
doi: 10.1016/j.procs.2015.07.286 

Big Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on Beowulf

Jorge L. Reyes-Ortiz1, Luca Oneto2, and Davide Anguita1

1 DIBRIS, University of Genoa, Via Opera Pia 13, I-16145, Genoa, Italy
(jorge.reyes.ortiz@smartlab.ws, davide.anguita@unige.it)

2 DITEN, University of Genoa, Via Opera Pia 11A, I-16145, Genoa, Italy (luca.oneto@unige.it)

Abstract
One of the biggest challenges of the current big data landscape is our inability to pro-
cess vast amounts of information in a reasonable time. In this work, we explore and com-
pare two distributed computing frameworks implemented on commodity cluster architectures:
MPI/OpenMP on Beowulf that is high-performance oriented and exploits multi-machine/multi-
core infrastructures, and Apache Spark on Hadoop which targets iterative algorithms through
in-memory computing. We use the Google Cloud Platform service to create virtual machine
clusters, run the frameworks, and evaluate two supervised machine learning algorithms: KNN
and Pegasos SVM. Results obtained from experiments with a particle physics data set show
MPI/OpenMP outperforms Spark by more than one order of magnitude in terms of processing
speed and provides more consistent performance. However, Spark shows better data manage-
ment infrastructure and the possibility of dealing with other aspects such as node failure and
data replication.

Keywords: Big Data, Supervised Learning, Spark, Hadoop, MPI, OpenMP, Beowulf, Cloud, Parallel

Computing

1 Introduction

The information age brings along an explosion of big data from multiple sources in every aspect
of our lives: human activity signals from wearable sensors, experiments from particle discovery
research and stock market data systems are only a few examples [48]. Recent trends in the
area suggest that in the following years the exponential data growth will continue [28], and
that there is a strong need to find efficient solutions to deal with aspects such as data storage,
real-time processing, information extraction and abstract model generation.

Big data analytics is the area of research focused on collecting, examining and processing
large multi-modal and multi-source datasets in order to discover patterns, correlations and
extract information from data [48]. This is usually accomplished through the use of supervised
and unsupervised machine learning algorithms that learn from the available data. However,
these are usually highly computationally expensive, either in the training or prediction phases
(e.g. Support Vector Machines (SVM) and K-Nearest Neighbors (KNN) respectively), to the

Procedia Computer Science

Volume 53, 2015, Pages 121–130

2015 INNS Conference on Big Data

Selection and peer-review under responsibility of the Scientific Programme Committee of INNS-BigData2015
c© The Authors. Published by Elsevier B.V.

121

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.286&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.286&domain=pdf


point of becoming intractable using serial algorithm implementations as they are not able to
handle current data volumes [43]. Alternatively, parallel approaches have been proposed in order
to boost processing speeds [45] but this clearly requires technologies that support distributed
computations.

Several technologies are currently available that exploit multiple levels of parallelism (e.g.
multi-core, many-core, GPU, cluster, etc) [10, 46, 31]. They trade-off aspects such as perfor-
mance, cost, failure management, data recovery, maintenance and usability in order to provide
solutions adapted to every application. For example, a preference for speed at the expense of a
low fault tolerance and vice versa.

Two of the commonly used cluster computing frameworks for big data analytics are: (i)
Apache Spark [47], a recently developed platform from UC Berkley that exploits in-memory
computation for solving iterative algorithms and can be run in traditional clusters such as
Hadoop; and (ii) OpenMP/MPI which efficiently exploits multi-core clusters architectures such
as Beowulf, and combines the MPI paradigm with shared memory multiprocessing. The main
differences between these two frameworks are fault tolerance support and data replication.
Spark deals with them effectively but with a clear impact on speed. Instead OpenMP/MPI
provides a solution mostly oriented to high performance computing but susceptible to faults, in
particular, if used in commodity hardware. So far, a comparison between these two frameworks
has not been investigated.

One of the recent solutions for big data analytics is the use of cloud computing [2] which
makes available hundreds or thousands of machines to provide services such as computing and
storage. Traditional in-house solutions generally require large investments [19] in hardware
and software, and need to be fully exploited in order to be economically sustainable. Instead,
cloud platforms, usually hosted by IT companies such as Google, Amazon, and Microsoft, lease
services at affordable prices to people and organizations according to their requirements: time,
number of machines, machine types, etc. [12].

In this paper we compare two parallelization technologies (Spark on Hadoop and MPI/
OpenMP on Beowulf) by running two supervised learning algorithms (KNN and SVM-Pegasos
algorithms) for testing system vertical and horizontal scalability. They were deployed in clus-
ters of virtual machines instantiated in the Google Cloud Platform (GCP) [21] using a logic
architecture with different configurations: number of virtual machines (NM ), number of cores
per machine (NC) and learning algorithm hyperparameters. The experiments were performed
using the Higgs Data Set [42, 5] which contains 11× 106 samples of simulated signal processes
that produce the Higgs bosons.

The paper is organized as follows: in Section 2, we introduce the parallel implementations
of the KNN and Pegasos SVM learning algorithms. Then, we describe the frameworks Spark
and OpenMP/MPI in Sections 3 and 4 respectively. Moreover, we explain in Section 5 the
experiments performed and present their results. Finally, we summarize the obtained results
and provide future research directions in Section 6.

