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Preface

OpenMP is a widely accepted, standard application programming interface (API) for
high-level shared-memory parallel programming in Fortran, C, and C++. Since its
introduction in 1997, OpenMP has gained support from most high-performance
compiler and hardware vendors. Under the direction of the OpenMP Architecture
Review Board (ARB), the OpenMP specification has evolved up to and beyond version
4.5. The 4.5 version includes several refinements to existing support for heterogeneous
hardware environments, many enhancements to its tasking model including the task-
loop construct, and support for doacross loops. As indicated in the technical report
previewing version 5.0, it will include additional new features such as a tools interface
and task reductions.

The evolution of the standard would be impossible without active research in
OpenMP compilers, runtime systems, tools, and environments. OpenMP is important
both as a standalone parallel programming model and as part of a hybrid programming
model for massively parallel, distributed memory systems built from multicore,
manycore, and heterogeneous node architectures. In fact, most of the growth in par-
allelism of the upcoming exascale systems is expected to come from increased paral-
lelism within a node. OpenMP offers important features that can improve the scalability
of applications on such systems.

The community of OpenMP researchers and developers is united under the
cOMPunity organization. This organization has held workshops on OpenMP around
the world since 1999: the European Workshop on OpenMP (EWOMP), the North
American Workshop on OpenMP Applications and Tools (WOMPAT), and the Asian
Workshop on OpenMP Experiences and Implementation (WOMPEI) attracted annual
audiences from academia and industry. The International Workshop on OpenMP
(IWOMP) consolidated these three workshop series into a single annual international
event that rotates across Europe, Asia-Pacific, and the Americas. The first IWOMP
workshop was organized under the auspices of cOMPunity. Since that workshop, the
IWOMP Steering Committee has organized these events and guided development
of the series. The first IWOMP meeting was held in 2005, in Eugene, Oregon, USA.
Since then, meetings have been held each year, in Reims, France; Beijing, China;
West Lafayette, USA; Dresden, Germany; Tsukuba, Japan; Chicago, USA; Rome,
Italy; Canberra, Australia; Salvador, Brazil; Aachen, Germany; and Nara, Japan. Each
workshop has drawn participants from research and industry throughout the world.
IWOMP 2017 continues the series with technical papers and tutorials. The IWOMP
meetings have been successful in large part due to generous support from numerous
sponsors.

The IWOMP website (www.iwomp.org) provides information on the latest event, as
well as links to websites from previous years’ events. This book contains proceedings

http://www.iwomp.org


of IWOMP 2017. The workshop program included 23 technical papers, two keynote
talks, and a tutorial on OpenMP. The two-part paper by Leopold Grinberg, Carlo
Bertolli, and Riyaz Haque was selected for the Best Paper Award. All technical papers
were peer reviewed by at least three different members of the Program Committee.

September 2017 Christian Terboven
Bronis R. de Supinski

Stephen L. Olivier
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Hands on with OpenMP4.5 and Unified
Memory: Developing Applications for IBM’s

Hybrid CPU+GPU Systems (Part I)

Leopold Grinberg1(B), Carlo Bertolli1, and Riyaz Haque2

1 IBM Research, Yorktown Heights, USA
{leopoldgrinberg,cbertol}@us.ibm.com

2 LLNL, Livermore, USA
haque1@llnl.gov

Abstract. High Performance Computing is steadily embracing hetero-
geneous systems for supporting a wide variety of workloads. Currently
there are two main sources of heterogeneity in compute nodes: (a) dif-
ferent compute elements such as multicore CPUs, GPUs, FPGAs, etc.
and (b) different types of memory including DDR, HBM, SSDs. Mul-
tiple compute elements and memory types present many opportunities
for accelerating applications featuring stages characterized by different
compute intensity, sequential or parallel execution, cache sensitivity, etc.
At the same time programmers are facing multiple challenges in mak-
ing necessary adaptations in their codes. In this study we employ IBM’s
OpenMP 4.5 implementation to program hybrid nodes with multiple
CPUs and GPUs and manage on-node memories and application data.
Through code samples we provide application developers with numerous
options for memory management and data management. We consider
simple functions using arrays and also complex and nested data struc-
tures.

Keywords: OpenPOWER · HPC · Offloading · Directive based pro-
gramming

1 Introduction

Over the years computer systems for High Performance Computing (HPC), and
more recently High Performance Analytics (HPA), have become a back-bone for
businesses and research organizations. Modernization of such resources typically
occurs in three- to six-year cycles, requiring application developers to quickly
adapt their codes to new systems. Transition from one system to another often
requires considerable code restructuring and optimization. While taking advan-
tage of new system features like multiple compute elements is important, it is
equally necessary to ensure a speedy and cost-effective transition of applications.
Besides refactoring applications due to system evolution, addressing code (and
library) portability across disparate systems is often a major consideration as
c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 3–16, 2017.
DOI: 10.1007/978-3-319-65578-9 1



4 L. Grinberg et al.

well. To this end, while actual programming strategies vary from one organiza-
tion to another, they are broadly defined by two metrics: (a) the path of least
disruption for porting applications from one system to another (portability) and
(b) the time-to-solution (performance) on each system. Hardware and system-
software vendors attempt to provide developers ways to achieve both with a
reasonable balance.

From a software perspective, the two major requirements for achieving per-
formance portability are: (a) readiness of applications to support data layouts,
data structures and parallelism suitable for various compute devices and mem-
ory pools; and (b) programming models permitting compilers to generate codes
for multiple compute devices from a single source. From a hardware perspective,
support for features such as Unified Memory (UM), low latency in switching
execution from one device to another, high memory-bandwidth between all ele-
ments of a heterogeneous node are needed for applications that can benefit from
using heterogeneous resources.

In this paper, our specific contribution is in providing software developers
with guidance on managing memory and data onto heterogeneous memory sub-
systems using IBM’s OpenMPR©4.5 implementation. We are focusing not only
on the semantics of individual OpenMP4.5 constructs or API calls, but also how
these can be productively combined together in a larger, production-level, appli-
cation scenario. To our knowledge, this is the first paper that gives a detailed
programming-oriented description of these OpenMP4.5 features.

This paper is structured as follows: in Sect. 2 we briefly review the evolution
of the OpenMP standard from supporting threading on multi-core CPUs to
providing tools for programming hybrid nodes with multiple compute elements
and memories. In Sects. 3 and 4 we provide a number of scenarios for managing
data starting with a simple application using array pointers and then moving on
to more complex data structures based on object inheritance and nested classes.
In Sect. 5 we conclude with a brief summary and outlook.

Related prior work includes a discussion on deep copy as part of a technical
report of the OpenACC standard [3]. The report shows how the base language
can be extended to natively support complex class hierarchies and structures,
including objects containing pointers to dynamically allocated arrays or other
objects. Unlike the conclusions of that report, we do not propose extensions
to the OpenMP language in this paper but instead demonstrate mapping of
complex data structures using current OpenMP specifications. Automatic deep
copy support is also the subject of [2] where the authors take an experimental
approach.

The study presented here will be extended in Hands on with OpenMP4.5 and
Unified Memory: Developing applications for IBM’s hybrid CPU+GPU systems
(Part II), where we will provide guidance on how programmers can take advan-
tage of specific features present in OpenPOWERR©systems.
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2 Evolution of OpenMP to Accelerator Programming

OpenMP is a standard adopted and implemented by most HPC vendors as a
programming language based on a shared memory model. Before the OpenMP4
era the standard focused on expressing parallelism in multicores, and starting
with OpenMP4, it evolved to support special architectural combinations that
couple common multicore processors (host) and accelerators (devices). Standard
versions for OpenMP4 and beyond focus not only on expressing parallelism in a
shared memory programming model, but also on nested parallelism, switching
execution between host and device and managing disjoint physical memories.
OpenMP4 allows programmers to use a single programming language, and design
applications that run on host (CPUs) and devices (such as GPUs).

A full description of OpenMP4.5 data and programming constructs is beyond
the scope of this paper (see [1,4,5] for details and examples). In this study we
will only focus on a subset of OpenMP4.5 functionality.

3 Porting Simple Kernels to GPUs with OpenMP4.5

In this section we describe ways for allocating device memory and transferring
data between host and device. To illustrate the techniques we consider two simple
functions called in sequence and using the same arrays. Specifically, we consider
(1) a simple daxpy operation (line 9, Fig. 1) executed in parallel; and (2) data
initialization function initialize x and y (line 11, Fig. 1) which can also be
executed in parallel.

1 int main ( ) {
2 double ∗x , ∗y ;
3 double alpha = 2 . 0 ;
4 int N=1024∗1024∗10;
5 x = (double ∗) mal loc (N∗ s izeof (double ) ) ;
6 y = (double ∗) mal loc (N∗ s izeof (double ) ) ;
7 i n i t i a l i z e x a n d y (x , y ,N) ;
8 #pragma omp paral le l for
9 for ( int i = 0 ; i < N; i++) y [ i ] = alpha∗x [ i ]+y [ i ] ;

10 }
11 void i n i t i a l i z e x a n d y (double ∗x , double ∗y , int N) {
12 #pragma omp paral le l for
13 for ( int i =0; i<N; ++i ) {x [ i ] = i ∗0 . 001 ; y [ i ] = i ∗0 . 03 ;}
14 }

Fig. 1. Code for illustrating data management strategies

In order to offload the daxpy kernel and the array initialization kernel to
the device we need to perform two operations: (1) make the data visible to the
device; and (2) to specify that execution of the loops should be on the device. The
rest of the section describes several options developers can employ for managing
data.
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1 int main ( ) {
2 double ∗x , ∗y ;
3 double alpha = 2 . 0 ;
4 int N=1024∗1024∗10;
5 x = (double ∗) mal loc (N∗ s izeof (double ) ) ;
6 y = (double ∗) mal loc (N∗ s izeof (double ) ) ;
7 i n i t i a l i z e x a n d y (x , y ,N) ;
8 #pragma omp target teams distribute paral le l for map( to : x [ 0 :N] ) map(

tofrom : y [ 0 :N] )
9 for ( int i = 0 ; i < N; i++) y [ i ] = alpha∗x [ i ]+y [ i ] ;

10 }
11 void i n i t i a l i z e x a n d y (double ∗x , double ∗y , int N) {
12 #pragma omp target teams distribute paral le l for map( from : x [ 0 :N] , y [ 0 :

N] )
13 for ( int i =0; i<N; ++i ) {x [ i ] = i ∗0 . 001 ; y [ i ] = i ∗0 . 03 ;}
14 }

Fig. 2. Mapping data: code for illustrating Option 1

Option 1: The initial conditions here are that all the memory for arrays x and y
have been allocated in the host memory using calls to malloc. The simplest way
to make the data available to threads running on the device is to use the map
clause available in OpenMP4.5.

The OpenMP4.5 specification for the map clause states: “... The original and
corresponding list items may share storage such that writes to either item by
one task followed by a read or write of the other item by another task without
intervening synchronization can result in data races...” [5]. Thus, the specifica-
tion allows implementations to choose between providing a shared storage or
replicating list items on a device. IBM’s implementation of the map clause for an
NVIDIA GPU device (considered in this study) avoids creating a shared storage
and instead allocates memory on the device, and if required, also copies data
between host and device.

In the example presented in Fig. 2, the implementation of the
map(to:x[0:N]) clause leads to three operations: (1) allocating memory on the
device; (2) copying data from the host; (3) deallocating device memory after the
computations are completed. The device’s threads will operate on the mapped
array x. The implementation of the clause map(tofrom:y[0:N]) leads to the
following operations: (1) allocating memory on the device; (2) copy data from
the host to the device before the start of the target region; (3) copy data from
the device to the host after completion of the computations in the target region;
(4) deallocation of device memory after the copying data to the host. Similarly,
the map(from:x[0:N],y[0:N]) clause used in the initialize x and y function
will allocate memory on the device, copy the data from device to host memory
after the initialization performed in the target region, and deallocate the device
memory. Memory allocations and copying data between host and device are time
consuming operations and they should be minimized in order to achieve good
overall performance. We next show a way of reducing the cost associated with
memory management.

Option 2: The main idea here is to allocate/deallocate device memory only once,
and eliminate data transfer between the two code regions executed on the device.
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Here we make use of OpenMP4.5 directive target enter/exit data as an alterna-
tive way of managing data. In the algorithm of Fig. 3 we present an implementation
using these data directives. The memory buffers x and y are mapped when the run-
time control flow reaches the invocation of the target enter data directive (i.e.
the call inserted by the compiler in its place). Mapping with map(alloc:) only
results in allocation in device memory of the space indicated by the array sections,
and it does not incur any data transfer. As the data is initialized and consumed
on the device there is no need for data transfer between host and device. Device
memory allocated by target enter data will not be released until a correspond-
ing target exit data is encoutered. In our example buffer x is discarded (release)
without requiring any data transfers between host and device, while y, the result of
the computation on the device, is copied back from device to hostmemory following
by device memory deallocation. Note that in the function initialize x and y as
well as in the daxpy kernel we make an assumption that arrays x and y have already
been mapped. Due to this assumption, calling function initialize x and ywith-
out prior mapping of x and y will result in a run-time failure.

A somewhat better approach for managing data in the initialize x and y
function would be to probe if x and y have already been mapped to the device
memory and then use the if clause to enable or disable memory operations.

1 int main ( ) {
2 double ∗x , ∗y ;
3 double alpha = 2 . 0 ;
4 int N=1024∗1024∗10;
5 x = (double ∗) mal loc (N∗ s izeof (double ) ) ;
6 y = (double ∗) mal loc (N∗ s izeof (double ) ) ;
7 #pragma omp target enter data map( a l l o c : x [ 0 :N] , y [ 0 :N] )
8 i n i t i a l i z e x a n d y (x , y ,N) ;
9 #pragma omp target teams distribute paral le l for

10 for ( int i = 0 ; i < N; i++) y [ i ] = alpha∗x [ i ]+y [ i ] ;
11 #pragma omp target exit data map( r e l e a s e : x [ 0 :N] ) map( from : y [ 0 :N] )
12 }
13 void i n i t i a l i z e x a n d y (double ∗x , double ∗y , int N) {
14 #pragma omp target teams distribute paral le l for
15 for ( int i =0; i<N; ++i ) {x [ i ] = i ∗0 . 001 ; y [ i ] = i ∗0 . 03 ;}
16 }

Fig. 3. Mapping data: code for illustrating Option 2

1 void i n i t i a l i z e x a n d y (double ∗x , double ∗y , int N) {
2 int i s x mapped = omp ta r g e t i s p r e s en t (x , omp ge t de f au l t d ev i c e ( ) ) ;
3 int i s y mapped = omp ta r g e t i s p r e s en t (y , omp ge t de f au l t d ev i c e ( ) ) ;
4 #pragma omp target enter data map( a l l o c : x [ 0 :N] ) i f ( ! is x mapped )
5 #pragma omp target enter data map( a l l o c : y [ 0 :N] ) i f ( ! is y mapped )
6
7 #pragma omp target teams distribute paral le l for
8 for ( int i =0; i<N; ++i ) {x [ i ] = i ∗0 . 001 ; y [ i ] = i ∗0 . 03 ;}
9

10 #pragma omp target exit data map( from : x [ 0 :N] ) i f ( ! is x mapped )
11 #pragma omp target exit data map( from : y [ 0 :N] ) i f ( ! is y mapped )
12 }

Fig. 4. Code for illustrating Option 2, where function initialize x and y can be called
with or without prior mapping of arrays x and (or) y
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The algorithm in Fig. 4 contains an alternative code for the initialize x and y
function. For deeply nested functional calls the approach presented in this algo-
rithm allows us to make sure that data needed inside the target region exe-
cuted on the device will be mapped and on exit the host copy will be updated
and memory will be deallocated unless the memory management has already
been taken care of in the preceding code sections; in another words the function
initialize x and y now can be called from anywhere in the program and it
will automatically allocate and deallocate device memory and update the host
copy or skip memory allocation and data copy depending whether the arrays x
and y are already present on the device.

Option 3: OpenMP4.5 provides a runtime function for allocating device memory
with the API call omp target alloc. It also provides an API for associating a
pointer to memory allocated on a device memory with a host pointer through
a call to omp target associate ptr as shown in the algorithm of Fig. 5. This
method for allocating memory on a host and a device gives greater flexibility
when memory pools for temporary arrays are used. Note that the directives
applied to the for loop executing daxpy and the initialize x and y function
are exactly the same as in the previous examples.

