DSPs, the
8.4x gap would still not be closed since they are only able
to achieve a 14.7% efficiency of their DSPs, which assumes
a 1.1 TOPS for the KU060 device at 200MHz used in [20].

We should note that in [20] and [16], they show better
GOPS numbers for VGG of 266 GOPS and 118 GOPS re-
spectively. Since our architecture is also applicable to VGG,
which is based on convolutional and fully-connected layers as
well, our performance will not be impacted negatively with
the VGG topology. In fact, since VGG is more regular, DSP
efficiency is improved on previous work [20] and we believe
that this should also benefit the DLA architecture.

Finally, in Table 6 we show a comparison of our work
against the best known nVidia results for the TitanX and
M4 running AlexNet with image sizes of 224×224 and batch
size 128 (note that the M4 white paper doesn’t specify batch
size) . The TitanX card has a peak 6.1 TFLOPS, com-
pared to the 1150 Arria 10 device which has 1.3 TFLOPS
and as Table 6 shows, the TitanX is able to beat our work
in terms of raw performance. However, when normalized
against power consumption, we are competitive with both
nVidia devices [3, 10]. Also note that the img/s/W num-
bers shown in Table 6 are 5.8x better than the img/s/W for
AlexNet presented in [20].

6.2.1 Discussion on performance comparisons
There are several simplifications the authors do in [3]

which can significantly boost the performance of the TitanX
result shown in Table 6 including the removal of communi-
cation overhead and the use of random data instead of the
ILSVRC database set. As such, we suspect that the raw
performance numbers are overly optimistic and, unlike our

Stratix V (28nm)[16] KU060 (20nm) [20] DLA (20nm)
72.4 GOPS 165 GOPS 1382 GFLOPS

Table 5: A comparison of our DLA against [20, 16] for
AlexNet. For the DLA, effective flops shown due to Wino-
grad.
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img/s Watts (W brd) Peak Ops img/s/W

DLA (20nm) 1020 45 1.3TFLOPS 23
KU060 (20nm) 104 25 3.6TOPS 4
TitanX (28nm) 5120 227 6.1TFLOPS 23

M4 (28nm) 1150 58 2.2TFLOPS 20

Table 6: A comparison of the DLA at 303MHz against [20]
and [3, 10]. KU060 peak operations are integer, the rest are
32-bit floating pt.

throughput measurements, do not reflect the actual through-
put of a production system. Additionally, the KU060 104
img/s is estimated using Figure 10d in [20], which assumes
no execution overhead for data transfers and ignores the
execution time of the non-linear layers (i.e. Pool, Norm,
ReLU), which again is overly optimistic. Due to these sim-
plifications, we suspect that the relative system performance
benefit of our DLA is much larger than what is reported in
Table 6.

7. CONCLUSIONS
We describe a novel architecture written in OpenCL, DLA,

targeted for computing CNNs on FPGAs. We demonstrate
an approach that reduces the required memory bandwidth
by an order-of-magnitude through the use of an on-chip
stream buffer that efficiently stores input and output fea-
ture maps. Additionally, we demonstrate a vectorization
approach that achieves over 60% DSP efficiency and uses
the Winograd transform to significantly reduce the DSPs re-
quired to perform the convolution layers. Because of these
improvements, we are able to achieve an overall system-level
performance that is 10x faster than the state-of-the-art on
FPGAs when running AlexNet and is competitive in energy
efficiency with the best known results on nVidia’s TitanX
GPU at 23 img/s/W.

Future work includes mapping other CNNs such as GoogLeNet
and VGG to our architecture, and exploring how run-time
reconfigurability may impact performance of our architec-
ture.
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