2 Big Data Analytics

Let us recall the now-classical supervised learning framework [39] where a set of data Dn =
{(x1, y1), . . . , (xn, yn)} is sampled i.i.d. from an unknown distribution μ over X × Y where
X ∈ R

d is an input space (x ∈ X ) and Y ∈ R is an output space (y ∈ Y). In this work, we focus
on binary classification problems where Y ∈ {±1}. The purpose of the learning process is to
find a function f : X → Y which best approximates μ. There are two main learning methods
classes: Lazy Learning (LL) and Eager Leaning (EL) [23, 29]. The former does not create an
explicit model f until a test sample xc is classified and approximates the distribution μ only
in the locality of xc. The main disadvantage of LL is that the entire set Dn needs to be stored
in order to perform classification since no abstraction is made before prediction. Nevertheless

BDA Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on BeowulfJorge L. Reyes-Ortiz, Luca Oneto and Davide Anguita

122



LL methods are often exploited because they are easy to implement and mostly parallelizable
[3, 7, 20]. EL, instead, learns a compressed model f from Dn which is a global approximation
of μ and do not requires to keep every data sample. This abstraction allows to reduce memory
requirements at the expense of an often computationally intensive learning phase [8, 36].

K-Nearest Neighbors (KNN) is one of the most popular LL supervised learning algorithms
due to its implementation simplicity and effectiveness [15]. To classify a test sample xc, KNN
computes the distances, under some metric, from xc to each sample x ∈ Dn and collects the
labels yk = {y1, . . . , yk} of the k nearest samples. The label yc is found with the mode of yk.
Algorithm 1 depicts the pseudocode of KNN classification and highlights the parallelizable parts
(data reading and distances computation) and bottlenecks that require serialization (finding the
k nearest neighbors and mode calculation). Note that KNN has two hyperparameters: distance
metric and k [40]. The Euclidean Distance is usually the preferred metric, at least if d is not
too large [34, 40]. Instead, k must be carefully tuned since it deeply influences the algorithm’s
generalization ability [9], therefore, different values of k are tested over a validation set in order
find the one that provides the best classification performance [4].

Regarding EL, several algorithms have been proposed (e.g. Neural Networks, Random For-
rest, Support Vector Machines (SVM)) [18]. However, many of them are not easily parallelizable
on large scale since they require considarable data exchange between nodes [1]. Iterative learn-
ing algorithms such as SVM and Logistic Regression are among the preferred choices in this
context, since they offer the advantages of EL with a reasonably parallelizable learning process
[46]. The SVM algorithm [39] finds a function in the form f(x) = sign(wTx) with w ∈ R

d that
minimizes the following objective function:

w : argminw
λ
2 ‖w‖2 + 1

n

∑n
i=1 max[0, 1− yiw

Txi] (1)

where ‖w‖2 is the regularizer and �(wTxi, yi) = max[0, 1 − yiw
Txi] is the hinge loss func-

tion. Eq. (1) is a Convex Problem (CP) in which λ balances the trade-off between accuracy
and complexity of the solution. λ is for SVM what k is for KNN, and it must be tuned
in order to improve the generalization ability of f(x). In order to solve the CP, only a
few parallel approaches are available [37], including the deterministic sub-gradient descent
learning method called Pegasos [35]. In this paper, we adopt the Pegasos SVM [39] ap-
proach and present it in Algorithm (2). Each algorithm iteration needs data from its pre-
vious one, thus a serial execution is required. However, internal operations such as the es-
timation of I and w are easily and partially parallelizable respectively. In this algorithm
we only report the learning phase since the classification phase is straightforward and com-
putationally negligible in contrast to training. Note that Pegasos has an additional hyper-
parameter: the number of iterations Twhich can act as another regularizer. In fact, the
optimization process can be stopped before the minimum of the CP is reached (for a fixed
value of λ). This concept is called early stopping and has been previously investigated [13].

Algorithm 1: KNN algorithm.
Input: Dn, k and {xc

1, . . . ,xc
nc
}

Output: {yc
1, . . . , yc

nc
}

1 Read Dn ; /* Parallelizable */

2 Read {xc
1, . . . ,xc

nc
} ; /* Parallelizable */

3 for j ← 1 to nc do /* Parallelizable */
4 for i ← 1 to n do /* Parallelizable */

5 di = distance(xc
j,xi) ; /* Parallelizable */

6 I = smallest k elements in d ; /* Bottleneck */

7 yc
i = mode({yi : i ∈ I}) ; /* Bottleneck */

8 return {yc
1, . . . , yc

nc
};

Algorithm 2: Pegasos SVM.
Input: Dn, λ and number if iterations T
Output: w

1 Read Dn ; /* Parallelizable */
2 w = 0;
3 for t ← 1 to T do /* Bottleneck */

4 I = {i : i ∈ {1, . . . , n}, yiwT xi < 1} ; /* Parallelizable
*/

5 ηt = 1/λt ;
6 w = (1 − ηtλ)w ;
7 w += ηt/n

∑
i∈I yixi ; /* Parallelizable/Bottleneck */

8 return w;

BDA Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on BeowulfJorge L. Reyes-Ortiz, Luca Oneto and Davide Anguita

123



3 Spark on Hadoop

Spark is a state-of-the-art framework for high performance parallel computing designed to
efficiently deal with iterative computational procedures that recursively perform operations
over the same data [47], such as supervised machine learning algorithms. It is based on the
concept of maintaining data in memory rather than in disk as it is done by other well-known
approaches such as Apache Mahout that require data reloading and incur considerable latencies.
Experiments have shown Spark outperforms by up to two orders of magnitude conventional
MapReduce jobs in terms of speed [44, 46].