Option 4: The code in previous examples requires allocating host and device
memories for both arrays, even though host memory allocation is not actu-
ally needed. OpenMP 4.5 provides opportunity to avoid unnecessary memory
allocations by allowing the use of valid device memory pointers in the target
regions executed on the device as shown in Fig. 6. Note that in the function

1 double ∗x , ∗y ;
2 double ∗d x , ∗d y ;
3 double alpha = 2 . 0 ;
4 int N=1024∗1024∗10;
5 x = (double ∗) mal loc (N∗ s izeof (double ) ) ;
6 y = (double ∗) mal loc (N∗ s izeof (double ) ) ;
7 omp s e t d e f au l t d ev i c e (0 ) ;
8 d x = (double∗) omp ta rg e t a l l o c ( s izeof (double )∗N,

omp ge t de f au l t d ev i c e ( ) ) ;
9 d y = (double∗) omp ta rg e t a l l o c ( s izeof (double )∗N,

omp ge t de f au l t d ev i c e ( ) ) ;
10 omp ta r g e t a s s o c i a t e p t r ( (void ∗) x , (void ∗) d x , s izeof (double )∗N, 0 ,

omp ge t de f au l t dev i c e ( ) ) ;
11 omp ta r g e t a s s o c i a t e p t r ( (void ∗) y , (void ∗) d y , s izeof (double )∗N, 0 ,

omp ge t de f au l t dev i c e ( ) ) ;
12 i n i t i a l i z e x a n d y (x , y ,N) ;
13 #pragma omp target teams distribute paral le l for
14 for ( int i = 0 ; i < N; i++)
15 y [ i ] = alpha∗x [ i ]+y [ i ] ;
16 #pragma omp target update from( y [ 0 :N] )
17 omp ta r g e t d i s a s s o c i a t e p t r ( ( void ∗) x , omp ge t de f au l t d ev i c e ( ) ) ;
18 omp ta r g e t d i s a s s o c i a t e p t r ( ( void ∗) y , omp ge t de f au l t d ev i c e ( ) ) ;
19 omp ta rge t f r e e ( ( void ∗) d x , omp ge t de f au l t dev i c e ( ) ) ;
20 omp ta rge t f r e e ( ( void ∗) d y , omp ge t de f au l t dev i c e ( ) ) ;
21 f r e e (x ) ;
22 f r e e (y ) ;

Fig. 5. Mapping data: code for illustrating Option 3
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1 int main ( ) {
2 double ∗y , ∗d x , ∗d y ;
3 double alpha = 2 . 0 ;
4 int N = 1024 ∗ 1024 ∗ 10 ;
5 y = (double ∗) mal loc (N∗ s izeof (double ) ) ;
6 omp s e t d e f au l t d ev i c e (0 ) ;
7 d x = (double∗) omp ta rg e t a l l o c ( s izeof (double )∗N,

omp ge t de f au l t dev i c e ( ) ) ;
8 d y = (double∗) omp ta rg e t a l l o c ( s izeof (double )∗N,

omp ge t de f au l t dev i c e ( ) ) ;
9 i n i t i a l i z e x a n d y ( d x , d y ,N) ;

10 #pragma omp target teams distribute paral le l for is device ptr ( d x , d y )
11 for ( int i = 0 ; i < N; i++)
12 d y [ i ] = alpha∗d x [ i ]+d y [ i ] ;
13
14 omp target memcpy ( ( void ∗) y , (void ∗) d y , s izeof (double )∗N, 0 , 0 ,
15 omp g e t i n i t i a l d e v i c e ( ) , omp ge t de f au l t dev i c e ( ) ) ;
16 omp ta rge t f r e e ( ( void ∗) d x , omp ge t de f au l t dev i c e ( ) ) ;
17 omp ta rge t f r e e ( ( void ∗) d y , omp ge t de f au l t dev i c e ( ) ) ;
18 f r e e (y ) ;
19 }
20 void i n i t i a l i z e x a n d y (double ∗x , double ∗y , int N) {
21 #pragma omp target teams distribute paral le l for is device ptr (x , y )
22 for ( int i =0; i<N; ++i ) {x [ i ] = i ∗0 . 001 ; y [ i ] = i ∗0 . 03 ;}
23 }

Fig. 6. Mapping data: code for illustrating Option 4

initialize x and y (Fig. 6) we make an assumption that input arguments x
and y are valid device pointers, execution will fail otherwise.

3.1 Performance Assesment: Data Streaming Kernel

In this section we report on performance of a simple kernel presented in Fig. 7
on a GPU (P-100) and on a CPU (POWER8). We focus on achieved memory
bandwidth (BW) utilization as the performance metric. Kernel execution time
is measured by means of the omp get wtime() API and by using NVIDIA’s
profiling tool - nvprof; the size of each array was set to 64E+07 bytes. Data
from our experiments are presented in the table below. Columns two and three
correspond to code using OpenMP4.5 directives for offloading, while column four
corresponds to results obtained using CUDA.

1 int nthreads = 256 ;
2 int nteams = (N + nthreads − 1) / nthreads ;
3 t s t a r t = omp get wtime ( ) ;
4 #pragma omp target teams distribute paral le l for thread limit ( nthreads

) num teams( nteams ) i f ( target :USE DEVICE)
5 for ( i = 0 ; i < N; ++i ){
6 c [ i ] = a [ i ]+b [ i ] ;
7 d [ i ] = a [ i ]−b [ i ] ;
8 }
9 t end = omp get wtime ( ) ;

Fig. 7. Data streaming kernel used for performance evaluation
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OpenMP timer nvprof timer CUDA

Timing 5.06 ms 4.91 ms 4.96 ms

Achieved BW 471GB/s 485 GB/s 480 GB/s

The data presented here shows comparable performance for CUDA and
OpenMP4.5. Both programming models achieve about 65% of the GPU peak
memory BW (732 GB/s). The small differences in timings obtained with codes
using OpenMP4.5 and CUDA are in the range of normal time variation. The
difference in the timings measured with omp get wtime() API and nvprof is
composed of: (i) the kernel launch overhead (about 0.046 ms, measured with
nvprof); and the OpenMP4.5 overhead associated with the search for device
pointers corresponding to arrays a, b, c and d. Performance of the kernel pre-
sented in Fig. 7 was also measured on a ten-core POWER8 CPU, using one
thread per core; switching execution from the GPU to the CPU was obtained
by setting USE DEVICE=0, without modifications to the code (including the
OpenMP4.5 directives). The achieved kernel memory BW on the POWER8 CPU
is 64 GB/s. Considering that the achievable write memory BW is about 39 GB/s
(half of the achievable read BW) we can claim that about 82% of the achievable
BW has been reached. We can note that the overhead due to creating a parallel
region is included in the timing and it is effectively reducing the measured BW
utilization.

Overall our experiments show that for data streaming kernels, like the one
presented in Fig. 7, performance portability is obtained.

4 Mapping of Complex Data Structures

The OpenMP4.5 map clause is used for managing memory and data across host
and device address spaces. While usually straightforward for native and simple
POD types, mapping C++ objects is more involved especially in the presence
of member data types like pointers and other objects. In this section we will
present different ways to deal with complex C++ class structures.

4.1 Mapping class/struct Member Pointers

Let us start by considering a simple struct A (Fig. 8) that contains a pointer
to an array of integers and a scalar of a type int. In order to make the data
associated with an object of type struct A available on a device, the following
operations must be performed in the device memory: (1) memory allocation for
object of type struct A; (2) constructor call for struct A; (3) copying the value
of the scalar struct member of a type int from host to device; (4) device memory
allocation for the array of integers y and, if desired, copying the content of the
host y buffer into the allocated device memory; and (4) updating the device copy
of the object’s member pointer y to the appropriate device memory address.
Current OpenMP4.5 standard does not natively support this set of operations



Hands on with OpenMP4.5 and Unified Memory 11

1 struct A {
2 int∗ y ;
3 int s i z e ;
4 A( const int∗ y , const long s i z e ) : y (y ) , s i z e ( s i z e ) {}
5 } ;
6
7 int n = 100 ;
8 int ∗y = ( int ∗) mal loc (n∗ s izeof ( int ) ) ;
9 A∗ a = new A(y , n) ;

10
11 // Map array y and ob j ec t a to the device using the map c lause
12 #pragma omp target map( to : a [ 0 : 1 ] ) map( to : y [ 0 : n ] )
13 {
14 // Incorrect because a−>y s t i l l ho lds the host address
15 a−>y [ 3 ] += . . . ;
16 }

Fig. 8. Mapping member pointers (improper)

in a single construct, often referred to as deep copy. Hence if an object contains
a member data pointer that is required on the device then, explicit mapping of
the data pointed to by this pointer is required. In Fig. 8 we illustrate a possible
mapping of an object of a type struct A to the device. The operation defined by
map(to:a[0:1]) fulfills the requirements (1), (2) and (3), while the operation
map(to:y[0:n]) fulfills the requirement (4). However, the code does not work
because a->y on the device (line 15) still refers to the original host address, i.e.
the requirement (5) has not been fulfilled. Mapping only the object merely copies
the member pointer’s host address. It is also necessary to set a->y within a’s
device copy to the appropriate device address.

Figure 9 shows three ways to set the member pointer a->y to the correct
device address. For option 1 in this example, line 2 fulfills requirements (1), (2)
and (3), while line 3 fulfills the remaining requirements (4) and (5). According
to the OpenMP4.5 specification, mapping the same memory address more than
once results in undefined behavior. Hence, for option 1 to work correctly, it is
important that requirement (4) is not fulfilled prior to line 2 i.e. the address range
referred to by a->y is not already mapped when line 2 executes. In the same
example, operations map(to:a[0:1]) and map(to:y[0:n]) fulfill the require-
ments (1) through (4) on lines 11 (for option 2) and 21 (for option 3). The last
requirement (5) is then fulfilled on lines 14 and 27 respectively for options 2 and
3. Option 2 utilizes an extra target region for updating the member pointer
(line 15). Option 3 performs an update on line 27 with the device address
obtained at line 21 through the use device ptr clause.

Mapping an object from the device to the host requires caution to avoid
overwriting pointer y to host memory in the object resident in host memory. For
options 2 and 3 in Fig. 9 if the map type tofrom is used instead of to (enter
data directive used in option 1 does not allow tofrom), then upon exiting the
target data region (lines 19 and 33), the object a is copied back from the device
to the host as expected. But as a result of this, a->y’s host copy is updated with
the device address, which is not valid on the host. Worse still, the original (host)
address is lost during the copy making it impossible to even retrieve the correct
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1 // Option 1 : Map ob j ec t a fo l l owed by mapping of a−>y
2 #pragma omp target enter data map( to : a [ 0 : 1 ] )
3 #pragma omp target enter data map( to : a−>y [ 0 : n ] )
4 #pragma omp target
5 a−>y [ 3 ] += . . . ;
6
7 #pragma omp target exit data map( delete : a−>y [ 0 : n ] )
8 #pragma omp target exit data map( delete : a [ 0 : 1 ] )
9

10 // Option 2 : Map array y and ob j ec t a
11 #pragma omp target data map( to : y [ 0 : n ] ) map( to : a [ 0 : 1 ] )
12 {
13 // Update a−>y using a ta rge t region
14 #pragma omp target
15 a−>y = y ;
16
17 #pragma omp target
18 a−>y [ 3 ] += . . . ;
19 }
20 // Option 3 : Map array y and ob j ec t a , and obtain the device address

of array y
21 #pragma omp target data map( to : y [ 0 : n ] ) map( to : a [ 0 : 1 ] ) u s e d ev i c e p t r ( y )
22 {
23 int∗ temp = a−>y ;
24 // Temporarily ass ign the device address of y to a−>y
25 a−>y = y ;
26 // Update pointer a−>y on the device to the device pointer
27 #pragma omp target update to ( a−>y )
28 // Reset pointer a−>y on the host to the o r i g i na l host address
29 a−>y = temp ;
30
31 #pragma omp target
32 a−>y [ 3 ] += . . . ;
33 }

Fig. 9. Mapping member pointers (proper)

address. This can be avoided by storing the host pointer value in another member
pointer (leads to object bloating), updating data members individually (leads
to many fine-grained updates and may be limited by object access qualifiers),
or using a transparent host-device memory addressing scheme. We discuss the
last alternative in detail in the second part of this paper, on integrating CUDA
Unified Memory with OpenMP4.5.

Lastly, the need for updating pointers inside mapped objects also implies
that virtual inheritance does not work correctly for mapped objects since this
would require appropriately setting virtual-table pointers; something not allowed
explicitly in C++. It should be noted that this applies only to objects created
on the host and accessed on the device (and vice-versa). Objects created—and
exclusively used—on the device can use virtual inheritance normally, albeit at
the cost of performance. Moreover, correctly mapped objects comprising of, but
not using virtual functions on the device also work.

4.2 Mapping Base and Member Classes

OpenMP 4.5 standard provides stand-alone enter/exit data directives to map
(unmap) data independent of syntactical scope. A possible strategy for map-
ping (unmapping) objects to the device is to put these constructs in the object
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1 struct C {
2 double y ;
3 C(double y ) : y (y ) {
4 C∗ t h i s = this ;
5 #pragma omp target enter data map( to : t h i s [ 0 : 1 ] )
6 }
7 } ;
8 struct B {
9 int n ;

10 double∗ x ;
11 B( int n) : n(n) {
12 x = (double∗) mal loc (n∗ s izeof (double ) ) ;
13 for ( int i = 0 ; i < n ; ++i ) x [ i ] = i ;
14 B∗ t h i s = this ;
15 #pragma omp target enter data map( to : t h i s [ 0 : 1 ] )
16 #pragma omp target enter data map( to : x [ 0 : n ] )
17 }
18 } ;
19 struct A : public B {
20 int n ;
21 double y ;
22 C c ;
23 A( int n , double y ) : B(n) , n(n) , y (y ) , c ( y∗y ) {
24 A∗ t h i s = this ;
25 #pragma omp target enter data map( to : t h i s [ 0 : 1 ] )
26 }
27 } ;
28 // Create ob j e c t of type A. Undefined behavior
29 A a (10 , 20 . 0 ) ;
30
31 #pragma omp target
32 { p r i n t f ( ”a . n = %d , a . y = %d\n” , a . n , a . y ) ; //Undefined behavior }

Fig. 10. Mapping C++ objects (improper)

constructors (destructors) in order to hide the complexity of mapping objects
from users. While this is a valid approach, for general C++ objects this requires
an abundance of caution. To illustrate the advantages and issues with such a
mapping strategy let us consider the following two examples (Figs. 10 and 12).

Creating object a (line 29, Fig. 10) triggers a cascade of events including
initialization of class A’s bases and members and attempts to map host memory
segments to a device. Before the host memory associated with the object a can
be mapped (line 25, Fig. 10) the constructor for base class B is invoked (line 11,
Fig. 10). This constructor maps a memory segment associated with type B to
the device (line 15, Fig. 10). Since this memory segment is a subregion of the
segment allocated for object a (B being the base class), and that subregion has
been already mapped, the effect of trying to map object a later on line 25 is
undefined. The map directive for member class C (line 5) also poses the exact
same problem.

Clearly, trying to hide the complexity of mapping from a user (who may only
need to create a and treat the constructor of A as a black box) results in an incor-
rect initialization order where an object’s constituents (base and member) end
up getting mapped before the object itself. In the next example we demonstrate
a technique that enforces the proper mapping order and resolves this issue.

First we introduce a templated class Mapper as shown in Fig. 11. Note the
variable Mapper<T>.iMapped which is initialized before seeking to map the



14 L. Grinberg et al.

1 template<typename T>
2 class Mapper {
3 private :
4 T∗ ptr ;
5 bool iMapped ;
6 public :
7 Mapper (T∗ ptr ) : ptr ( ptr ) {
8 iMapped = ! omp ta r g e t i s p r e s en t ( ptr , omp ge t de f au l t dev i c e ( ) ) ;
9 // map only i f the ta r ge t i s not a lready present

10 #pragma omp target enter data map( to : ptr [ 0 : 1 ] ) i f ( iMapped )
11 }
12 ˜Mapper ( ) {
13 // unmap only i f t h i s mapper mapped i t
14 #pragma omp target exit data map( delete : ptr [ 0 : 1 ] ) i f ( iMapped )
15 ptr = NULL;
16 }
17 } ;

Fig. 11. Mapper class for mapping C++ objects

memory associated with a class T (line 8, Fig. 11). This variable evaluates to
true if the corresponding memory segment has not been mapped, allowing the
map clause to succeed. On the other hand, if a memory segment associated with
the object has already been mapped, the variable evaluates to false precluding
any attempt to map the same memory (or its subregion) again. More impor-
tantly, during object destruction, the memory unmapping will only occur if the
mapping was done within the object constructor. Note the similarity of this
approach to the technique presented in Fig. 4 to locally control mapping and
unmapping of arrays within a function.

Next we modify the code presented in Fig. 10 to extend the classes to be
mapped such that the Mapper class is declared as their first base class (Fig. 12).
Being the first base class of A, Mapper<A>’s constructor gets invoked prior to
any other action of A’s constructor (line 22, Fig. 12), and it correctly maps an
object of size A to the device. Any subsequent calls to map a slice of A (e.g.
through Mapper<B> and Mapper<C> on lines 11 and 3, Fig. 12) are prevented as
explained above. Conversely, during object destruction, only the destructor for
Mapper<A> is allowed to unmap the object preventing a constituent slice of the
object from being unmapped prematurely. Note that all the previous map direc-
tives for the object (lines 5, 15 and 25, Fig. 10) are replaced with corresponding
update clauses (lines 5, 14 and 24, Fig. 12). However, map directives specific to
data members (e.g. B.x on line 15 and 14 in Figs. 10 and 12 respectively) remain
unchanged. This idiom of enforcing the correct map/unmap sequence using the
order of object construction allows creating and mapping of objects of type B
and C as stand alone objects (i.e., not being members of A). While the classes
B and C need not necessarily extend the Mapper themselves, it is still necessary
to predicate their map and unmap directives with a guard condition similar to
the variable Mapper.iMapped. In case of virtual bases, the Mapper needs to be
made a virtual base itself.