The core data units in Spark are called Resilient Distributed Datasets (RDDs). They are
a distributed, immutable and fault-tolerant memory abstraction that collects a set of elements
in which a set of operations can be applied to either produce other RDDs (transformations)
or return values (actions). RDDs can reside in memory, disk or in combination. However,
they are only computed on actions following a Lazy Evaluation (LE) strategy, in order to
perform minimal computation and prevent unnecessary memory usage. RDDs are not cached
in memory by default, therefore, when data are reused, a persist method is needed in order to
avoid recomputation.

Various cluster management options are available for running Spark: they range from the
simple Spark’s integrated Standalone Scheduler to other widespread cluster managers such as
Apache Mesos and Hadoop YARN [25]. In this work, we chose to deploy Spark in an Hadoop
cluster. Apache Hadoop is an open-source software platform for distributed big data process-
ing over commodity cluster architectures [41]. It has three main elements: a) a MapReduce
programming model that separates data processing in mapping for performing data operations
locally, suffling for data redistribution over the network and reduction for data summarization;
b) a distributed file system (HDFS) with high-throughput data access; and c) a cluster manager
(YARN) in charge of handling the available computing resources and job scheduling.

The selected Hadoop architecture was composed of NM slave machines and two additional
machines that run as masters: one for controlling HDFS (namenode) and another for resource
management. The software packages installed on each machine were Hadoop 2.4.1 and Spark
1.1.1. In order to tune parallelism and exploit all the machines and cores simultaneously, we set
the number of Spark data partitions to be NMNC instead of using default values. Moreover, in
order to avoid bottlenecks, we verified machine memory requirements to guarantee all the train
data was kept in memory and no spill to disk or recalculations occurred. We also used data
serialization (Kryo) for faster network performance. Spark provides a machine learning library
(MLlib) with a set of standard algorithms such as KMeans, decision tree, logistic regression
and some SVM variants, but it does not currently support KNN or Pegasos SVM.

Algorithms 3 and 4 show the pseudocode used for KNN and Pegasos SVM. Both algorithms
were written in Spark using Java. They read data from files on HDFS and use standard
supported RDD transformations and actions. Notice that Spark operations only need function
objects to be passed in order to perform distributed computations over the data. This explains,
for example, why there is no loop over the train data map/reduce operations as opposed to
Algorithms 1 and 2. The KNN prediction algorithm maps the Euclidean distance from each
train sample to a test sample xj and then returns the k nearest neighbors labels. The predicted
class is obtained by computing the mode over these labels. In contrast, Pegasos iterative learning
combines a filter function that selects the train samples that satisfy {i : i ∈ {1, . . . , n}, yiwTxi <
1} and then the gradient g is obtained by summing individual gradient estimations from the
selected samples. Finally the weights are updated with g. In both algorithms the training set
Dn is cached in memory as it is recursively used in every iteration.

BDA Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on BeowulfJorge L. Reyes-Ortiz, Luca Oneto and Davide Anguita

124



Algorithm 3: Spark KNN
Input: Dn, k and {xc

1, . . . ,xc
nc
}

Output: {yc
1, . . . , yc

nc
}

1 Read Dn
2 Read {xc

1, . . . ,xc
nc
}

3 for j ← 1 to nc do
4

{
(y1, d1) , . . . ,

(
yk, dk

)}
=

Dn.map(EuclideanDistance(xj )). takeordered(k,

DistanceComparator())
5 yc

j = mode(
{
yi

}
)

6 return {yc
1, . . . , yc

nc
};

Algorithm 4: Spark Pegasos SVM.
Input: Dn, λ and number if iterations T
Output: w

1 Read Dn
2 Set w = 0;
3 for t ← 1 to T do
4 g = Dn.filter(GradientCondition(w)).map(Gradient()).

reduce(Sum()) ;
5 ηt = 1/λt ;
6 w = (1 − ηtλ)w + g

7 return w;

4 MPI/OpenMP on Beowulf

Message Passing Interface (MPI) is a language-independent communications protocol for paral-
lel computing where point-to-point and collective communication are supported [22]. MPI goals
are high performance, scalability, and portability. MPI is currently the dominant model used in
high-performance computing [38] and is a de facto communication standard that provides porta-
bility among parallel programs running on distributed memory systems. However, the standard
does not currently support fault tolerance [33] since it mainly addresses High-Performance Com-
puting (HPC) problems. Another MPI drawback is that it is not suitable for small grain level of
parallelism, for example, to exploit the parallelism of multi-core platforms for shared memory
multiprocessing. OpenMP, on the other hand, is an Application Programming Interface (API)
that supports multi-platform shared memory multiprocessing programming [16, 14] on most
processor architectures and operating systems. OpenMP is becoming the standard for shared
memory parallel programming for its high performance, but unfortunately, it is not suitable
for distributed memory systems. The idea of extending this API to cope with this issue is
now a growing field of research [6]. OpenMP’s user-friendly interface allows to easily parallelize
complex algorithms. The same thing cannot be said about MPI since the code must be heav-
ily re-engineered in order to obtain relevant performance improvements. However, in 2008 it
was proposed a Fortran extension for parallel processing on distributed memory systems called
Coarray Fortran (CAF) [30]. Most of the available CAF implementations rely on the MPI
standard [24, 17]. Consequently, the combination of these tools, in the Fortran language, allow
two levels of granularity: small grain parallelism with OpenMP and large grain parallelism with
MPI-based CAF [24, 17]. In particular, we make use of the CAF implementation Intel Parallel
Studio XE 2015 together with OpenMP [24]. With this configuration, usually called hybrid
OpenMP/MPI HPC on a Beowulf cluster [11, 32, 27], we can fully exploit the multi-core archi-
tecture through OpenMP and cluster architecture through CAF. The novelty of our approach
is that we can develop and deploy algorithms which take full advantage of tens or thousands
of machines with tens of cores. The cluster architecture is quite simple: all the machines are
connected through passwordless ssh and one of them has installed Intel Parallel Studio XE
2015 which is accessible from every node. Machines store in equal parts the entire dataset Dn,
this is n/NM data samples per machine (Di

n/NM
, i ∈ {1, . . . , NM}). NM MPI processes run in

parallel, one for each machine, and every process launches NC OpenMP threads per machine for
maximum architecture usage. Based on the previous considerations we report in Algorithms 5
and 6 the MPI/OpenMP parallel implementation of KNN and Pegasos. The main idea for
MPI is to perform all the possible independent parts in parallel without any communication
between the processes. Then, machines are synchronized in O(log(NM )) time by exploiting all
the available bandwidth with a fast three reduction process. A similar procedure is done with
the OpenMP threads. This reduction phase applies for both supervised algorithms at different
stages: accumulation of the gradient in Pegasos and search of the k nearest neighbors in KNN.
Note that reading DM

n/NM
from disk cannot take advantages of the multi-core architecture since

BDA Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on BeowulfJorge L. Reyes-Ortiz, Luca Oneto and Davide Anguita

125



there is a bottleneck when reading the disk that may depend on the physical implementation
of the computing center.

Algorithm 5: MPI/OpenMP KNN.

Input: NM , D1
n/NM

, . . . ,DNM
n/NM

, k and {xc
1, . . . ,xc

nc
}

Output: {yc
1, . . . , yc

nc
}

1 launch NM MPI processes, one for each machine;

2 each machine M ∈ {1, . . . , NM} begin

3 Read DM
n/NM

;

4 Read {xc
1, . . . ,xc

nc
};

5 for j ← 1 to nc do
6 launch NC OpenMP threads;

7 Each Core C ∈ {1, . . . , NC} begin
8 for i = C : C : n/NM do
9 di = distance(xc

j,xi);

10 IM = tree reduction process
{smallest k elements} ∈ d;

11 close all the NC OpenMP threads;

12 I = tree reduction process

{smallest k elements} ∈ {I1, . . . , IM};
13 wait all the NM MPI processes;

14 if M == 1 then
15 yc

i = mode({yi : i ∈ I});
16 if M == 1 then
17 return {yc

1, . . . , yc
nc
};

18 close all the NM MPI processes;

Algorithm 6: MPI/OpenMP Pegasos
SVM.

Input: Dn, λ and number if iterations T
Output: w

1 launch NM MPI processes, one for each machine;

2 each machine M ∈ {1, . . . , NM} begin

3 Read DM
n/NM

;

4 w = 0;
5 for t ← 1 to T do
6 launch NC OpenMP threads;

7 Each Core C ∈ {1, . . . , NC} begin

8 aC = 0;

9 I = {i : i ∈ {C : C : n}, yiwT xi < 1};
10 ηt = 1/λt ;

11 aC = ηt/n
∑

i∈I yixi;

12 bM = tree reduction process {+} over

{a1, . . . ,aC};
13 close all the NC OpenMP threads;

14 b = tree reduction process {+} over

{b1, . . . , bM};
15 wait all the NM MPI process;

16 w = (1 − ηtλ)w + b ;

17 return w;

18 close all the NM MPI processes;

5 Evaluation

In this section we show the results of the Spark on Hadoop and MPI/OpenMP on Beowulf
implementations of KNN and Pegasus SVM algorithms with different cluster configurations.
We run on GCP Linux shell script routines for automatically deploying the clusters of virtual
machines from the ground up with the selected configurations, including operating system
(latest version of CentOS 6) and software installation. We tested KNN Algorithm 3 on Spark
and Algorithm 5 on MPI/OpenMP for different values of k ∈ {1, 10, 100}, with different number
of machines NM ∈ {5, 10, 20} and number of cores per machine NC ∈ {4, 8, 16}. To this end, we
used the n1-standard-4, n1-standard-8 and n1-standard-16 machine types from GCP with 15,
30 and 60 GB of ram and 4, 8 and 16 cores respectively. Regarding non-volatile memory, each
machine was equipped with a 500 GB SSD disk. Every combination of parameters was run three
times. Similarly, we tested Pegasos Algorithms 4 and 6, only differing in the hyperparameters
with λ ∈ {0.01, 1, 100} and T = 100.