Finally, we want to emphasize that placing data directives (such as map and
update) inside a constructor prohibits using that constructor inside a target
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1 struct C : public Mapper<C> {
2 double y ;
3 C(double y ) : Mapper<C>(this ) , y (y ) {
4 C∗ t h i s = this ;
5 #pragma omp target update to ( t h i s [ 0 : 1 ] )
6 }
7 } ;
8 struct B : public Mapper<B> {
9 int n ;

10 double∗ x ;
11 B( int n) : Mapper<B>(this ) , n (n) {
12 x = (double∗) mal loc (n∗ s izeof (double ) ) ;
13 for ( int i = 0 ; i < n ; ++i ) x [ i ] = i ;
14 #pragma omp target update to ( this−>n)
15 #pragma omp target enter data map( to : x [ 0 : n ] )
16 }
17 } ;
18 struct A : public Mapper<A>, public B {
19 int n ;
20 double y ;
21 C c ;
22 A( int n , double y ) : Mapper<A>(this ) , B(n) , n (n) , y (y ) , c ( y∗y ) {
23 A∗ t h i s = this ;
24 #pragma omp target update to ( t h i s [ 0 : 1 ] )
25 }
26 } ;
27
28 // Create ob j e c t of type A. OK
29 A a (10 , 20 . 0 ) ;
30
31 #pragma omp target
32 { p r i n t f ( ”a . n = %d , a . y = %d\n” , a . n , a . y ) ; //OK }

Fig. 12. Mapping C++ objects using the Mapper class presented in Fig. 11

region executed on a device. In that case, it would be required to provide a con-
structor version without the directives. Alternatively we can apply the directives
separately from the constructor. This, however needs programmer discipline to
ensure that a class is mapped/updated/unmapped in a manner consistent with
its creation/destruction. It might also require persisting hitherto local construc-
tor data for later use by the directives increasing the overall object size.

5 Summary

Programming systems with multiple memories and compute devices using
OpenMP 4.5 demand careful architecting data and memory management
schemes. The pay off for adding extra code lines and additional complexity
in code design is in code portability, i.e., opportunity to deploy applications
on architecturally different systems. Having a portable application based on a
single source code is a first step for achieving the ultimate goal - performance
portability.
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Abstract. Integration of multiple types of compute elements and mem-
ories in a single system requires proper support at a system-software level
including operating system (OS), compilers, drivers, etc. The OS helps
in scheduling work on different compute elements and manages memory
operations in multiple memory pools including page migration. Com-
pilers and programming languages provide tools for taking advantage of
advanced architectural features. In this paper we encourage code develop-
ers to work with experimental versions of compilers and OpenMP stan-
dard extensions designed for hybrid OpenPOWER nodes. Specifically,
we focus on nested parallelism and Unified Memory as key elements for
efficient system-wide programming of CPU and GPU resources of Open-
POWER. We give implementation details using code samples and we
discuss limitations of the presented approaches.

Keywords: OpenPOWER · HPC · Offloading · Directive based pro-
gramming · Nested parallelism

1 Introduction

Programming applications for specific hardware components as well as taking
advantage of specific system software typically have a two-fold effect: (a) achiev-
ing higher performance and productivity on a given class of systems; and (b)
adversely affecting the application portability and/or performance portability
to other systems. In addition to these considerations, taking advantage of hard-
ware and system software innovations available in a subset of emerging systems
sets a tone and directions for developing future systems for High Performance
Computing and Analytics. It also fuels advances in language features and stan-
dard evolution.

In the first part of this two-part paper (Hands on with OpenMP4.5 and
Unified Memory: Developing applications for IBM’s hybrid CPU+GPU systems
(Part I) [3] we discussed how node memory and application data can be managed
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using OpenMP4.5 directives. In this Part II we introduce methodologies taking
advantage of hardware and software features which are more advanced and in
part not fully supported by the OpenMP4.5 standard. Specifically, we will discuss
three advanced topics: nested parallelism, use of Unified Memory and use of
GPU’s on-chip memory.

Our scope here is limited to programming IBM’s system containing multi-
ple POWERR©CPUs and NVIDIAR©GPUs with a directive based programming
model. Here we employ the OpenMP4.5 standard [5] and IBMR©extensions to
the standard (supported in the open source CLANGR©and IBM’s proprietary
XLR©compilers) to program CPUs (host) and GPUs (device) and manage on-
node memories. IBM’s current hybrid CPU-GPU nodes, such as two-socket
MinskyR©nodes containing two ten-core POWER8R©CPUs and four P-100 GPUs
interconnected with NVLink 1.0 provide many opportunities for nested par-
allelism and concurrent execution on all compute elements. These nodes also
support Unified Memory (UM) that provides a pool of memory accessible on the
CPU and the GPU using a single pointer. To take advantage of UM at the present
time, we rely on interoperability between OpenMP4.5 and CUDAR©, and use of
CUDA Managed Memory [7,8]. Use of UM substantially simplifies managing
application data on heterogeneous systems. However, whereas the OpenMP4.5
standard encompasses UM support, current implementations do not support it.
Pointers to buffers allocated using CUDA Managed Memory can be treated as
valid device pointers inside OpenMP4.5 target regions, but the OpenMP com-
piler and runtime implementations considered in this paper do not support the
concept of replacing the explicit data transfers between the host and device with
features provided by the UM. Consequently, porting codes based on UM and
OpenMP4.5 to systems not supporting UM may require some adaptations.

This paper makes the following contributions:

– In Sect. 2 we describe a scheme allowing nested parallelism and simultaneous
execution of codes on host and devices using OpenMP4.5 directives.

– In Sect. 3 we show how architecture-specific memory support can be inte-
grated in the codes programmed with OpenMP4.5. Specifically, we present
an example making use of a section of the GPU’s L1-cache which can be
explicitly managed by compilers in order to host application data.

– In Sect. 4 we describe ways to develop applications using OpenMP4.5 direc-
tives and UM on systems with adequate hardware and software support. We
also discuss the advantages and limitations of this approach.

To our knowledge, this is the first paper that exposes the integration of
advanced system-software and hardware features in codes programmed using
OpenMP4.5. Use of Unified Memory in conjunction with directive-based pro-
gramming of NVIDIA GPUs is not new. For example, the PGI compiler support-
ing OpenACC [6] can intercept all calls to host memory allocation/de-allocation,
replacing them with appropriate calls to the UM interface and rendering all
data mapping operations as no-ops. UM support is an optional feature of the
PGI compiler and is enabled through a compiler option. Use of UM within the
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Kokkos programming framework has also been reported in [2]. Unlike these tech-
niques, in this paper we show how programmers can make explicit use of the UM
interface for memory management and still write correct code using OpenMP4.5
device constructs.

2 Concurrent Executions on CPUs and GPUs via
OpenMP Nested Regions

Multiple compute resources in IBM’s hybrid CPU + GPU nodes offer a range
of choices for execution policies. For example a single MPI task can perform
operations in parallel (using OpenMP) on the CPU cores (a model that has
been widely adopted on the multicore CPUs) and it can also offload work to one
or more GPUs. Each GPU can concurrently (or sequentially) support offloading
work from a number of MPI tasks. In another scenario, a subset of OpenMP
threads running on the host can offload work to one or more devices concurrently,
while another subset of OpenMP threads can start nested parallel regions on
the host.

2.1 Parallel Regions on device: Correspondence Between CUDA and
OpenMP4.5

Before diving into the topic of nested parallelism we would first like to explain
the correspondance between expressing parallelism using CUDA and using
OpenMP4.5 directives. The OpenMP4.5 implementation on GPU maps par-
allelism abstractions which are exposed to OpenMP users, to lower-level GPU
programming mechanisms. target regions are compiled into PTX (or GPU) ker-
nels when NVIDIA GPUs are selected as OpenMP device type. The OpenMP
runtime will invoke the kernels when encountering a target pragma. When a
target region contains a teams region, the GPU kernel is started with multiple
CUDA threadblocks and threads. Each OpenMP team is mapped to a single
CUDA threadblock and two teams cannot be mapped to the same threadblock.
OpenMP threads within each team are mapped to CUDA threads (one OpenMP
thread is one CUDA thread). When target does not contain a teams construct,
only one threadblock is started. The execution of a team (or threadblock) inside
a target and outside of parallel regions is sequential - a single thread (team
master) within each threadblock executes the region and all other threads are
waiting to be recruited for parallel work. When a parallel region is encountered
by the team master, all necessary threads within each threadblock are activated
and participate in the parallel region.

Control of CUDA grid and threadblock sizes is critical to performance tuning
in GPU kernels, whenever the OpenMP runtime chosen default values can be
improved. Control is exposed at the OpenMP level through clauses of the teams
construct. num teams can be used to instruct the OpenMP runtime to start
a specific number of teams (threadblocks). thread limit tells the OpenMP
runtime not to start more than the specified number of threads. To limit the
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amount of threads to be recruited to execute a parallel region, users can employ
the num threads clause of parallel. Note that the OpenMP4.5 constructs
num teams, thread limit and num threads are valid on both host and device.
In the following section we will make use of those constructs for execution on a
host and on a device.

2.2 OpenMP4.5 and Nested Parallelism Across a Node

In this section we discuss how a certain work load can be subdivided and executed
concurrently across CPU and GPU threads using all the compute resources of
a node. For this purpose we will use a schematic illustration provided in Fig. 1.
Here a parallel region with three OpenMP threads is created on the host, and
threads with IDs 0 and 1 will offload work to the devices 0 and 1 correspondingly,
while the third thread will create an inner parallel region of 4 threads on the host.

Fig. 1. Nested parallel regions with concurrent execution on host and devices. Outer
parallel region contains three CPU threads. CPU threads 0 and 1 launch kernels on
devices 0 and 1 correspondingly, while CPU thread 2 creates a parallel region with four
CPU threads on a host.

A more detailed and specific example is provided in Fig. 2. In this example
we first enable nested parallelism by calling OpenMP API omp set nested(1)
(line 9) and then acquire the number of visible devices (num devices) by calling
the OpenMP API omp get num devices() (line 11). In the next step a paral-
lel region with up to num devices+1 threads is created on the host. The first
num devices iterations of the main for loop will offload work to the devices
with IDs 0, ... , num devices-1, and in the last iteration a parallel region will
be created on the host and the remaining work will be executed in parallel
using at most (MAX(1,omp get max threads()-num devices)) threads. In this
example we require that 90% of the work be executed on the devices, while the
remaining work be executed on the host. In general, work distribution between
host and device(s) may be determined (at run time) by taking into account the
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host and device hardware characteristics (e.g. ratio of device/host memory band-
width, FLOP rate, etc.), expected execution time and even the availability of
device memory.

1 int main ( ) {
2 double ∗x , ∗y ;
3 int num devices , i , chunk , j s t a r t , N=1024∗1024∗10;
4 double DEVICE FRACTION = 0 ;
5 bool USE DEVICE;
6 x = (double ∗) mal loc (N∗ s izeof (double ) ) ;
7 y = (double ∗) mal loc (N∗ s izeof (double ) ) ;
8 // enable nested p a r a l l e l reg ions
9 omp set nested (1) ;

10 // get number of dev ices
11 num devices = omp get num devices ( ) ;
12 //90% of work done on device ( s )
13 i f ( num devices > 0) DEVICE FRACTION = 0 . 9 ;
14 #pragma omp paral le l for num threads ( num devices+1) \
15 private ( chunk , j s t a r t ,USE DEVICE)
16 for ( i = 0 ; i < ( num devices+1) ; ++i ){
17 // d iv ide work , s e t d e f au l t dev ice
18 i f ( i < num devices ){ //use device
19 omp se t d e f au l t d ev i c e ( i ) ;
20 chunk = DEVICE FRACTION∗N / num devices ;
21 j s t a r t = chunk∗ i ;
22 USE DEVICE = true ;
23 p r i n t f ( ” us ing DEVICE No %d , j s t a r t = %d , chunk = %d\n” , i , j s t a r t ,

chunk ) ;
24 }
25 else { // use host
26 chunk = N; // de f au l t
27 j s t a r t = 0 ; // de f au l t
28 USE DEVICE = fa l se ;
29 i f ( num devices > 0){
30 j s t a r t = (DEVICE FRACTION∗N / num devices ) ∗ num devices ;
31 chunk = N − j s t a r t ;
32 }
33 p r i n t f ( ” us ing HOST: j s t a r t = %d , chunk = %d\n” , j s t a r t , chunk ) ;
34 }
35 i n i t i a l i z e x a n d y (x+j s t a r t , y+j s t a r t , chunk , j s t a r t ,USE DEVICE) ;
36 }
37 f r e e (x ) ; f r e e ( y ) ;
38 return 0 ;
39 }
40
41 void i n i t i a l i z e x a n d y (double ∗x , double ∗y , int N, int o f f s e t , bool

USE DEVICE)
42 {
43 #pragma omp target map( from : x [ 0 :N] , y [ 0 :N] ) i f (USE DEVICE)
44 #pragma omp teams distribute paral le l for i f ( target :USE DEVICE)
45 for ( int i =0; i<N; ++i ){
46 x [ i ] = ( o f f s e t+i ) ∗0 . 001 ;
47 y [ i ] = ( o f f s e t+i ) ∗0 . 003 ;
48 i f ( ( !USE DEVICE) && ( i == 0) )
49 p r i n t f ( ”num threads = %d , num teams=%d\n” , omp get num threads ( ) ,

omp get num teams ( ) ) ;
50 }
51 }

Fig. 2. Nested parallelism: concurrent execution on host and devices
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1 export OMPNUMTHREADS=20
2 export OMP PLACES={0;20;8}
3 . / a . out
4 using DEVICE No 0 , j s t a r t = 0 , chunk = 2359296
5 using DEVICE No 1 , j s t a r t = 2359296 , chunk = 2359296
6 using DEVICE No 2 , j s t a r t = 4718592 , chunk = 2359296
7 using DEVICE No 3 , j s t a r t = 7077888 , chunk = 2359296
8 dev i ce : CPU: j s t a r t = 9437184 , chunk = 1048576
9 num threads = 1 , num teams=16

Fig. 3. Concurrent execution on host and devices; nested parallelism: output of code
from Fig. 2.

3 Clang’s Extension for OpenMP4.5 for device On-chip
Memory Allocation

NVIDIA GPUs allow developers to take advantage of allocating relatively small
buffers in an “on-chip memory”, also referred to as the shared memory in CUDA
terminology. While there are multiple reasons for using shared memory, here we
skip the discussion on use cases and refer readers to NVIDIA’s programming
guide [4] and NVIDIA’s devblog describing using shared memory [1].

OpenMP4.5 standard does not provide developers with the means of specifi-
cally taking an advantage of the GPU’s shared memory. However, IBM’s exten-
sion to the OpenMP4.5 specification implemented for the Clang supports the
use of shared memory. It is expected that future versions of IBM’s XL compiler
will also support shared memory for NVIDIA GPUs. Furthermore, OpenMP is
also evolving towards incorporating special memory types as first-class citizens
in the standard.

In this section we illustrate (see Fig. 4) use of shared memory in a matrix-
transposition code that uses OpenMP4.5 directives. Currently, in order to allow
compiler to allocate buffers in the GPU’s shared memory, developers should use
static memory allocation and place the corresponding code after the directive
#pragma omp target teams but before the directive #pragma omp distribute
(see Fig. 4, line 29). If the compiler determines that the size of the requested
buffer (VAL[BLK SZ][BLK SZ+1]) is small enough to fit into the GPU’s shared
memory it places it there; otherwise the buffer is allocated in the global device
memory. Note the use of the if clause in the code presented in Fig. 4: setting
the value of the variable USE DEVICE to 1 or to 0 results in code execution on
the device or on the host respectively. Whether the target region is executed on
a device or on a host, the buffer VAL[BLK SZ][BLK SZ+1] is designated as team-
private, which eliminates race conditions between different teams. On the GPU
device each team will be mapped to a different CUDA threadblock, and on host
teams will be mapped to CPU threads.

At this stage of compiler development, IBM’s implementation limits the size
of the GPU’s shared memory available to application’s data to 800 bytes per
team, and consequently we set BLK SZ=8. In tests performed on IBM’s Minsky
nodes with offloading the matrix transposition to the P-100 GPU we observe
effective memory BW utilization of 243 GB/s, while the achievable memory BW
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is in the 480–500 GB/s range. A simple (two-loop) kernel for matrix transposition
not using shared memory achieves only 83 GB/s, which is expected due to non-
coalesced memory access.

4 Use of Unified Memory and OpenMP4.5 Directives

The OpenMP4.5 memory model is based on the notion of heterogeneous mem-
ory address spaces (host and device) with directives for explicitly managing data
movement and coherence between them. Under this model, coding is complicated
by two factors. First, using OpenMP4.5 directives correctly in the presence of
class member pointers is non-trivial and may involve considerable code changes
to work (as illustrated in the first part of this paper). Secondly, explicitly man-
aging coherence between two address spaces can be highly error-prone except in
the simplest of cases.

Starting with the OpenMP4.5 standard, using native memory management
mechanism (e.g. CUDA memory allocators) is also supported by special clauses
to enable architecture-specific data allocation. For example, pointers to mem-
ory allocated using cudaHostAlloc, cudaMallocHost, cudaMallocManaged and
cudaMalloc can now be used inside OpenMP4.5 target regions. Here we focus
on the use of CUDA Managed Memory, and specifically on eliminating the need
for explicit data transfers between the host and devices. Currently implicit data
transfer between host and devices is not supported by the OpenMP standard,
and methodology required for such a support is a considered as a research topic.

Employing CUDA Managed Memory substantially reduces the complexity of
managing deep copies and also resolves the coherency issues. This is achieved by
allocating data in a Unified Memory space [7,8] which is accessible on both the
host and device using a single pointer.

Memory buffers associated with the Managed Memory automatically migrate
between the host and device when a memory fault is encountered. The exact
mechanism responsible for buffer migration is outside the scope of this paper.
In this section we illustrate how to work with arrays, classes and common data
structures like std::vector using UM and OpenMP4.5 directives. Consider-
ing that the OpenMP4.5 standard has been designed to also work with devices
not supporting UM, we also discuss concerns with the integration of UM and
OpenMP4.5 from the standpoint of code portability.

It is also important to note that for correct behavior of a code mixing
OpenMP directives and CUDA API, especially on nodes with multiple visible
devices, setting default device must be done twice: once using the OpenMP4.5
API omp set default device (device ID) and then using the CUDA API
cudaSetDevice (device ID).

4.1 Eliminating Explicit Deep Copies

In Fig. 5, we consider a UM-based version of code described in the first part of
this paper.
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1 #define MIN(a , b) ( a < b ? a : b)
2 #define BLK SZ 32
3 int main ( ) {
4
5 omp se t d e f au l t d ev i c e (0 ) ;
6
7 int Nr = 1024∗8 , Nc = 1024∗8;
8 double ∗U = new double [ Nr∗Nc ] ;
9 double ∗UT = new double [ Nr∗Nc ] ;

10 bool USE DEVICE=1;
11
12 // a l l o c a t e U and UT in device memory
13 #pragma omp target ente r data map( a l l o c :U[ 0 : Nr∗Nc ] ,UT[ 0 : Nr∗Nc ] ) i f (

target :USE DEVICE)
14
15 // i n i t i a l i z e U
16 #pragma omp target teams distribute thread limit (512) i f ( target :

USE DEVICE)
17 for (auto co l = 0 ; c o l < Nc ; ++co l ){
18 #pragma omp paral le l for i f (USE DEVICE)
19 for (auto row = 0 ; row < Nr ; ++row ){
20 U[ row∗Nc+co l ] = row ∗0.001 + co l ∗0 . 0003 ;
21 }
22 }
23 int nteams = (Nr∗Nc + BLK SZ∗BLK SZ − 1) /(BLK SZ∗BLK SZ) ;
24 int nthreads = BLK SZ ;
25 #pragma omp target teams num teams( nteams ) thread limit ( nthreads ) i f (

target :USE DEVICE)
26 {
27 // s u f f i c i e n t l y smal l array VAL w i l l be a l l o ca t ed in GPU’ s shared

memory
28 // otherwise in device memory
29 double VAL[BLK SZ ] [ BLK SZ+1] ;
30
31 #pragma omp distribute c o l l a p s e (2 )
32 for (auto r s t a r t = 0 ; r s t a r t < Nr ; r s t a r t += BLK SZ){
33 for (auto c s t a r t = 0 ; c s t a r t < Nc ; c s t a r t += BLK SZ){
34
35 auto rend = MIN(Nr , r s t a r t+BLK SZ) ;
36 auto cend = MIN(Nc , c s t a r t+BLK SZ) ;
37
38 // f i l l in temporary bu f f e r ( shared memory)
39 #pragma omp paral le l i f (USE DEVICE)
40 {
41 #pragma omp for c o l l a p s e (2 )
42 for (auto row=r s t a r t ; row < rend ; ++row ){
43 for (auto c o l=c s t a r t ; c o l < cend ; ++co l )

wor[LAV44 −r s t a r t ] [ co l−c s t a r t ] = U[ row∗Nc + co l ] ;
45 }
46 // transpose and wri te data from shared memory to device memory
47 #pragma omp for c o l l a p s e (2 )
48 for (auto row=c s t a r t ; row < cend ; ++row ){
49 for (auto c o l=r s t a r t ; c o l < rend ; ++co l )

wor[TU05 ∗Nr + co l ] = VAL[ col−r s t a r t ] [ row−c s t a r t ] ;
51 }
52 }
53 }
54 }
55 }
56
57 // copy data from the device to host memory and dea l l o ca t e device

memory
58 #pragma omp target e x i t data map( from :U[ 0 : Nr∗Nc ] ,UT[ 0 : Nr∗Nc ] ) i f (

USE DEVICE)
59 }

Fig. 4. Code illustrating use of NVIDIA’s GPU shared memory and OpenMP4.5 direc-
tives. Currently only IBM’s extensions to OpenMP4.5 spec implemented in CLANG
compiler allow use of GPU’s shared memory.
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1 struct A {
2 int∗ y ;
3 int s i z e ;
4 A( const int∗ y , const long s i z e ) : y ( y ) , s i z e ( s i z e ) {}
5 } ;
6
7 int n = 100 ;
8 int∗ y ; cudaMallocManaged(&y , n∗ s izeof ( int ) ) ; // Al locate in UM
9 A∗ a = new A(y , n) ;

10
11 // Only map ob j ec t a to the device using the map c lause
12 #pragma omp target map( to : a [ 0 : 1 ] )
13 {
14 // OK because a−>y holds the un i f i ed address
15 a−>y [ 3 ] += . . . ;
16 }

Fig. 5. Deep copy of a data structure using Managed Memory

Let us start by comparing this example to the codes presented in [3] (Figs. 7
and 9). First, the call to malloc on line 8 (Fig. 7 of [3]) is replaced with
cudaMallocManaged. Second, the operation map(to:y[0:n]) on line 12 (Fig. 7
of [3]) has been removed since UM automatically moves data between the two
address spaces. Most importantly, compared to the version of this example in
Fig. 7 in [3], our UM-based example in Fig. 5 works correctly. This is because
being allocated in Managed Memory, the host address referred by a.y is valid on
the device as well. This eliminates the need to update a’s device copy with the
correct address. Note however, that since object a itself is not UM-allocated, it
is still required to map it before use inside the target region (line 12, Fig. 5). In
the next Sect. 4.2 we show how to allocate objects like a in Managed Memory.

4.2 Mapping Classes Using UM

For mapping a class using UM, we follow the approach described in [7]. We first
define a class that overrides the new and delete operators as shown in Fig. 6.

Second, we further modify the code presented in Fig. 5 to make class A UM-
allocated as shown in Fig. 7. In this example, we extend class A with the class
UMMapper overriding the former’s default new and delete operators with the
latter’s. With this change, object a is now allocated in UM (line 9, Fig. 7).
Third, we correspondingly replace the map clause map(to:a[0:1]) with the
is device ptr(a) clause in Fig. 7 (line 12). Since a is allocated in the UM the
map clause is not required; at the same time, however, it is necessary to inform
the OpenMP4.5 runtime that a is a valid device pointer. If that is not done, the
OpenMP4.5 runtime will attempt (and fail) to find the device mapping for a.
Therefore the is device ptr clause is critical for correct execution. Note that the
is device ptr clause is not required for the member pointer a.y; member point-
ers are simply moved to the device as part of enclosing object and no attempt is
made to find their device address. If however, the pointer y is used directly inside a
target region, that region would have to be predicated with a is device ptr(y)
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1 class UMMapper {
2 public :
3 void∗ operator new( s i z e t l en ) {
4 void∗ ptr ; cudaMallocManaged(&ptr , l en ) ; return ptr ;
5 }
6 void∗ operator new [ ] ( s i z e t l en ) {
7 void∗ ptr ; cudaMallocManaged(&ptr , l en ) ; return ptr ;
8 }
9 void operator delete (void∗ ptr ) noexcept ( true ) {

10 cudaFree ( ptr ) ;
11 }
12 void operator delete [ ] ( void∗ ptr ) noexcept ( true ) {
13 cudaFree ( ptr ) ;
14 }
15 } ;

Fig. 6. Overriding new and delete operators: objects derived from UMMapper will be
allocated using Managed Memory

1 struct A : public UMMapper {
2 int∗ y ;
3 int s i z e ;
4 A( const int∗ y , const long s i z e ) : y ( y ) , s i z e ( s i z e ) {}
5 } ;
6
7 int n = 100 ;
8 int∗ y ; cudaMallocManaged(&y , n∗ s izeof ( int ) ) ; // Al locate y using UM
9 A∗ a = new A(y , n) ;

10
11 // ”a” i s a va l i d device pointer
12 #pragma omp target i s d e v i c e p t r ( a )
13 {
14 // OK because a−>y holds the un i f i ed address
15 a−>y [ 3 ] += . . . ;
16 }

Fig. 7. Using unified memory: accessing class object and its members on host and
device

clause. Note that this strategy for creating UM-based classes does not work for
objects allocated outside the new operator, e.g. stack-allocated objects.

4.3 Working with std::vector, UM and OpenMP4.5

In this section let us consider a code section using std::vector (Fig. 8). Here
offloading the two code loops (lines 5 and 9, Fig. 8) to the device would require
mapping the vectors x and y to the device memory and deep-copying their data;
something not possible using OpenMP4.5 directives alone. A way to overcome
this limitation and to allow the use of std::vector inside target regions exe-
cuted on a device, is to allocate the data for these vectors using UM and avoiding
the deep-copy altogether. The std::vector can be made UM-based by spe-
cializing its memory allocator to use Managed Memory [7] as shown in Fig. 9.
Accordingly, we modify the example in Fig. 8 by specializing the allocators for
vectors x and y to use the UMAllocator as shown in Fig. 10.

The class UMAllocator ensures that the vector data is allocated in Managed
Memory and that the data will be migrated between the host and devices upon
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1 double alpha = 2 . 0 ;
2 int N=1024∗1024∗10;
3 vector<double> x (N) ;
4 vector<double> y (N) ;
5 for ( int i = 0 ; i < N; ++i ) {
6 x [ i ] = i ∗0 . 0 1 ;
7 y [ i ] = i ∗0 . 0 3 ;
8 }
9 for ( int i = 0 ; i < N; ++i ) {

10 y [ i ] = alpha∗x [ i ] + y [ i ] ;
11 }

Fig. 8. Using std::vector in daxpy

1 template <class T>
2 class UMAllocator<T> {
3 public :
4 typedef T va lue type ;
5 typedef const T& con s t r e f e r e n c e ;
6 template <class U> UMAllocator ( const UMAllocator<U>& other ) ;
7 T∗ a l l o c a t e ( std : : s i z e t n) {
8 T∗ ptr ;
9 cudaMallocManaged(&ptr , s izeof (T)∗n) ;

10 return ptr ;
11 }
12 void de a l l o c a t e (T∗ p , std : : s i z e t n) {
13 cudaFree (p) ;
14 }
15 } ;
16 template <class T, class U>
17 bool operator==(const UMAllocator<T>&, const UMAllocator<U>&) {
18 return true ;
19 }
20 template <class T, class U>
21 bool operator !=( const UMAllocator<T>&, const UMAllocator<U>&) {
22 return fa l se ;
23 }

Fig. 9. Specialized managed memory allocator for std::vector

1 double alpha = 2 . 0 ;
2 int N=1024∗1024∗10;
3 vector<double , UMAllocator<double> > x (N) ;
4 vector<double , UMAllocator<double> > y (N) ;
5 #pragma omp target teams distribute paral le l for map( to : x , y
6 for ( int i = 0 ; i < N; ++i ) {
7 x [ i ] = i ∗0 . 0 1 ;
8 y [ i ] = i ∗0 . 0 3 ;
9 }

10 #pragma omp target teams distribute paral le l for map( to : x , y )
11 for ( int i = 0 ; i < N; ++i ) {
12 y [ i ] = alpha∗x [ i ] + y [ i ] ;
13 }

Fig. 10. Using std::vector with specialized managed memory allocator
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encountering page faults. The map clauses on lines 5 and 10 perform a bitwise
copy of the structure of the vectors x and y to the device (including the data
pointer to UM) allowing both loops to work correctly on host and device.

Conceivably, one might similarly want to create an “OpenMP-mapped”
std::vector by using an allocator with additional enter/exit data clauses
for mapping the vector’s data to the device. This will, however, not work since
mapping the vector structure (e.g. lines 5 and 10, Fig. 10) would then additionally
require updating the underlying vector data pointer to the correct device address;
something not allowed directly for the vector class. We further emphasize that in
the code presented in the Fig. 10, although vectors x and y are used exclusively on
the device, their initial allocation will always be on the host. This is because the
C++ specification requires the vector data to be default constructed; there is no
way to circumvent this default initialization behavior. For the same reason, any
attempt at present to write a “device-only” allocator (e.g. one using cudaMalloc
instead of cudaMallocManaged) will also fail.

4.4 Limitations of Integrating UM and OpenMP4.5

Although the techniques described above for using UM within OpenMP4.5 target
regions are both convenient and elegant, it should be emphasized that mixing
OpenMP4.5 and CUDA Managed Memory would require specific hardware and
system-software support. For systems with NVIDIA GPUs this approach will
not work with devices prior to Pascal GPUs and with versions of CUDA prior
to CUDA 8.0.

5 Summary and Outlook

OpenMP is further evolving into version 5 with performance and usability crit-
ical changes. First, it will include an interface for performance profiling tools
(OMPT). This defines a set of events generated by the runtime that can be
intercepted by a profiling tool, and a set of hooks that can be used to inspect
the internal state of the library. Second, it includes the concept of implicit declare
target, which requires compilers to make function definitions available for devices
even if these were not explicitly marked by the user for device compilation. This
simplifies building existing host libraries for devices, including some basic STL
patterns that are extensively used in technical computing applications. Lastly,
the OpenMP committee is working on a set of memory-related constructs that
will enable users to express different kind of storage in their program and that
are currently under study as a vehicle to express non-volatile memory buffers on
CPU and shared memory buffers on GPUs.
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Abstract. Modern computer systems are increasingly parallel and het-
erogeneous, and the demand for high-level programming interfaces for
such systems is rapidly growing. OpenMP 4.0 extended its CPU-based
directives to support device offloading. Programmers can now simply
insert directives to identify computations and data to be offloaded.
Compilers/runtime with OpenMP support then manage code transla-
tion and data transfers. While there are various ongoing efforts to sup-
port OpenMP device offloading for Fortran as well as C/C++, the
most widely used open-source compiler, LLVM, supports C/C++ only.
In this paper, we describe our project, XLFLANG, that aims to build
an OpenMP Fortran compiler by bridging an existing Fortran front-end
and LLVM C/C++ front-end (CLANG). We translate output from IBM
XL Fortran front-end into CLANG AST and feed it to CLANG where
OpenMP directives are lowerized to LLVM IR. This approach allowed
us to reuse CLANG code generation and LLVM optimizations while
handling Fortran-specific features in our XLFLANG. However, language
dependences of CLANG AST especially with OpenMP directive repre-
sentations pose unique challenges both in correctness and performance
aspects. We addressed these challenges to generate CLANG AST, tak-
ing care to expose possible optimization opportunities. We were able to
map all major OpenMP offloading directives/clauses from Fortran to
CLANG AST, and our evaluation shows the resulting AST does not add
significant overheads or interfere with later optimizations.

1 Introduction

Modern computer systems are increasingly parallel and heterogeneous, and par-
allel programming to exploit available parallelism has become the norm for
programming itself. However, parallel programming is historically known to
be error-prone and difficult to maintain, and there has been continuous effort
to make parallel programming more accessible and tractable. Providing high-
level abstractions and structured control for parallelism is one of the successful
approaches to improve the programmability and portability of parallel programs.
Especially with heterogeneous systems that commonly have a general-purpose
host offloading computations to special-purpose accelerators, high-level inter-
faces can efficiently hide low-level details of host-device communications. It also
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improves code portability so that the same program can run on systems with
different accelerators.

As the demand for high-level programming interfaces for heterogeneous
systems grows, various attempts have been made in academia and industry.
OpenMP is one of the popular parallel programming models that extends its
CPU-based interfaces to support device offloading. OpenMP provides high-level
directives that programmers can insert at appropriate points to identify com-
putations and data to be offloaded to devices. Then compilers/runtime with
OpenMP support translate these directives to actual codes that transfer data
and manage offloaded computations.

OpenMP currently provides programming interfaces for C/C++ and Fortran
with offloading support. Fortran is a language especially strong with numeric
computation and scientific computing. It provides rich array notations that
enables various array and loop based optimizations. There is a large volume
of Fortran programs and libraries accumulated for decades in high-performance
computing areas. Such computationally intensive Fortran programs have strong
potential to scale very well on massively parallel devices such as GPUs, allowing
OpenMP compilers/runtime to seamlessly map OpenMP constructs to GPU ker-
nels. However, to our knowledge, OpenMP compilers with full offloading support
exist only for C/C++, but not for Fortran yet.