We exploited the HIGGS Data Set [42], available from the UCI Machine Learning Repository
[26], that aims to discriminate between signal and background processes that produce Higgs
bosons. Data consist of 11000000 samples in 28 dimensions which were produced using Monte
Carlo simulations [5]. The first 21 features are kinematic properties measured by the particle
detectors in the accelerator and the last 7 are high-level features derived by physicists from
the first group to help in the classification. The last 500000 examples were used as a test
set. Test and train data were stored in separated text files for the experiment and the amount
of disk space needed was 7GB. The dataset size allowed seeing the scalability break point of
one the technologies (Spark) while the other continued to scale. Moreover, the dataset size
was selected to fit entirely in the memory of the smallest cluster configuration according to
the virtual machines specifications. We avoided data reloading and spilling to disk as these
conditions would have not produced a fully in-memory application and yielded to more time-
consuming results. We also took into account that Spark allocates memory on each executor for
data storage, data shuffling and memory heap, reducing the amount of memory for keeping the
dataset in memory. Moreover, Spark executors memory needed to fit inside Hadoop’s containers
which are also constrained by other running applications such as the operating system on each
virtual machine.

BDA Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on BeowulfJorge L. Reyes-Ortiz, Luca Oneto and Davide Anguita

126



As a result of Spark’s LE nature, the time to read the data from disk was measured together
with the first action over RDDs. This coincides with the reductions over the train data. For
this reason, we measured two different times in our experiments: disk reading together with
the first MapReduce operation, and the average time of the remaining iterations. Similar time
evaluations have been used in the literature such as in [46] and, for comparison purposes, we
also performed the same measurements on MPI/OpenMP. In Table 1 KNN implementation
results are presented. They include the following quantities:

• TS: theoretical speedup (for a fixed k with respect to the smallest cluster: NM = 5 and
NC = 4).

• Δ10

t : time to read the data and classify the first sample in seconds.

• Δ20...
t : the average time to classify the remaining samples in milliseconds.

• S1, S2: the data reading and classification speedups of each cluster with respect to the
smallest cluster.

• SΔ10

t the speedup of MPI/OpenMP against Spark to classify the first sample.

• SΔ20...
t the average speedup of MPI/OpenMP against Spark to classify the remaining

samples.
Conversely, we report in Table 2 the results of Pegasos SVM (Algorithms 4 and 6). In this

case Δ10

t is the time to perform the first learning iteration and Δ20...
t is the average time of the

subsequent iterations.
From Tables 1 and 2 it is possible to draw some conclusions about the performance of the

approaches over the HIGGS dataset. In particular:
• From a computational point of view, the MPI/OpenMP implementation is much more
powerful than the Spark on Hadoop alternative in terms of speed. In this particular
application, it can be more than 10 times faster.

• MPI/OpenMP scales better than Spark. This is mainly to its low level programming
language and reduced overhead (e.g. no fault handling such as in Spark). The speedup of
MPI/OpenMP over Spark is due to the dataset size with respect to the cluster size. With
a larger dataset, time differences between the two implementations would be smaller. This
is explained due to an increase of the effective computation time (e.g. classification) with
respect to the overhead of the technologies.

• For what concerns to data I/O management, MPI/OpenMP and Spark are much closer
in terms of disk access time although MPI/OpenMP is still faster. Moreover, Spark on
Hadoop is better suited to exploit the GCP infrastructure since it is able to split the data in
multiple chunks so files can be read in parallel from many sectors. This is because in GCP,
virtual disks can spread over multiple physical disks so to improve the I/O performance.
Our MPI/OpenMP implementation does not currently exploit this possibility. Future
solutions will address this issue.

6 Conclusions

As a concluding remark, we underline that even if Spark on Hadoop with in-memory data
processing reduces the gap between Hadoop MapReduce and HPC for Machine Learning, we
are still far from achieving state-of-the-art HPC technologies performance. Nevertheless, Spark
on Hadoop may be preferred because it also:

• offers a distributed file system with failure and data replication management.
• allows the addition of new nodes at runtime.
• provides a set of tools for data analysis and management that is easy to use, deploy and
maintain.

So far, an integration between Hadoop and MPI/OpenMP has not been proposed. This idea
is an interesting subject of research because it could greatly improve speed performance, an

BDA Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on BeowulfJorge L. Reyes-Ortiz, Luca Oneto and Davide Anguita

127



Algorithms Spark (Alg 3) OpenMP/MPI (Alg 5) Comparison

k NC NM TS Δ10

t (s) Δ20...
t (ms) S1 S2 Δ10

t (s) Δ20...
t (ms) S1 S2 SΔ10

t SΔ20...
t

1 4 5 1 36.07 ±1.54 189.65 ±13.49 1 1 3.2 ±0.05 18.50 ±0.43 1 1 11.28 10.25
1 4 10 2 23.82 ±1.54 124.99 ±14.99 1.51 2.61 1.6 ±0.02 10.01 ±0.21 2 1.4 14.9 12.49
1 4 20 4 13.39 ±2.77 91.66 ±13.11 2.69 3.56 0.8 ±0.01 5.43 ±0.13 3.99 2.58 16.72 16.89
1 8 5 2 22.48 ±1.58 123.86 ±09.66 1.6 2.64 3.2 ±0.05 9.37 ±0.22 1 1.49 7.02 13.22
1 8 10 4 12.43 ±2.33 87.73 ±16.67 2.9 3.72 1.6 ±0.02 5.11 ±0.11 2 2.74 7.76 17.18
1 8 20 8 9.58 ±2.25 76.32 ±19.85 3.76 4.28 0.8 ±0.01 2.90 ±0.06 3.99 4.82 11.95 26.29
1 16 5 4 14.52 ±2.91 92.57 ±14.55 2.48 3.53 3.2 ±0.05 4.91 ±0.10 1 2.85 4.54 18.84
1 16 10 8 9.01 ±0.61 69.44 ±12.79 4 4.7 1.6 ±0.02 2.89 ±0.07 2 4.84 5.64 23.99
1 16 20 16 7.45 ±1.95 76.52 ±16.03 4.84 4.27 0.8 ±0.01 1.56 ±0.04 3.99 8.95 9.29 48.93