In this paper, we describe our project to provide OpenMP Fortran sup-
port with full offloading features and competitive performance. Our project,
XLFLANG, aims to build an OpenMP Fortran compiler by bridging an exist-
ing Fortran front-end and LLVM C/C++ front-end (CLANG). Our translator
takes output from IBM XL Fortran front-end and translates it into CLANG
AST but using our own semantic analyzer. Once the AST is generated, it is fed
into CLANG code-generation (CodeGen) and translated into LLVM IR format.
Our key observation in XLFLANG design is finding a right translation level
that maximizes the reuse of existing C/C++ OpenMP support while retain-
ing and utilizing Fortran-specific information for efficient code generation. With
this approach, we can incorporate Fortran-specific handling of OpenMP direc-
tives in XLFLANG semantic analysis phase (while common codes with C/C++
are reused from CLANG) and avoid repeating low-level code generation and
low-level optimizations for LLVM IR.

There were various challenges in mapping Fortran to an AST designed for
a different language for OpenMP support. While Fortran and C/C++ share
many common features, they are meaningfully different in user-defined type rep-
resentation and address-based type handling. This poses a major challenge for
XLFLANG in handling Fortran-specific data structures such as dope vectors and
common blocks correctly when they appear in OpenMP data clauses. In addi-
tion, call-by-reference function call semantics, extra alias information available
in Fortran only, and other base language differences from C require XLFLANG
to perform additional AST node generation or modification to map Fortran to
valid CLANG AST. We aimed to address these challenges in XLFLANG by gen-
erating compatible CLANG AST, taking care to expose possible optimization
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opportunities. We found that this task is more challenging than expected because
we do not introduce any Fortran-specific changes in CLANG.

Despite some limitations, we could map all major OpenMP directives and
clauses from Fortran to CLANG AST. Evaluation shows that the resulting
CLANG AST from XLFLANG does not add significant overheads or interfere
with LLVM back-end optimizations, providing comparable performance to equiv-
alent C versions.

The contributions of XLFLANG translator can be summarized as follows:

– XLFLANG provides full-feature OpenMP 4.5 support for Fortran by leverag-
ing CLANG, the first open-source compiler with full OpenMP support with
offloading directives.

– XLFLANG provides comparable performance to equivalent C benchmarks
tested, showing that its Fortran-to-CLANG AST translation introduces man-
ageable overheads and does not interfere with later optimizations.

– XLFLANG revealed new use-cases of OpenMP offloading directives and
clauses in Fortran and contributed to expanding the specification.

The rest of the paper is organized as follows: Sect. 3 describes the major
challenges we had with translating OpenMP features in XLFLANG: OpenMP
data handling clauses. Section 4 discusses how the base language differences
between Fortran and C/C++ affected our implementation: handling OpenMP
atomic/reduction clauses with logical equivalence operators, linking global sym-
bols, and utilizing alias information. In Sect. 5, we present our experimental
results for XLFLANG on several kernels and two benchmarks. The paper wraps
up with related work (Sect. 6) and conclusion (Sect. 7).

2 XLFLANG Overview

LLVM compiler provides a robust C/C++ front-end, CLANG, with full OpenMP
4.5 support, but it currently does not have comparable solutions for processing
Fortran programs. Our approach to provide the same OpenMP support for For-
tran with minimal effort is bridging an existing Fortran front-end (for Fortran
parsing/lexing and basic semantic analysis) and CLANG/LLVM (for code gen-
eration for OpenMP and back-end compilation). For the front-end, we leverage
an existing and acknowledged, robust XL Fortran front-end (FFE) [6]. The FFE
is a component of the proprietary IBM XL product compiler. It implements the
full Fortran 2003 standard, and also support earlier versions including Fortran
95, Fortran 90, and Fortran 77.

Fig. 1. The Overall Design of XLFLANG
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Figure 1 illustrates the compilation flow of our translator. It transforms the
output of FFE (W-code IR) into CLANG AST form, then the regular C/C++
CLANG/LLVM compiler is invoked with this AST as input.

2.1 XL Fortran Front-End

The FFE takes Fortran source code as input and produce W-code files as out-
put. W-code is the intermediate format used within XL compiler. The front-end
parses the source code and performs semantic analysis. Using the semantic analy-
sis result, it augments user-provided OpenMP directives with necessary data
handling clauses (details can be found in Sect. 3). It also includes a scalarize sub-
component that transforms Fortran array operations into corresponding loops.
The W-code generated by the front-end contains very few Fortran language-
specific features for example, array shape descriptors and some built-in func-
tions, but it does include embedded information derived from language-specific
semantics such as, for example, aliasing information.

2.2 XLFLANG

Our W-code to CLANG AST translator takes W-code as input and produces
CLANG AST as output. It utilizes the CLANG Libtooling library [14] to parse
command-line arguments, create a CLANG scope with appropriate initializa-
tions, populate it with AST code corresponding to W-code, and generate an
AST binary file. The translator interfaces with an IBM-internal tool that decodes
W-code binaries and provides utilities to iterate over the code and invoke user-
defined actions for each W-code instruction. It first processes the entire W-code
stream, gathering information and program elements used in the code, including
types, literals, symbols, functions, labels, and static initializers. XLFLANG then
once again traverses the code to generate the corresponding AST declarations,
expressions, and statements. XLFLANG performs necessary transformations to
the semantics of W-code output to generate CLANG-compatible AST, but does
not modify control flows or loop structures.

2.3 CLANG/LLVM

The CLANG AST binary file produced by XLFLANG is then fed into the
C/C++ CLANG/LLVM compiler to produce an object file or executable binary.
XLFLANG relies on CLANG driver for compiling and linking the AST files with
both Fortran and C/C++ libraries. Several XL Fortran libraries including For-
tran I/O are linked by default. To link binaries and libraries with and without
device support together, XLFLANG again relies on CLANG driver that allows
linking a separate set of libraries for host and device objects.
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3 OpenMP Data Handling Clauses with Common Block
and Dynamic Variables

XLFLANG faced unique challenges in translating OpenMP features in the con-
text of Fortran programs into CLANG AST. In many cases, translation is
mechanical simply mapping an IR entry for an OpenMP directive/clause into a
CLANG AST node of the same type. Unfortunately, we encountered numerous
exceptions to this simple scenario due to differences between language features
and IR specifications. In this and following sections, we focus on describing
the major challenges addressed in XLFLANG for correct and efficient OpenMP
support.

3.1 Background: Memory Objects in Fortran

The most common way to reference a memory object in Fortran is to use a vari-
able name. Sometimes, scope, field, or subscript can be added. Unlike C/C++,
pointer arithmetic with “address of” operator (&) or “dereference” operator (*)
is not allowed. OpenMP data handling clauses specify how memory objects in
the program should be allocated/freed, and how their value should be initialized
for the program scope of constructs. These clauses include private, firstprivate,
lastprivate, threadprivate, copyin, copyprivate, map, and reduction. CLANG
performs semantic analysis to generate AST nodes for these clauses, but the
semantics for Fortran variables in these clauses are not straightforward in some
cases to simply reuse CLANG. With a simple example using a private clause for
a scalar variable in Fig. 2, we illustrate how this clause requires different kinds
of variables in Fortran to be treated.

subroutine mysub(a)
integer a

integer s, a(100)
common /blk1/ a,s

integer, allocatable :: ainteger a

(a) Local variable (b) Dummy parameter (c) Common variable (d) Allocatable/pointer variable

Fig. 2. Different Variable Types in Fortran

Local Variable. In Fig. 2(a), the variable, a, is a local variable in Fortran, which
is the counterpart of automatic variable in C/C++. The data handling clause
can be directly translated into corresponding CLANG AST.

Dummy Parameter. In Fig. 2(b), the variable, a, is a dummy parameter of
the procedure. Since parameters are passed by reference in Fortran (while by
value in C), the access to parameter variable is a dereference from the pointer.
In the W-code IR, there is a pointer, say .a, for the address passed through
the parameter, and the references for s is actually *.a in IR. Consequently, the
clause, private(a), is actually private(*.a) in internal representation.

Common Variable. In Fig. 2(c), the variable, s, appears in a common block. In
Fortran, variables in a common block are allocated contiguously and the common
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block with the same block names are linked across procedures. Common blocks
in different procedures can have different layout of the variables. Therefore, vari-
ables in a common block are not independent variables, and are treated as array
sections of the owner common block variable. In this example, the semantics
of clause private(s) is private(blk1[400, 4]), where blk1 is the character
array for the common block, 400 is the offset in the common block for variable
s and 4 is the length. The array section is in C/C++ format, i.e., [start index :
length] instead of [start index : end index].

OpenMP 4.0 standard does not allow array section in private clauses or
copyin clauses for threadprivate. Such clauses in Fortran can not be directly
translated into CLANG AST. Even though array sections are allowed in map
clauses, we may still have issues when more than one variable in the same com-
mon block appears in the map clauses at the same construct. We do not want to
map the whole common block for correctness and efficiency reason, but mapping
each variable individually may result in multiple sections from one root variable,
like map(tofrom:a[0, 100], a[200, 50]). This is currently not allowed by the
OpenMP standard, requiring XLFLANG to find its own solution.

Dynamic Variable. There are three kinds of dynamic variable in Fortran, allo-
catable, pointer and assumable size array. Their size and shape are determined
at runtime. To correctly access them, metadata about these variables are stored
in a data structure, called “dope vector”. Dope vector contains a pointer point-
ing to the data, a field for the status and fields for boundary of each dimension
when the dynamic variable is allocated. Figure 2(d) shows an example of allo-
catable variable. When allocatable variables appear in a data handling clause,
the action requested by the clause (data transfer, privatization, etc.) needs to
be performed both on the dope vector itself and the data pointed by it. As a
result, they cannot be mechanically mapped to CLANG AST.

In summary, the data handling clauses in Fortran require additional logic in
XLFLANG to correctly initialize and transfer data, depending on the kind of
the variable. In the following sections, we discuss our solution for the two major
issues as identified above, array section and deep copy.

3.2 Transformation for Array Section

Example shown in Fig. 3(a) has a map clause for common variable a and
c. XLFLANG translates variables a and c into array sections for the com-
mon block, and generates a map clause, map(tofrom: blk[0, 100], blk[300,
400]). There are two sections from a single root pointer blk. Such map clause
is not allowed by OpenMP standard 4.0.

Our solution is to use separate temporary reference-type variables to repre-
sent each array section in the clause and in the enclosed code. Fortran allows such
transformation, since all the data references are through the original variable,
and can be easily identified for code transformation. In C/C++, the possible
use of a pointer makes it difficult, if not impossible, to track the origin of each
dereference. Moreover, overlapping may happen with pointer expressions. With
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the reference-type variable, different common variables are no longer referenced
from the same root pointer. Each variables can be privatized or mapped indi-
vidually. The transformation of the example is shown in Fig. 3(b).1 Similarly, if
a common variable is used in a private clause, we create temporary reference
variables for each common variable and access them as an array (Fig. 4).

integer a(100), b(200), c(400)
common /blk/a, b, c
!$omp target map(tofrom: a, c)
do i = 1, 100
c(i) = a(i)

enddo

char (&c_ref)[1600] = *&blk + 1200UL;
char (&a_ref)[400] = *&blk;
#pragma omp target map(from: c_ref) map(to: a_ref) firstprivate(i) 
{

for (i = 1; i <= 100; i += 1) {
((int *)c_ref)[i] = ((int *)a_ref)[i];

}
}

(a) Original code

(b) Translated code

Fig. 3. Common Variable in map Clauses

integer a(100), b(200), c(400)
common /blk/a, b, c

!$omp parallel private(a, c)
a(1) = 0
c(1) = 2

char (&c_ref)[1600] = *&blk + 1200UL;
char (&a_ref)[400] = *&blk;
#pragma omp parallel private(c_ref) private(a_ref) 
{
((int *)a_ref)[0L] = 0;
((int *)c_ref)[0L] = 2;

}

(a) Original code

(b) Translated code

Fig. 4. Common Variables in private Clauses

1 The output is cropped from the result of CLANG ast-dump. Please be aware that
the output of ast-dump from CLANG is in C format and may miss some necessary
parenthesis. We use it in the paper because it is more readable than printing raw
CLANG AST node information.
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3.3 Transformation for Dynamic Variables

Because of the wide use of allocatable/pointer variable for dynamic data size
in Fortran, handling dynamic variables correctly with deep copy is critical. As
discussed above, “dope vectors” are used in Fortran to represent a pointer and
other metadata about dynamic variables. When a dynamic variable appears in
a map clause, we need to copy the dope vector and the data as well (“deep
copy”), and fix the data pointer in the dope vector to point to the address of
the newly mapped data. This may involves recursive traversal of multiple levels
of pointers. The similar issue occurs for private clauses. When an allocatable
variable appears in the private clause, first the data for the variable needs to be
privatized. Secondly, the dope vector should be privatized so that each thread
can allocate different size for the allocatable variable. More precisely, the dope
vector should be firstprivate so that metadata can be customized per OpenMP
thread. Therefore, XLFLANG needs to extends its deep copy mechanism for
map clauses to the other data handling clauses too. Even though the problem is
similar for map and private clause, they are handled differently with the interface
provided in CLANG. Examples of map and private are shown in Fig. 5.

integer, allocatable :: mya(:), myb(:)

!$omp target map(to:mya) map(from:myb)
...

char d_mya[56];
char d_myb[56];
char *_3, *_4, *_5, *_6;
#pragma omp target map(from: _5[0:_6]) map(to: d_myb)    

map(to: _3[0:_4])
{

*&d_myb = _5;
*&d_mya = _3;

}

(a) Original code

(b) Translated code

Fig. 5. Allocatable Array in map Clause

In the example of Fig. 5(a), d mya and d myb are the dope vector for the
allocatable array mya and myb in W-code IR, respectively. In the translated
code, temporary pointers, 3 and 5, are initialized with the data pointer in the
dope vector if the variable is allocated, otherwise null value is the default (the
null value is not used in runtime). The size of the array section, variable 4 and
6, are also initialized from the dope vector. The references inside the target
region still retrieve the information from dope vector to construct the access
expression: the data pointer and the lower bound of the array.

Deep copy is a challenging issue in general for both Fortran and C/C++.
OpenMP 4.0 supports only the most simple form of deep copy, array section
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with a pointer. More recent OpenMP 4.5 adds the support for pointer as a
field, and as a result, temporary pointer and the assignments are no longer
needed. XLFLANG implementation will be simplified once support for the latest
standard is fully implemented. For private clauses, OpenMP standard the array
section is not allowed. Therefore, we have to use reference-type variable for
the data.

3.4 Combined Cases

In the example shown in Fig. 6, the variable mya is a parameter for allocatable
array, which is passed in to the subroutine as a pointer to the dope vector.
In our translator, we have to handle both the deep copy and array section.
Consequently, one private clause in Fortran is actually translated into three
private clauses in CLANG, as shown in the example.

subroutine test(mya)
integer, allocatable :: mya(:)

!$omp parallel private(mya)
...

char (&d_mya_ref)[56] = *.d_mya;

char (&mya_ref)[*d_mya_ref + 48 * (*d_mya_ref + 40)] = *(*(d_mya_ref + 0));
#pragma omp parallel private(mya_ref) firstprivate(d_mya_ref)  

firstprivate(.d_mya) 
{
.d_mya = d_mya_ref;
*d_mya_ref + 0 = mya_ref;

(a) Original code

(b) Translated code

Fig. 6. Parameter Allocatable Array in private Clause

3.5 Limitations

We found that not all the cases of data handling clauses can be represented with
CLANG AST. One example is copyin for threadprivate. When an individual
common variable, instead of the common block name, appears in the copyin
clause, there is no way to express this case with CLANG AST. This is a case of
array section. However, neither array section nor referenced-type variables are
allowed for copyin. The underlying reason is that the copyin needs the original
symbol to find the corresponding threadprivate copy. Clang has to be extended
to handle this case.
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4 Challenges from Language Differences

In this section, we discuss how differences between Fortran and C/C++ at the
language specification level influenced XLFLANG design and implementation.

4.1 Fortran-Only Operators in OpenMP Atomic and Reduction
Directives

Fortran provides logical equivalence/non-equivalence operators (.EQV. and
.NEQV.) that return true/false if and only if both operands have the same value
respectively. C/C++ equality/non-equality operators (== and !=) offer the same
logic. While these relational operators can replace .EQV. and .NEQV. in the plain
non-OpenMP Fortran context, they cannot be used in OpenMP atomic or reduc-
tion clauses. Therefore, we emulate them with XOR operator (for .NEQV.) and
the negation of XOR (for .EQV.) on arithmetic values. When .EQV. is used in
OpenMP atomic and reduction clauses, additional code needs to be generated
to perform the negation. In case of reduction, XLFLANG generates the reduc-
tion clause with XOR operator, and adds post-processing codes to perform the
negation on the reduced result. Handling .EQV. in atomic clauses is more com-
plicated than reduction clauses, since OpenMP atomic clauses have restrictions
on the type of operations allowed. We exploit a mathematical property about
XOR and XNOR to solve the issue; The result of XNOR on two operands is equivalent
to the result of XOR on one operand and the negative of the other operand. In
summary, we can implement an OpenMP atomic clause with v = v XNOR exp
as v = v XOR (!exp).