10 4 5 1 34.73 ±1.02 209.32 ±17.40 1 1 3.2 ±0.05 31.37 ±0.67 1 1 10.87 6.67
10 4 10 2 24.56 ±1.20 150.34 ±13.15 1.41 2.09 1.6 ±0.03 19.79 ±0.41 2 1.21 15.36 7.6
10 4 20 4 14.63 ±2.44 102.30 ±16.10 2.37 3.08 0.8 ±0.01 9.28 ±0.20 3.99 2.59 18.25 11.02
10 8 5 2 22.12 ±0.32 137.79 ±09.59 1.57 2.29 3.2 ±0.04 15.96 ±0.34 1 1.5 6.91 8.63
10 8 10 4 13.52 ±2.61 99.05 ±14.51 2.57 3.18 1.6 ±0.02 9.42 ±0.22 2 2.55 8.45 10.51
10 8 20 8 9.85 ±2.24 82.26 ±20.41 3.52 3.83 0.8 ±0.01 5.14 ±0.11 4 4.67 12.32 16.01
10 16 5 4 13.25 ±2.11 104.08 ±12.19 2.62 3.03 3.2 ±0.05 8.18 ±0.19 1 2.93 4.15 12.72
10 16 10 8 9.12 ±2.72 74.90 ±11.73 3.81 4.2 1.6 ±0.02 4.24 ±0.10 2 5.66 5.7 17.67
10 16 20 16 7.31 ±1.36 85.15 ±16.79 4.75 3.7 0.8 ±0.01 2.29 ±0.05 3.99 10.47 9.13 37.16

100 4 5 1 35.62 ±0.68 214.27 ±15.12 1 1 3.2 ±0.05 130.23 ±2.81 1 1 11.11 1.65
100 4 10 2 23.64 ±1.21 153.51 ±16.04 1.52 2.28 1.6 ±0.02 66.46 ±1.62 2 1.5 14.78 2.31
100 4 20 4 15.66 ±0.78 113.64 ±14.19 2.29 3.08 0.8 ±0.01 35.25 ±0.77 4.01 2.84 19.6 3.22
100 8 5 2 22.30 ±2.52 186.39 ±96.02 1.61 1.88 3.2 ±0.04 65.27 ±1.47 1 1.53 6.97 2.86
100 8 10 4 10.98 ±0.36 136.11 ±13.11 3.27 2.57 1.6 ±0.02 34.13 ±0.73 2 2.93 6.87 3.99
100 8 20 8 9.18 ±2.38 102.86 ±29.72 3.91 3.4 0.8 ±0.01 18.44 ±0.42 4 5.42 11.48 5.58
100 16 5 4 14.31 ±1.30 144.74 ±83.47 2.51 2.42 3.2 ±0.05 32.72 ±0.79 1 3.06 4.46 4.42
100 16 10 8 10.96 ±3.94 91.55 ±11.73 3.28 3.82 1.6 ±0.02 17.12 ±0.40 2 5.84 6.83 5.35
100 16 20 16 7.32 ±2.18 111.02 ±17.71 4.9 3.15 0.8 ±0.01 8.88 ±0.20 3.99 11.26 9.14 12.5

Table 1: KNN Results

Algorithms Spark (Alg 4) OpenMP/MPI (Alg 6) Comparison

λ NC NM TS Δ10

t (s) Δ20...
t (ms) S1 S2 Δ10

t (s) Δ20...
t (ms) S1 S2 SΔ10

t SΔ20...
t

0.01 4 5 1 37.58 ±0.53 446.83 ±54.33 1 1 3.2 ±0.04 34.16 ±0.41 1 1 11.74 13.08
0.01 4 10 2 24.91 ±1.12 396.48 ±55.05 1.51 1.49 1.6 ±0.02 18.58 ±0.22 2 1.4 15.56 21.34
0.01 4 20 4 13.30 ±1.92 240.87 ±50.67 2.83 2.46 0.8 ±0.01 9.46 ±0.13 4 2.75 16.62 25.45
0.01 8 5 2 22.34 ±1.23 321.92 ±36.96 1.68 1.84 3.2 ±0.04 17.08 ±0.23 1 1.52 6.98 18.85
0.01 8 10 4 13.62 ±1.87 214.02 ±44.51 2.76 2.76 1.6 ±0.02 9.09 ±0.11 2 2.86 8.51 23.55
0.01 8 20 8 10.42 ±2.28 162.93 ±25.80 3.61 3.63 0.8 ±0.01 4.92 ±0.07 4 5.28 13.02 33.11
0.01 16 5 4 13.79 ±0.29 249.50 ±28.15 2.73 2.37 3.2 ±0.04 8.72 ±0.12 1 2.98 4.31 28.61
0.01 16 10 8 10.72 ±1.18 171.79 ±18.69 3.5 3.44 1.6 ±0.02 4.80 ±0.06 2 5.42 6.7 35.83
0.01 16 20 16 7.74 ±2.54 126.24 ±26.57 4.85 4.69 0.8 ±0.01 2.48 ±0.03 4 10.5 9.67 50.96