4.2 Linking Global Symbols

The common practice for declaring and defining global symbols is different in
Fortran and C/C++. In Fortran, symbols for module variables do not appear
in its object file, but .mod file is generated in addition to include metadata on
module variables and functions. When the module variable is “used” by another
module or function, the corresponding .mod file is referred and the variable
appears in the using module’s object file as a weak symbol. In summary, there
does not exist a single object file with a strong symbol for module variables, but
there can be multiple object files with weak or common symbols. When linked
together, the final binary will resolve these weak symbols to point to the same
storage. Globals can be linked in the same way in C/C++ by adding “weak”
attribute ( attribute ((weak))) to each declaration/definition, but a much more
common way is declaring it as “extern” in a header file and defining once in a
source file.2 In link time, one strong definition will generate a strong symbol in
the binary (multiple definitions are not allowed).3

2 Weak symbols are not mentioned by the C/C++ language standards.
3 The symbol will be weak if uninitialized in C, or initialized to 0 in C++.
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This different linkage style of globals caused an issue with compiling and
linking module variables in omp declare target construct in XLFLANG. If
a variable is declare target as shown in Fig. 7, the variable is automatically
initialized on device as the program starts and can be accessed without explicit
data transfer. It is useful when a variable is reused across multiple OpenMP
target constructs.

module globals
...
!$omp declare target (mya, myb) 
end module 

...
use globals
!$omp target

mya = myb
!$omp end target

globals.f test.f

Fig. 7. Globals in omp declare target

When a module variable is declare target and accessed in other modules,
the variable appears as a weak symbol (not an external reference) in each refer-
ring object file. OpenMP code-gen implementation in CLANG assumed each
instance as a strong symbol and generated additional strong metadata symbols
in each object file, causing multiple definition errors. Also, CLANG code-gen
records all variables in omp declare target in a table and passes the table to
OpenMP runtime to initiate data transfers. With multiple weak symbols from
different object files, the table creates duplicate entries, and OpenMP runtime
failed as it assumed a unique entry for each symbol. These cases in CLANG
code-gen and OpenMP runtime are allowed by rare in C/C++, and the findings
by XLFLANG drove fixes in CLANG that made OpenMP support and runtime
more robust.

4.3 Intrinsic Aliasing Information in Fortran

Unlike C/C++, Fortran does not allow pointer arithmetic. Pointers in Fortran
are just variables with the POINTER attribute, not a distinct data type. This
leads to an important corollary that address aliasing through pointer arithmetic
does not exist in Fortran. For XLFLANG to utilize the guarantee for non-aliasing
addresses with minimal to no changes to other components, we used the noalias
attribute for variables in CLANG AST. The keyword is originally for marking
variables with restrict keyword in source codes. It later helps the alias analysis
and other optimization passes in LLVM to build strong alias sets and determine
the applicability of a given optimization. XLFLANG adds this keyword to func-
tion arguments for OpenMP outlined functions that capture code sections within
OpenMP constructs. Alias information are often lost during the function outlin-
ing process if inter-procedural alias analysis cannot recover it, leading to many
disabled common optimizations such as common subexpression elimination and
LICM. Using the strong non-aliasing guarantee from Fortran, XLFLANG can
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safely add noalias attribute to arguments of OpenMP outlined functions, which
cannot be trivially done for C/C++ programs.

5 Experimental Result

We evaluate the performance of XLFLANG by comparing the execution time
of the “same” kernels written in Fortran and C compiled by XLFLANG and
CLANG respectively. The evaluation was done on an OpenPower node using
two Power 8 sockets (model PowerNV 8247-42L) and two NVIDIA Kepler GPUs
K40m. The operating system run by the host processor is a bare-metal Linux
distribution (Ubuntu version 14.04.1). The Fortran and C versions of the “same”
kernel are intended to have the same operations to our best effort. There could be
slight differences inevitably introduced by using different languages. We report
the execution time of the computation kernels only to exclude possible differences
in language libraries and setup.

We measure both the sequential performance of the kernels and parallel per-
formance with OpenMP pragma to evaluate the performance on basic Fortran
statements as well as OpenMP directives. We also gather data for the perfor-
mance of kernels with gcc and gFortran as a control group. Since the gcc and
gFortran share the same back-end optimization as CLANG and XLFLANG share
LLVM back-end, the comparison can provide further insight of the performance
of our system.4

All the reported execution times are normalized to the corresponding
CLANG C performance for sequential or parallel version respectively. Wall time
is measured for the sequential execution, while the data transfer time and kernel
execution time acquired from nvprof are used for the parallel version.

The first kernel we used is simple vector add. This kernel is used to evalu-
ate XLFLANG for different variable types in Fortran, as discussed in Sect. 3.
The second kernel we used is jacobi-2d from Polybench. Polybench provides
both C and Fortran version, which is convenient for our experiment. We mod-
ified the kernels to add OpenMP directives for GPU offloading. It is straight-
forward for vector add. For jacobi 2d, we add the target data map outside the
nested loop and add target teams distribute parallel do collapse(2) to
the two inner loop nests, as described in [10].

The execution time of sequential code is shown in Table 1. The performance
for Fortran and C are almost the same when simple variables or parameter
arrays are used. The difference between c-simple and f-simple, and jacobi-2d-c
and jacobi-2d-f for CLANG/XLFLANG shows that the compilation overheads
introduced by XLFLANG is minimal. There is a quite significant slowdown for
common variables because the code is less efficiently scheduled due to the shared
root pointer for the arrays. Allocatable array performs slightly better because it
4 It is not the purpose of this paper to compare the sequential and the parallel per-

formance. We did not aggressively optimize how the loops are parallelized for GPU.
Nor is it the focus of this paper to compare the performance of CLANG and gnu
compiler. For both compilers, we used -O3 for the sequential version only.
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Table 1. Sequential execution time

kernels CLANG/XLFLANG gcc/gfortran

c-simple 1.00 1.5

f-simple 1.01 1.19

f-common 1.61 1.3

f-allocatable 0.88 1.07

f-parameter 1.01 1.06

jacobi-2d-c 1.00 1.38

jacobi-2d-f 1.05 1.38

Table 2. Parallel execution time

kernel time HtoD time DtoH time

1.00 1.00 1.00

1.03 1.00 1.00

1.03 1.0 1.00

2.69 1.02 1.00

1.26 1.03 0.99

1.00 1.00 1.00

1.01 1.00 0.93

triggered loop unrolling and doubled the unroll factor from 8 to 16. In the result
for gcc/gFortran, it can be observed that similar trend for better performance
on f-allocatable and worse performance on f-common. For the jacobi-2d kernel,
XLFLANG introduced 5% slowdown while gcc and gFortran have the same
performance on both versions of the code.

The result for offloading to GPU with OpenMP is reported in Table 2. The
kernel execution time, the data transfer time for host to device (HtoD) and device
to host (DtoH) are shown. Most of the Fortran code have the similar performance
for kernel computation and data transfer, except for the vector add alloc. vec-
tor add alloc is more than 2.5 times slower than the other kernels. It is because
the handling of the pointer in the dope vector disabled optimizations in CLANG
code generation for OpenMP. When we move to the new OpenMP runtime inter-
face, the dope vector will be handled directly with the support for pointer field
in a struct. There will be no extra assignments in GPU code and the code can
be optimized.

In summary, the experiments showed that XLFLANG is able to generate
correct and comparably efficient binary for different Fortran variables, and with
or without OpenMP directives.

6 Related Work

Many researchers and industry programmers proposed automatic conversion
tools from Fortran to other modern languages such as C/C++, Matlab, and
Python [1,4,8,9,12], and many of the projects are still active.

F2C [8] is one of the first Fortran to C source-to-source translator pub-
lished in 90’s. F2C prints out a C representation of the intermediate C parse
tree by a Fortran 77 compiler. As a source-to-source converter, the tool uses
C struct (and union of struct) and #define macros to represent Fortran com-
mon blocks and equivalence, which may significantly increase the resulting C
code size. XLFLANG also takes intermediate IR (W-code) as input, but its
translation takes place between intermediate language levels both for input and
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output. Translating to AST allows more efficient and succinct translation, cir-
cumventing various source-level limitations. Also, F2C works only for Fortran
77 files while XLFLANG is tested up to Fortran 2003 and much more robust
with regard to Fortran specification changes as FFE lowerizes new features to
common W-code IR.

FABLE [9] is a recent effort on automatic Fortran to C++ conversion. It is
influenced by prior work [1,8], but applies various techniques to improve perfor-
mance and readability of its C/C++ output including translating global vari-
ables and SAVE variables to C++ struct. It also supports a subset of Fortran
90 as well as Fortran 77. It requires iterative re-converting, compiling, and test-
ing and manual code changes to improve performance and code quality of the
final output. XLFLANG does not need iterative compilation and testing to get
working AST, relying on LLVM for performance optimizations. Some of their
optimization techniques including using C++ struct for global variables for mod-
ular binaries could be applied to future XLFLANG design.

Rose source-to-source compiler infrastructure [11] provides source-to-source
compilation with various source-level optimization support for many languages
including Fortran and C/C++ with OpenMP. It bears similarity to XLFLANG
and even more so to CLANG in that it implements various transformations
and optimizations including OpenMP 3.0 support by manipulating its inter-
nal AST. XLFLANG focuses mainly on efficiently translating a high-level IR
to another high-level IR while minimizing overheads from language differences.
Also XLFLANG and CLANG/LLVM combined provides up-to-date OpenMP
4.5 support, compared to OpenMP 3.0 support in Rose.

More recently, an open-source development project for Fortran front-end for
LLVM, FLANG [13], has launched. Since the project is still ongoing, there is not
enough information to compare with XLFLANG.

7 Conclusions

Rapidly evolving parallel architectures and programming models led to the
reduced cycle of compiler and runtime development. We believe our approach
to XLFLANG is in line with such trend, minimizing redundant effort while aug-
menting existing compiler infrastructure. Bridging one IR to another IR with
completely different assumptions and backgrounds was not without challenges,
but our work showed that it could be done with proper understanding of the
base languages, Fortran and C/C++, and OpenMP requirements. Our future
work includes adding AST-level optimizations to XLFLANG, interfacing with
CLANG/LLVM to convey alias information from Fortran, and extending its
support to more recent Fortran family.
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Abstract. Given their massively parallel computing capabilities het-
erogeneous architectures comprised of CPUs and accelerators have been
increasingly used to speed-up scientific and engineering applications.
Nevertheless, programming such architectures is a challenging task for
most non-expert programmers as typical accelerator programming lan-
guages (e.g. CUDA and OpenCL) demand a thoroughly understand-
ing of the underlying hardware to enable an effective application speed-
up. To achieve that, programmers are usually required to significantly
change and adapt program structures and algorithms, thus impacting
both performance and productivity. A simpler alternative is to use high-
level directive-based programming models like OpenACC and OpenMP.
These models allow programmers to insert both directives and runtime
calls into existing source code, thus providing hints to the compiler and
runtime to perform certain transformations and optimizations on the
annotated code regions. In this paper, we present ACLang, an open-
source LLVM/Clang compiler framework (http://www.aclang.org) that
implements the recently released OpenMP 4.X Accelerator Programming
Model. ACLang automatically converts OpenMP 4.X annotated program
regions into OpenCL/SPIR kernels, while providing a set of polyhedral
based optimizations like tiling and vectorization. OpenCL kernels result-
ing from ACLang can be executed on any OpenCL/SPIR compatible
acceleration device, not only GPUs, but also FPGA accelerators like
those found in the Intel HARP architecture. To the best of our knowl-
edge and at the time this paper was written, this is the first LLVM/Clang
implementation of the OpenMP 4.X Accelerator Model that provides a
source-to-target OpenCL conversion. Experiments using ACLang on the
Polybench benchmark reveal speed-ups of up to 30x on an Exynos 8890
Octacore CPU with a ARM Mali-T880 MP12 GPU, up to 62x on a
2.4 GHz dual-core Intel Core i5 processor equipped with an Intel Iris
GPU unit, and up to 112x on a 2.1 GHz 32 cores Intel-Xeon processor
equipped with a Tesla K40c GPU.

1 Introduction

With the advent of heterogeneous computing many parallel programming models
have emerged seeking to improve the performance of sequential code by offload-
ing computation kernels from a host machine (e.g. CPU) to an acceleration
c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 48–61, 2017.
DOI: 10.1007/978-3-319-65578-9 4
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device (e.g. GPU). Kernels are typically designed using specialized libraries and
languages like CUDA [3] which has demonstrated high-performance execution
on NVIDIA GPUs. On the other hand, for FPGA accelerators (e.g. Intel HARP)
integrated mobile (e.g. ARM Mali) and laptop GPUs (e.g. Intel Iris), OpenCL [1]
has been the language of choice as it offers flexibility and platform portability.

Although OpenCL provides a library that eases the task of offloading kernels
to accelerator devices, its function calls are complex, have many parameters and
require the programmer to have a good knowledge of the device architecture’s
features in order to enable a correct and effective usage of its hardware (e.g.
block size, memory model, etc.). In this sense, OpenCL can still be considered
a somehow low-level library for heterogeneous computing.

Introduced through OpenMP 4.0 the new OpenMP Accelerator Model [4,10]
proposes a number of new clauses aimed at speeding up the task of program-
ming heterogeneous architectures. This model extends the concept of offloading
and enables the programmer to use dedicated directives to define offloading tar-
get regions and control data movement between host and devices. Although
most OpenMP directives used for multicore hosts can also be used inside target
regions, the new accelerator model easies the tasks of identifying data-parallel
computation.

This paper describes ACLang, an open source (http://www.aclang.org)
LLVM Clang based compiler that implements the OpenMP Accelerator Model.
The main contributions of this paper to the Clang/LLVM OpenMP community
are: (i) it adds a new runtime library to LLVM/CLang that supports OpenMP
offloading to accelerators like GPUs and FGPAs (not described in this paper).
Kernel functions are extracted from OpenMP annotated regions and are dis-
patched as OpenCL or SPIR [2] code to be loaded and compiled by OpenCL
drivers before being executed by the device; (ii) it leverages on the ISL [11]
implementation of the polyhedral model to implement a multilevel tiling opti-
mization on the extracted kernels; (iii) it provides a vectorization pass developed
specifically to exploit the vector instructions available in OpenCL. This whole
process is transparent and does not require any programmer intervention.

The paper is organized as follows: Sect. 2 gives an outline of the structure
of the AClang compiler. Section 3 describes general design concepts of tiling
and vectorization when applied to the extracted kernels. Section 4 provides per-
formance numbers and analyzes the results when programs are compiled with
ACLang . Related work is discussed in Sect. 5. Finally, Sect. 6 concludes the
paper.

2 The Structure of the ACLang Compiler

This section describes ACLang’s structure and execution flow. The following
example shows how ACLang works from a programmer perspective. Listing 1.1
presents two loops from the “Matrix Vector Product and Transpose” (mvt) pro-
gram of the Polybench [5] benchmark suite after they have been annotated with
OpenMP 4.X pragmas.

http://www.aclang.org
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Listing 1.1. Fragment of Polybench mvt benchmark application

1 // Problem s i z e
2 #de f i n e N 8192
3

4 void mvt gpu ( f l o a t ∗ a , f l o a t ∗ x1 , f l o a t ∗ x2 ,
5 f l o a t ∗ y1 , f l o a t ∗ y2 )
6 {
7 i n t i , j ;
8

9 #pragma omp ta rg e t data dev i ce (GPU) map( to : a [ :N∗N] )
10 {
11 #pragma omp ta rg e t map( to : y1 [ :N] ) map( tofrom : x1 [ :N] )
12 #pragma omp p a r a l l e l f o r simd
13 f o r ( i =0; i<N; i++)
14 f o r ( j =0; j<N; j++)
15 x1 [ i ] = x1 [ i ] + a [ i ∗N + j ] ∗ y1 [ j ] ;
16

17 #pragma omp ta rg e t map( to : y2 [ :N] ) map( tofrom : x2 [ :N] )
18 #pragma omp p a r a l l e l f o r simd
19 f o r ( i =0; i<N; i++)
20 f o r ( j =0; j<N; j++)
21 x2 [ i ] = x2 [ i ] + a [ j ∗N + i ] ∗ y2 [ j ] ;
22 }
23 }

Listing 1.2. OpenCL kernel for the first loop of mvt after vectorization

1 k e r n e l void mvt gpu 0 ( g l o b a l f l o a t ∗a ,
2 g l o b a l f l o a t ∗x1 ,
3 g l o b a l f l o a t ∗y1 ) {
4 i n t b0 = ge t g roup id (0) ;
5 i n t t0 = g e t l o c a l i d (0 ) ;
6 p r i v a t e f l o a t 4 f t 0 ;
7 p r i v a t e f l o a t 4 f t 1 ;
8 p r i v a t e f l o a t 4 f t 2 ;
9 f t 0 = vload4 (0 , &x1 [ ( 4∗ b0 ) + t0 ] ) ;

10 f o r ( i n t c1 = 0 ; c1 <= 8191; c1 += 4){
11 f t 1 = vload4 (0 , &a [ ( (32768∗ b0 ) + (8192∗ t0 ) ) + c1 ] ) ;
12 f t 2 = vload4 (0 , &y1 [ c1 ] ) ;
13 f t 0 = f t 0 + ( f t 1 ∗ f t 2 ) ;
14 }
15 x1 [ ( 4∗ b0 ) + t0 ] = ( ( f t 0 . x + f t 0 . y ) + f t 0 . z ) + f t 0 .w;
16 }

In the first loop the program computes the matrix vector multiplication fol-
lowed by the transpose between a and y1 storing the result into vector x1.
The second loop does a similar task for a, y2 and x2. As shown in Listing 1.1,
the target clause defines the portion of the program that will be executed by
the device (GPU in the example). The map clause details the mapping of the
data between the host and the target device. For example in the first kernel of
Listing 1.1 inputs (a and y1) are mapped to the GPU, and array x1 is mapped
to/from the GPU. This means that array x1 is read and written during the kernel
execution in the GPU. This strategy offers maximal flexibility to the developer
to decide which part of the code is profitable to run on which architecture.

Host code to perform data offloading in ACLang is handled automatically
during the LLVM/IR generation phase and occurs in between the begin and end
scopes of pragmas “omp target [data] map”. Also, during this phase ACLang
extracts annotated loops from the compiler AST and transforms them into
OpenCL kernels in source code format (Listing 1.2).
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Moreover, ACLang also optimizes the extracted OpenCL kernels. For exam-
ple as shown in Listing 1.2 it tiles and vectorizes the first loop of the code in
Listing 1.1 transforming it to OpenCL kernel with blocks and threads suitable to
run on any GPU containing vector instructions, like the ARM Mali-T880 MP12
GPU (preferred vector size is 4). The generated kernel can also go through a
SPIR generation pass to produce the kernel bit code in SPIR format.

Fig. 1. AClang Compiler pipeline

Figure 1 shows the AClang execution flow pipeline. The LLVM IR genera-
tion phase of ACLang handles the conversion of the AST nodes generated by
the Semantic phase into LLVM Intermediate Representation1. In this phase,
the annotated loops are extracted from the AST ❶, optimized ❸, and/or trans-
formed ❷ into OpenCL kernels in source code format (see Sect. 3 for more details
on the loop optimization pass). Kernels ❺ can also go through the SPIR genera-
tion pass ❻ to produce kernel bit codes in SPIR format. AClang ’s transformation
engine ❹ provides information to the LLVM IR generation phase ❼ to produce
intermediate code that calls ACLang runtime library functions. These functions
are used to perform data offloading and kernel dispatch to the OpenCL driver.
Listing 1.3 shows the LLVM intermediate code produced for the first loop of the
mvt application (see Listing 1.1, lines 13–15). Lines 2–7 show the result of the
tiling optimization required to carry out vector optimization. Lines 11–21 show
the kernel that results for the tiling where the first and third loops (lines 2 & 4)
define the number of blocks and threads used by the runtime library to dispatch
the kernel (line 10).

The ACLang runtime library has two main functionalities: (i) it hides the
complexity of OpenCL code from the compiler; and (ii) it provides a mapping
from OpenMP directives to the OpenCL API, thus avoiding the need for device
manufacturers to build specific OpenMP drivers for their GPUs or FPGAs.

The offloading mechanism implements the OpenMP 4.X target data,
target and declare target constructs. The compiler generates calls to the

1 Historically, this was referred to as codegen.
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AClang runtime library whenever a target data or target directive is encoun-
tered. The declare target construct will result in the extraction of the appro-
priate code to be stored inside the kernel.

The compiler also generates calls to the AClang runtime library, at the begin-
ning and at the end of the C/C++ main function. At the beginning, the library
determines the availability of an OpenCL driver and identifies the accelerator
devices connected to it. After that, the AClang runtime library initialize the
data structures that handle the devices and the context and command queues
for each device. In addition it creates the necessary data structures to store the
handles for the kernels and the buffers to offload data to the accelerator devices
memories. The call at the end of the main function promotes the cleanup of
these data structures.

Listing 1.3. Fragments of the transformation of mvt benchmark application

1 // Performing t i l e opt imizat i on with t i l e −s i z e = 4
2 f o r ( i n t c0 = 0 ; c0 <= 8191; c0 += 4)
3 f o r ( i n t c1 = 0 ; c1 <= 8191; c1 += 4)
4 f o r ( i n t c2 = 0 ; c2 <= 3 ; c2 += 1)
5 f o r ( i n t c3 = 0 ; c3 <= 3 ; c3 += 1)
6 x1 [ c0 + c2 ] += (a [8192 ∗ c0 + c1 + 8192 ∗ c2 + c3 ] ∗
7 y1 [ c1 + c3 ] ) ;
8

9 /∗ Converting to OpenCL ke rne l where
10 g l oba l wo r k s i z e = 8192 , and b l o c k s i z e = 4 ∗/
11 k e r n e l void mvt gpu 0 ( g l o b a l f l o a t ∗a ,
12 g l o b a l f l o a t ∗x1 ,
13 g l o b a l f l o a t ∗y1 ) {
14 i n t b0 = ge t g roup id (0) ;
15 i n t t0 = g e t l o c a l i d (0 ) ;
16 f o r ( i n t c1 = 0 ; c1 <= 8191; c1 += 4) {
17 f o r ( i n t c3 = 0 ; c3 <= 3 ; c3 += 1)
18 x1 [ 4 ∗ b0 + t0 ] += (a [32768 ∗ b0 + 8192 ∗ t0 + c1 + c3 ] ∗
19 y1 [ c1 + c3 ] ) ;
20 }
21 }

3 Tiling and Vectorization

Automatic loop transformations is a complex and cumbersome task which is
hard to generalize. To address this problem, ACLang leverages on the ISL [11]
implementation of the polyhedral model to transform the OpenMP annotated
loops and create opportunities for loop tiling and vectorization. This is achieved
in two steps.

First, annotated loop statements at the AST representation of the complier
are transformed to a polyhedral linear-algebraic representation [14]. This model
consists of an iteration domain, access relations, and a schedule. A standard
dependence analysis is then performed using ISL. This step takes the itera-
tion domain, access relations, and the schedule as inputs and determines which
iteration statements depend on which other iteration statements. Second, the
polyhedral engine selects a new execution order by using a reordering function
(a schedule). The core transformation in this step finds a set of affine transforma-
tions that tile the loops so that they can be mapped to the blocks and threads
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in the OpenCL kernel code [13]. Tiling is a key transformation for GPUs. It
has been studied from two perspectives: data locality and optimization and par-
allelization. The focus here is to partition the iteration space into tiles that
can concurrently run on different GPU cores with a reduced inter-core commu-
nication2. This transformation is also instrumental in limiting the amount of
memory used inside a block, to better exploit local memory resources. One of
the key goals of our transformation framework is to find good ways of performing
tiling. An important parameter in tiling is the size of the tiles, as its size affects
the performance of the resulting code. Clearly there is an optimal tile-size that
depends on the characteristics of the GPU being used and the actual code being
tiled. ACLang uses the polyhedral engine to implement a multilevel tiling strat-
egy tailored to the multiple levels of parallelism and to the memory hierarchy
of the accelerator. As an example, tiling can be directly applied to the loops
of Listing 1.1, as the outermost loops can be executed in parallel because their
iterations update disjoint parts of the x1 and x2 arrays.

ACLang also provides a vectorization pass developed to exploit the short-
vector instructions available in OpenCL. Automatic vectorization for modern
short-SIMD instructions has been a popular topic in compiling technology with
implementations for ARM Neon, Intel AVX and SSE, etc. Exploring vector com-
putations in GPUs, however, suffers from several limitations involving alignment,
redundant loads and stores, etc. GPUs use different schemes to expose vector
computations: current NVIDIA GPUs use multiple levels of fine-grain threads,
while others use explicit short-vector instructions. Other manufacturers like
AMD have been using a combination of both [7]. In view of this non-uniformity
and the availability of short-vector instructions in the OpenCL model, we decided
to restrict the vectorization pass of ACLang to the use of these short-vector
instructions. Although automatic vectorization can be extended to handle more
sophisticated control-flow restructuring including outer-loop vectorization [19],
at this time, we focus only on inner loops.

Kernels are vectorized in a two step process. First, ACLang uses the poly-
hedral optimization engine to re-structure loop nests so as to determine the
innermost loops that can be vectorized. Second, ACLang vector optimization
engine replaces the appropriate statements in the inner loops by short-vector
instructions. Listing 1.2 presents the extracted kernel of the first loop from the
mvt program (see Listing 1.1) after it has been vectorized.

State-of-the-art vectorizing compilers incorporate a cost model to decide
whether vectorization is expected to be profitable [20]. These models are typ-
ically applied to a single loop, and do not consider potential combination of
transformations at the loop-nest level. The ACLang optimization engine does
not yet include a profitability heuristic. This will be addressed in future work.

By default AClang performs tiling on kernels whenever possible. Compiling
flag -opt-poly=none can be used to disable this if needed (notice that such
option disables both tiling and vectorization). AClang also performs vectoriza-

2 A tile is atomically executed on a GPU core with communication required only
before and after execution.
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tion whenever possible on loops annotated with pragma parallel for simd or
explicitly via command line (-opt-poly=vectorize) for all annotated loops.

4 Experimental Evaluation

AClang has been evaluated using three heterogeneous CPU-GPU architectures:
(i) a mobile Exynos 8890 Octa-core CPU (4× 2.3 GHz Mongoose & 4× 1.6 GHz
Cortex-A53) integrated with an ARM Mali-T880 MP12 GPU (12× 650 MHz),
and running Android OS, v6.0 (Marshmallow) (ii) a laptop with 2.4 GHz dual-
core Intel Core i5 processor integrated with an Intel Iris GPU containing 40
execution units, and running MacOS Sierra 10.12.4; and (iii) a desktop with
2.1 GHz 32 cores Intel Xeon CPU E5-2620, NVIDIA Tesla K40c GPU with
12 GB and 2880 Cuda cores, and running Linux Fedora release 23. The results
presented in all experiments are averaged over ten executions. Variance is neg-
ligible; hence, we will not provide error intervals. The experiments use a set
of programs from the well-known Polybench benchmark suite [5] and the Par-
boil benchmark suite [6] with standard input sizes. The programs have been
re-written in OpenMP 4.X. For the sake of simplicity we refer to this set of
modified programs as the Unibench suite.

Figures 2(a), (b) and (c) show detailed speed-ups normalized to the sequen-
tial execution, compiled with −O3. Three optimization flavours are represented
by bars in the figures: (a) GPU (green bar), the basic ACLang OpenCL kernel
execution; (b) GPU+tiling (orange bar) when using ACLang tiling optimization;
and (c) GPU+vector (blue bar) when combining ACLang tiling and vectoriza-
tion. The experimental evaluation indicates that the implemented optimizations
can yield significant performance benefits for most of programs. A thorough
analysis of the final program performance is done in the section below.

4.1 Performance Analysis

Overall, the experiments revealed that ACLang can speed-up the execution of
Unibench programs up to 30x when running on the Exynos/ARM-Mali, up to
62x on the Intel/Iris and up to 112x on the Intel Xeon/Tesla K40c. Also, as shown
in the figures, when tiling followed by vectorization can be applied, application
performance improve, with syrk application revealing the best relative perfor-
mance improvement (6x) with respect to the tiled optimized code on Exynos/-
Mali, and 3mm application, 2.5x on Intel/Iris.

As one can notice in Fig. 2(c), performance improvement has been measured
on the Tesla K40c when using tiled followed by vectorization even though that
architecture does not have vector instructions. This can be explained by the
fact that vectorization helps the OpenCL driver to improve memory throughput
at run time. Tesla K40c hardware can do stores and loads for 64 and 128 bit
types in a single transaction on each multiprocessor what reduces overall latency
and increases effective throughput. The hardware can process 256 and 512 byte
transaction sizes per warp, so a suitably aligned float4 load/store request for a
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(a) Exynos/ARM Mali-T880
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(b) Intel Core i5/Iris
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(c) Intel Xeon/Tesla K40c
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Fig. 2. Unibench Benchmark programs (Color figure online)
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warp can be serviced in a single transaction. This can result in higher global
memory bandwidth utilization at any given level of occupancy.

We also observed that substantial speed-ups have been produced in some
of the programs that run the longest times. The slowdowns observed in some
benchmarks such as mvt, occur mainly in the mobile (ARM Mali-T880) device
and in instances that execute for a very short time. In such cases, the extra
parallelism achieved by AClang with tiling and vectorization is not enough to
compensate for the overhead of data offloading or OpenCL management tasks
which are coordinated by the runtime library.

To account for the impact of the OpenCL overhead, AClang ’s runtime library
was instrumented to measure the percentage of the total program execution time
corresponding to each one of the following tasks, represented as bars, in Figs. 3(a)
and (b): (a) kernel computation (blue bar); (b) OpenCL driver tasks like context
creation, queue management, kernel objects creation and GPU dispatch (orange
bar). As shown in the graphs, the purple bar represents the time to offloading
the data and is an important component of the total kernel execution time;
for example approximately 40% of the total execution time of 3dconv on the
Intel/Iris architecture is spent in offloading data.

Figures 3(a) and (b) reveals that the OpenCL driver takes an astonishing share
of the total execution time on most Unibench programs (orange bar plus purple
bar). We also noted that this effect is more pronounced in the ARM/Mali archi-
tecture (not shown here) meaning that the OpenCL driver used in this architec-
ture needs some performance improvement.

In order to evaluate the impact of the OpenCL runtime, a new experiment
was designed to measure the percentage of the total execution time due to the
OpenCL+Offloading overhead when varying the data sizes. Only programs which
exhibit low speedups or even slowdown with respect to sequential code were used.

The bars in Fig. 3(c) represent for each program the percentage of execu-
tion time due to OpenCL+Offloading (coral) and the kernel useful computation
(blue). As expected, Fig. 3(c) shows that longer executions times can amortize the
OpenCL+Offloading overhead. The immediate effect is a decrease in the program
slowdown or even an increase in the speed-up with respect to the sequential exe-
cution, as represented by the points and lines graph of Fig. 3(c) and its right-side
y-axis. For instance, 2dconv benchmark shows a slowdown of 0.35x for data size
equals to 2048 and a speed-up of 1.90x when the data size is 8192.

For comparison purposes, we ran the same benchmark applications on the
Intel Xeon architecture with Tesla K40c using the clang-ykt , a Clang OpenMP
4.5 implementation that is actively being introduced into the Clang compiler
trunk as part of an industry-wide effort to support the next generation of super-
computers [15,17]. The only caveat we make in our initial comparisons against
clang-ykt is that we had to modify all applications to find the best code per-
formance as recommended in [17]3. Without such modifications, we achieved

3 According to [17], it is essential to collapse all loops of the application, and parallelize
the critical loops using the combined construct target teams distribute parallel

for.
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(a) The breakdown of total execution time on ARM/Mali
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(b) The breakdown of total execution time on Intel/Iris
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(c) OpenCL overhead variation with data set size on Intel/Iris
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slowdowns with respect to sequential execution for all applications. For instance,
in the covariance application, the slowdown was 2x while we obtained a speedup
of 66x with AClang . Another example was the classical matrix multiplication
(2 mm) that showed a slowdown of 6x against a speedup of 20x with AClang .
We hope AClang can contribute to improve the development of of the clang-ykt
compiler and libomptarget library.

5 Related Work

Compiling for GPUs has been extensively studied. Lee et al. [9] developed a
compiler framework for automatic translation from OpenMP to CUDA. Their
system handles both regular and irregular programs parallelized using OpenMP
directives. Work sharing constructs in OpenMP are translated into distribution
of work across threads in CUDA. However their system does not optimize data
access and is restricted to NVIDIA GPUs. Baskaran et al. [8] developed a source-
to-source transformation framework that can take an arbitrarily nested affine
input C program and generate an efficient CUDA program. To generate tiled
code, their affine transformations produce a band of fully permutable loops,
that are automatically formed. This band is then transformed into tiled code.
Their system optimizes data access costs for access to global memory and also
makes use of on-chip shared memory. However, the solution does not explore
other types of optimizations (e.g. vectorization), and is restricted to NVIDIA
GPUs. Moreover the end user has to deal with two sources: the original one and
the CUDA code.

Many efforts have been done to develop source-to-source compilers using the
polyhedral framework to perform loop transformations. For instance, PPCG [12]
introduces some advanced algorithms which can expose much more parallelism
than other methods. It also introduces affine partition heuristics and code gen-
eration algorithms to improve locality in registers and shared memory. ACLang
complements and enhances the effectiveness of such systems with additional opti-
mization passes (e.g., vectorization), and a source-to-end solution that reaches a
broad range of heterogeneous systems by using the support of OpenCL drivers.

Antao et al. [16] describes their initial work to fully support code generation
for OpenMP device offloading constructs into Clang/LLVM. They describe a
new driver implementation to handle compilation for multiple host and device
types, which generalizes the current Clang CUDA implementation and supports
OpenMP. They claim that the solution can be extended to any offloading based
language including OpenCL and OpenACC. They describe an implementation
of the OpenMP offloading constructs in the runtime library, giving details of
how data mapping is implemented and how different device code sections in the
binaries are handled to enable application execution on different devices without
recompilation.