1 4 5 1 35.99 ±0.54 631.54 ±73.26 1 1 3.2 ±0.04 34.17 ±0.43 1 1 11.23 18.48
1 4 10 2 24.75 ±1.74 599.03 ±66.56 1.47 1.25 1.6 ±0.02 18.44 ±0.25 2 1.41 15.45 32.49
1 4 20 4 14.65 ±2.41 339.13 ±87.73 2.49 2.2 0.8 ±0.01 9.49 ±0.12 4 2.74 18.29 35.72
1 8 5 2 23.98 ±0.86 471.04 ±36.05 1.52 1.58 3.2 ±0.04 17.07 ±0.24 1 1.52 7.49 27.59
1 8 10 4 12.98 ±2.01 263.94 ±26.33 2.81 2.83 1.6 ±0.02 8.87 ±0.12 2 2.93 8.1 29.76
1 8 20 8 8.04 ±0.77 207.26 ±28.70 4.54 3.6 0.8 ±0.01 5.06 ±0.07 4 5.13 10.04 40.93
1 16 5 4 14.60 ±2.46 335.65 ±28.07 2.5 2.22 3.2 ±0.03 8.79 ±0.11 1 2.96 4.56 38.18
1 16 10 8 9.80 ±3.06 218.49 ±14.99 3.72 3.41 1.6 ±0.02 4.89 ±0.07 2 5.32 6.12 44.72
1 16 20 16 7.67 ±1.11 160.14 ±20.48 4.76 4.66 0.8 ±0.01 2.72 ±0.04 4 9.56 9.58 58.85

100 4 5 1 37.35 ±2.20 740.64 ±64.61 1 1 3.2 ±0.04 33.98 ±0.45 1 1 11.67 21.8
100 4 10 2 24.87 ±2.47 542.16 ±32.44 1.5 1.37 1.6 ±0.02 18.39 ±0.23 2 1.41 15.54 29.47
100 4 20 4 16.33 ±0.67 343.26 ±61.95 2.29 2.16 0.8 ±0.01 9.50 ±0.12 4 2.74 20.39 36.11
100 8 5 2 24.24 ±0.92 469.63 ±34.37 1.54 1.58 3.2 ±0.04 17.16 ±0.23 1 1.52 7.57 27.37
100 8 10 4 13.08 ±1.93 220.90 ±27.98 2.86 3.35 1.6 ±0.02 9.42 ±0.13 2 2.76 8.17 23.46
100 8 20 8 9.53 ±2.14 215.23 ±24.74 3.92 3.44 0.8 ±0.01 4.80 ±0.06 4 5.41 11.91 44.82
100 16 5 4 17.26 ±0.77 425.25 ±17.40 2.16 1.74 3.2 ±0.04 8.61 ±0.11 1 3.02 5.39 49.41
100 16 10 8 9.63 ±1.37 262.48 ±64.61 3.88 2.82 1.6 ±0.02 4.90 ±0.06 2 5.31 6.02 53.59
100 16 20 16 7.72 ±1.65 159.01 ±22.78 4.84 4.66 0.8 ±0.01 2.85 ±0.04 4.01 9.12 9.66 55.77

Table 2: Pegasos Results

aspect many research/industry sectors are really interested in, even at the expense of a weak
failure management. Future work will also consider the comparison of the technologies over
larger datasets, in particular, when the data cannot be fully kept in memory.

References

[1] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford. A reliable effective terascale linear learning
system. The Journal of Machine Learning Research, 15(1):1111–1133, 2014.

[2] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud computing: current
state and future opportunities. In International Conference on Extending Database Technology,
pages 530–533, 2011.

BDA Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on BeowulfJorge L. Reyes-Ortiz, Luca Oneto and Davide Anguita

128



[3] D. W. Aha. Lazy learning. Kluwer academic publishers, 1997.

[4] D. Anguita, A. Ghio, L. Oneto, and S. Ridella. In-sample and out-of-sample model selection
and error estimation for support vector machines. IEEE Transactions on Neural Networks and
Learning Systems, 23(9):1390–1406, 2012.

[5] P Baldi, P Sadowski, and D Whiteson. Searching for exotic particles in high-energy physics with
deep learning. Nature communications, 5, 2014.

[6] A. Basumallik, S. J. Min, and R. Eigenmann. Programming distributed memory sytems using
openmp. In IEEE International Parallel and Distributed Processing Symposium, pages 1–8, 2007.

[7] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In ACM Interna-
tional conference on Machine learning, pages 97–104, 2006.

[8] C. M. Bishop. Neural networks for pattern recognition. Clarendon press Oxford, 1995.

[9] O. Bousquet and A. Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

[10] L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periyathamby, X. J. Fu, and H. P. Lee. Parallel
sequential minimal optimization for the training of support vector machines. IEEE Transactions
on Neural Networks, 17(4):1039–1049, 2006.

[11] F. Cappello and D. Etiemble. Mpi versus mpi+ openmp on the ibm sp for the nas benchmarks.
In ACM/IEEE Conference on Supercomputing, pages 12–12, 2000.

[12] A. G. Carlyle, S. L. Harrell, and P. M. Smith. Cost-effective hpc: The community or the cloud?
In IEEE International Conference on Cloud Computing Technology and Science, pages 169–176,
2010.

[13] R. Caruana, S. Lawrence, and G. Lee. Overfitting in neural nets: Backpropagation, conjugate
gradient, and early stopping. In Advances in Neural Information Processing Systems, pages 402–
410, 2001.

[14] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: portable shared memory parallel
programming. MIT press, 2008.

[15] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13(1):21–27, 1967.

[16] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming.
IEEE Computational Science & Engineering, 5(1):46–55, 1998.

[17] A. Fanfarillo, T. Burnus, V. Cardellini, S. Filippone, D. Nagle, and D. Rouson. Opencoarrays:
open-source transport layers supporting coarray fortran compilers. In International Conference
on Partitioned Global Address Space Programming Models, pages 4–14, 2014.

[18] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds of clas-
sifiers to solve real world classification problems? The Journal of Machine Learning Research,
15(1):3133–3181, 2014.

[19] H. Furuta, T. Kameda, Y. Fukuda, and D. M. Frangopol. Life-cycle cost analysis for infrastructure
systems: Life cycle cost vs. safety level vs. service life. Life-cycle performance of deteriorating
structures: Assessment, design and management, pages 19–25, 2004.

[20] V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor search using gpu. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pages
1–6, 2008.

[21] Google. Google cloud platform - google compute engine. https://cloud.google.com, 2015.

[22] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of
the mpi message passing interface standard. Parallel computing, 22(6):789–828, 1996.

[23] I. Hendrickx and A. Van Den Bosch. Hybrid algorithms with instance-based classification. In
Machine Learning: European Conference on Machine Learning, pages 158–169, 2005.

[24] Intel. Intel parallel studio xe 2015 sp2. https://software.intel.com/en-us/intel-parallel-studio-xe,
2015.

[25] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. Learning Spark. O’Reilly
Media, 2015.

[26] M. Lichman. UCI machine learning repository, 2013.

BDA Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on BeowulfJorge L. Reyes-Ortiz, Luca Oneto and Davide Anguita

129



[27] E. Lusk and A. Chan. Early experiments with the openmp/mpi hybrid programming model. In
OpenMP in a New Era of Parallelism, pages 36–47, 2008.

[28] S. Mills, S. Lucas, L. Irakliotis, M. Rappa, T. Carlson, and B. Perlowitz. Demystifying big data:
a practical guide to transforming the business of government. In Technical report. http://www.
ibm. com/software/data/demystifying-big-data, pages 1–100, 2012.

[29] T. M. Mitchell. Machine learning. WCB. McGraw-Hill Boston, 1997.

[30] R. W. Numrich and J. Reid. Co-array fortran for parallel programming. In ACM Sigplan Fortran
Forum, pages 1–31, 1998.

[31] K. Olukotun. Beyond parallel programming with domain specific languages. In Symposium on
Principles and practice of parallel programming, pages 179–180, 2014.

[32] R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel programming on clusters
of multi-core smp nodes. In Euromicro International Conference on Parallel, Distributed and
Network-based Processing, pages 427–436, 2009.

[33] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. de Supinski, N. Maruyama, and S. Matsuoka.
Fmi: Fault tolerant messaging interface for fast and transparent recovery. In IEEE International
Parallel and Distributed Processing Symposium, pages 1225–1234, 2014.

[34] D. Schnitzer and A. Flexer. Choosing the metric in high–dimensional spaces based on hub analysis.
In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, pages 1–6, 2014.

[35] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-gradient
solver for svm. Mathematical programming, 127(1):3–30, 2011.

[36] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge university
press, 2004.

[37] J. Shawe-Taylor and S. Sun. A review of optimization methodologies in support vector machines.
Neurocomputing, 74(17):3609–3618, 2011.

[38] S. Sur, M. J. Koop, and D. K. Panda. High-performance and scalable mpi over infiniband with
reduced memory usage: an in-depth performance analysis. In ACM/IEEE conference on Super-
computing, page 105, 2006.

[39] V. N. Vapnik. Statistical learning theory. Wiley-Interscience, 1998.

[40] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor
classification. The Journal of Machine Learning Research, 10:207–244, 2009.

[41] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[42] Daniel Whiteson. Higgs data set. https://archive.ics.uci.edu/ml/datasets/HIGGS, 2014.

[43] X. Wu, X. Zhu, G. Q. Wu, and W. Ding. Data mining with big data. IEEE Transactions on
Knowledge and Data Engineering, 26(1):97–107, 2014.

[44] Reynold S Xin, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott Shenker, and Ion Stoica.
Shark: Sql and rich analytics at scale. In ACM SIGMOD International Conference on Management
of data, pages 13–24, 2013.

[45] Y. You, S. L. Song, H. Fu, A. Marquez, M. M. Dehnavi, K. Barker, K. W. Cameron, A. P. Randles,
and G. Yang. Mic-svm: Designing a highly efficient support vector machine for advanced modern
multi-core and many-core architectures. In IEEE International Parallel and Distributed Processing
Symposium, pages 809–818, 2014.

[46] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In USENIX Conference on Networked Systems
Design and Implementation, pages 2–2, 2012.

[47] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark:
cluster computing with working sets. In USENIX conference on Hot topics in cloud computing,
pages 10–10, 2010.

[48] Yiteng Zhai, Y Ong, and I Tsang. The emerging big dimensionality. IEEE Computational Intel-
ligence Magazine, 9(3):14–26, 2014.

BDA Data Analytics in the Cloud:
Spark on Hadoop vs MPI/OpenMP on BeowulfJorge L. Reyes-Ortiz, Luca Oneto and Davide Anguita

130