Tian et al. [18] proposes a small set of extensions to the LLVM IR to support
explicit parallel, SIMD, and offloading constructs, thus enabling the transforma-
tion of these constructs in the LLVM middle-end. They also propose a unified
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framework for parallelization, offloading and vectorization compiler transforma-
tions. Unlike Tian, we made a design decision to quickly have a tiling and vec-
torization optimization engine focused on extracted kernels so as to deliver the
best possible performance on target devices.

Leading optimizing compilers recognize the importance of devising a cost
model for vectorization, but have so far provided only partial solutions. The
most advanced cost model for loop transformations-enabled vectorization was
proposed by Trifunovic et al. [20]. It is based on polyhedral compilation, and is
capable of capturing from the polyhedral representation itself the main factors
that contribute to the profitability of vectorization.

Our offloading implementation has many parts in common with the current
OpenMP offloading support based on libomptarget that is present in clang-ykt.
However, it was tailored for the specifics of the OpenCL model and contains some
limitations that are not compatible with a fully functional OpenMP implementa-
tion. Currently, our library is used to enable the direct communication between
host and an OpenCL driver, thus covering a whole range of GPUs from different
vendors. On the other hand, libomptarget enables the communication between
host and a target-independent offload library which, in turn, is used for commu-
nication between the host (read, libomptarget) and the target devices, thereby
enabling the support of different programming models.

6 Future Directions

For the sake of compatibility with the OpenMP 4.X standard our next step is
to replace our current offloading mechanism for the new mechanism present in
clang-ykt and integrate our runtime library to libomptarget. However, we will
preserve our kernel extraction, transformation and optimization engines.

We are also planning to design and implement a cost model algorithm for het-
erogeneous computing that takes into consideration processor’s characteristics
and data transfer time. The goal of this model is to help developers to effectively
exploit the target device. Moreover, we are working on new OpenMP 4.X runtime
libraries for the Microsoft SMARTNIC [21] and Intel HARP2 [22] architectures
in order to easy the task of offloading computation to FPGA accelerators.
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Abstract. Recent trends in processor design accommodate wide vec-
tor extensions. SIMD vectorization is more important than before to
exploit the potential performance of the target architecture. The lat-
est OpenMP specification provides new directives which help compilers
produce better code for SIMD auto-vectorization. However, it is hard
to optimize the SIMD code performance in OpenMP since the target
SIMD code generation mostly relies on the compiler implementation. In
this paper, we propose a new directive that specifies user-defined SIMD
variants of functions used in SIMD loops. The compiler can then use the
user-defined SIMD variants when it encounters OpenMP loops instead
of auto-vectorized SIMD variants. The user can optimize the SIMD per-
formance by implementing highly-optimized SIMD code with intrinsic
functions. The performance evaluation using a image composition kernel
shows that the user can optimize SIMD code generation in an explicit way
by using our approach. The user-defined function reduces the number of
instructions by 70% compared with the auto-vectorized code generated
from the serial code.

Keywords: OpenMP · SIMD vectorization · VLA programming - Vec-
tor Length Agnostic programming

1 Introduction

Recent trends in processor design accommodate wide vector extensions and
many-core architectures. We expect that these trends will continue to improve
the flops per watt ratio. Current Intel Xeon Phi processors have the 512-bit
vector instruction set, Advanced Vector eXtensions (AVX-512), and more than
60 cores. ARM released a new vector instruction set for high performance com-
puting, named Scalable Vector Extension (SVE) [2], which allows up to 2048-bit
wide vector registers. Parallel programming is getting more important when
using these architectures to exploit the potential performance. OpenMP (OMP)
is widely used to describe node-level parallelism on shared-memory architectures.
The directives such as parallel and for can describe thread-level parallelism on
many-core architectures.
c© Springer International Publishing AG 2017
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On the other hand, SIMD vectorization has been done automatically by
compilers. Compilers analyze code structures such as loop statements and find
parallelism. When the target structures are safe to be vectorized, the compiler
generates SIMD instructions. The latest OMP specifications provide new direc-
tives which help this auto-vectorization process. The simd directive specifies
vectorizable loops (SIMD loops) in the serial code. The declare simd directive
can be given to function definitions in the serial code to specify that the target
functions are vectorizable in the SIMD loop. These directives ensure that target
constructs are safe to be vectorized so that compilers can skip some hard analy-
sis such as pointer alias analysis and avoid generating runtime checks to prevent
aliasing.

The OMP directives reduce the burden of compiler analysis for SIMD vec-
torization. However, it is hard to optimize the SIMD code performance in OMP
since the target SIMD code generation mostly relies on the compiler implementa-
tion. In this paper, we propose a programming interface connecting user-defined
SIMD functions and SIMD loops. To this end, we introduce the alias simd direc-
tive which specifies the user-defined SIMD variant of the target function. The
compiler uses the specified function in the SIMD loop instead of vectorizing the
target function. By using this interface, we can split the loop iteration translation
and the SIMD code generation for the loop body. Code translation for control-
ling loop iterations remains architecture-independent by using the OMP simd
directive. The user can write highly optimized SIMD code with architecture-
dependent programming methods such as intrinsic functions.

The main target architecture of our proposal is ARM SVE. SVE is a vector
length agnostic instruction set. Most instructions use a predicate mask. Our
proposal includes a way of handling predicate masks and optimization in the
SVE instruction set. We also consider fixed-length vector instruction sets such
as Intel AVX to make the proposal to cover traditional SIMD extensions. The
user-defined SIMD function can be implemented in the various ways since our
proposal only relies on the function declaration and the vector ABI. In this
paper, we use intrinsic functions provided by processor vendors to implement
SIMD variant functions.

The rest of the paper is organized as follows: Sect. 2 shows related works
proposing explicit SIMD programming models. In Sect. 3, we briefly introduce
the new ARM vector instruction set, SVE, and its intrinsic functions as prelim-
inary knowledge. In Sect. 4, we introduce the alias simd directive in OpenMP,
which allows explicit SIMD implementations in OMP SIMD loops. In Sect. 5,
some sample code and preliminary results of the performance evaluation are
given to show the effectiveness of our proposal. Finally, we discuss the future
work and conclude the paper in Sect. 6.

2 Related Work

There have been many attempts to establish an explicit SIMD programming
model [11]. ARM C Language Extensions (ACLE) [1], which is only available
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on ARM architecture, provides a type-generic interface to program ARM SVE
instructions. Thanks to its vector-length agnostic design, the iteration of the
SIMD loop can be controlled without considering target architecture’s vector
length. ispc (Intel SPMD Program Compiler) [10] defines new programming lan-
guage to describe SIMD-level parallelism. It covers various Intel SIMD instruc-
tion sets such as SSE, AVX, and AVX-512 in the Xeon Phi architecture. The
language-based approach such as ispc, Intel array notation [7], Sierra [8], and
Terra [3] require a dedicated implementation in compilers. [4] takes compiler-
independent approach using C++ template. Cyme [5] and Vc [6] are imple-
mented as a library. While these models provide high-level interface for SIMD
programming, they assume a fixed vector length so that the SIMD loop iteration
step should be modified manually when targeting an extension with a different
vector register size.

3 Overview of ARM Scalable Vector Extension

SVE is a new vector extension to the A64 instruction set of the ARMv8-A archi-
tecture designed to exploit increases in hardware capability without requiring
software recompilation.

The vector length in SVE can be configured dynamically in the range from
128 to 2048 bits, in multiples of 128. Although the value can be obtained through
system registers, the SIMD instruction set is designed to be Vector Length Agnos-
tic (VLA).

Most instructions take a predicate register to mask available elements in the
operand vector registers.

The following are some of the key features of SVE.

– 32 vector registers (Z0-Z31).
– 16 predicate registers (P0-P15).
– Configurable vector length: 128 to 2048-bit (maximum is processor-

dependent).
– Enables the VLA programming model – the same program can run

on machines with different vector register length, without requiring re-
compilation.

3.1 The Vector Length Agnostic Programming Model

Listing 1 shows an example of a vector addition in C and its equivalent SVE
assembly code. The operand p0 is a predicate register which is used to mask
active and inactive lanes of the vector registers z0 and z1.
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Figure 1 shows how SVE instructions modify register values in Listing 1.
Here, we assume that the data type of A, B, and C is double *, and the data
type of i and N is unsigned long int.

After setting the loop induction variable (i, carried by x8) to zero, the code
branches directly to the instruction whilelo, which compares the current iter-
ation value i and the last iteration value (N in this case, carried by x9). The
instruction sets the loop predicate register, p0, as p0.d[i] = (i < N) ? 1 :
0, for each one of the logical lanes implied by a SIMD loop iteration.

If at least the first logical lane of the predicate vector is active (b.first),
the branch is taken back to the start of the loop.

The predicate register is then used in the loop body to mask out the inactive
lanes. In Listing 1, the loads (ld1d), and the store (st1d) instruction use the
predicate register to process only the active lanes, effectively removing the need

256-bit SVE
Iter x8 (i) whilelo p0.d, x8, x9 (i < N)

0 0 1|1|1|1

1 4 1|1|1|1

2 8 1|1|1|1

384-bit SVE
Iter x8 (i) whilelo p0.d, x8, x9 (i < N)

0 0 1|1|1|1|1|1

1 6 1|1|1|1|1|1

512-bit SVE
Iter x8 (i) whilelo p0.d, x8, x9 (i < N)

0 0 1|1|1|1|1|1|1|1

1 8 1|1|1|1|0|0|0|0

Fig. 1. Vector loop control using the predicate generated by the whilelo instruction,
for different SVE implementations. N is 12. Notice that the same code in Listing 1 works
independently on the vector size thanks to the incd x8 instruction. In the predicate
representation, logical lane numbering is intended left-to-right.
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of introducing a scalar loop tail to fix up the last elements of the computation
that do no fill a full vector register length.

The logical iteration of the loop is then advanced using the incd instruction,
which is used to increase the iteration variable i by the number of double
elements a scalable vector register can hold.

The, another whilelo instruction is issued and the branch condition in
.Lcond is checked again.

For the interested reader, other examples showing how to use SVE for VLA
programming are available in the white paper [9].

3.2 Intrinsic Programming Interface

Like most SIMD instruction sets, SVE has an intrinsic programming interface
which can be used in high-level programming languages such as C and C++.
ARM C Language Extensions (ACLE) has been extended to support SVE. List-
ing 2 shows the ACLE version of the vector addition given in Listing 1. Because
of its VLA approach, the loop is written using the while construct. svbool t is the
data type for predicate registers. svfloat64 t is the data type for double precision
FP registers.

The predicate variable is created by svwhilelt b64 s64() which do the same
process in Listing 1. svptrue b64() generates a predicate in which all elements
are active. At the beginning of every iteration, svptest first() checks the head of
the predicate register to see if the next iteration has an active predicate element
to process. The load and store instructions in Listing 1 are equivalent to svld1()
and svst1(). svadd() calculates SIMD addition of the double data type. svcntd()
returns the number of 64-bit elements in a vector register. It is then used to
increase the loop iteration variable for the next SIMD execution.
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Note that many routines in Listing 2 are given without specifying the element
data type. It is because ACLE provides a type generic programming interface
implemented using templates in C++, or Generic in C11.

4 Explicit Programming Interface for Vectorizing
Functions

As discussed in Sect. 1, the current OMP specification cannot specify the SIMD
implementation of functions used in SIMD loops. Although the directives can
help the compiler check that the target code can be vectorized, the SIMD code
generation is a transparent part to the user. In this section, we propose an
explicit programming interface to expose user-defined SIMD functions available
in OMP SIMD loops.

4.1 Overview of the Proposed Programming Model

The basic concept of our proposal is that we provide SIMD variants of existing
functions instead of using auto-generated SIMD functions. To this end, we add
a new directive, named alias simd, in the OpenMP specification. Listing 3 shows
an example code of the alias simd directive. Vector data types (int4 t, int8 t)
and intrinsic functions (e.g. intrinsic add4 ) in the listing are pseudo code.
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Fig. 2. Code Translation OverviewCode Translation Overview

The purpose of the alias simd directive is mapping SIMD variant functions
defined by the user to the original functions in the serial code. In B and C in
Listing 3, the function name or declaration is given by the to clause for the
mapping process. We need the full declaration when functions with different
argument types have the same name by using template (in C++) or Generic
(in C11). alias simd has the simdlen clause to distinguish SIMD variants by the
vector length. These variants can be defined at the same time. We do not expect
that Intel AVX and ARM SVE SIMD variants are available at the same time
since we assume that portability among vendors is maintained by using some
guard macros (e.g. AVX , ARM NEON ).

The mapping process is independent from declare simd so that the SIMD
function is generated from the scalar function even if SIMD variants are given.
SIMD variants have priority over the compiler-generated SIMD function when
translating the OMP simd directive. The compiler will select a SIMD variant
by the proper vector length (or the vector length can be given explicitly by the
simdlen clause). We may need the scalar function definition and the declare simd
directive in case that the loop is not vectorizable, or no proper SIMD variant
is given.

Figure 2 shows how the compiler translates a OMP loop and replace functions
with the SIMD variant by the alias simd directive. The simd directive specifies
that the following loop should be vectorized and the vector length is 8. Function
add() is used in the loop body. To vectorize the loop, the compiler needs to
generates the SIMD code of add().

The declare simd directive is given with the scalar code of add(). Since
simdlen is not given, SIMD functions with any vector length can be gener-
ated from the compiler. In this example, the SIMD function with vector length
8 (add I8I8I()) can be generated for the loop body.

On the other hand, a user-defined SIMD function is given with the alias simd
directive. add vec8() is implemented by using (pseudo) SIMD intrinsic functions.
The function adds a scalar value to a vector register. On most architectures, each
SIMD intrinsic function is specific to a vector length. The simdlen clause is given
in the alias simd to tell the compiler that the following function can be used
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to execute 8 iterations of int operations in parallel. The to clause specifies the
original scalar function. It tells the compiler that add vec8() is a SIMD variant
of add(). The compiler infers data types of arguments in ( add()) to complete
the function declaration. The process follows the architecture’s vector ABI. In
this example, the compiler infer int from int8 t.

When the compiler translates the OMP loop in Fig. 2, two SIMD functions
are available, compiler-generated add I8I8I() and user-defined add vec8(). In our
proposal, user-defined functions have higher priority to allow the user to optimize
the SIMD performance by implementing fast SIMD algorithms.

4.2 Syntax of the Alias Simd Directive

Figure 3 shows the syntax of the alias simd directive. The directive is given
along with the complete definition of a SIMD variant. We do not assume any
specific programming model for the implementation. Therefore, any kind of pro-
gramming model can be used to implement SIMD variants if they adhere to the
proper argument types and vector length. At first, we explain the syntax for the
fixed-length SIMD architecture, and then extend it for SVE’s VLA approach.

Fig. 3. Definition of Alias Simd Directive

The to clause comes with either the name or declaration of the target func-
tion. When a function name is given, the compiler would infer the scalar type
of each vector/scalar argument in the SIMD variant. The type reference follows
target architectures’s vector ABI. Multiple types can be mapped to the same
vector type (e.g. generic programming model). In that case, the complete dec-
laration should be given to choose the correct target function. The to clause
cannot be omitted.
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The simdlen clause specifies the SIMD length used in the SIMD variant.
By the simdlen clause given in the simd directive, the SIMD loop may require
several SIMD variants for the same function. The simdlen clause in alias simd
is used to link the correct SIMD variant to a function call in the SIMD loop.
The compiler registers the SIMD variant as the default SIMD implementation
for the architecture when simdlen is omitted. When the target instruction set is
SVE, simdlen is omitted by default. However, we can still use simdlen for SVE.
This can be useful when there are highly-optimized SVE SIMD functions for a
specific vector length.

The inbranch/notinbranch clause specifies whether the target function is
called in a conditional statement or not. For example, the SIMD variant have
additional arguments when inbranch is given. This clause is used to choose the
correct SIMD variant, and infer the scalar types of the target argument (with
inbranch, mask/predicate argument will be excluded in type inference).

The linear clause specifies the linear step of the target scalar variable
increased in SIMD lanes. Regardless of the step value, the corresponding argu-
ment would have the original (scalar) data type. Since the privatization and
linear increment should be implemented inside the SIMD function, multiple vari-
ants with different steps look the same from the compiler. The linear clause in
alias simd should be given to distinguish the multiple SIMD intrinsic variants
in the source code so that the compiler can choose the correct one. The syntax
of linear list and linear step is the same as for the already existing OpenMP
constructs.

5 Preliminary Evaluation

In this section, we introduce a use case of our proposal and perform a preliminary
evaluation. We use the alias simd directive to optimize a simple image composi-
tion code. ALCE intrinsic functions are used to implement a SIMD function in
SVE. Since the proposal has not been implemented yet, we compare the auto-
vectorized code, which is equivalent to OMP SIMD vectorization in the current
LLVM implementation, and the hand-written SIMD code simulating the behav-
iour of the alias simd directive. Both the serial and ACLE code are compiled
by the SVE LLVM compiler and the binaries are executed on the instruction
simulator, which has been provided by ARM.

5.1 Vectorization of Image Composition Kernel

Listing 4 shows the serial implementation of the composition code and the main
loop. All color values are stores in the unsigned char type which has a range from
0 to 255. Each image has four channels, red, green, blue, and alpha. The image
composition is done by a loop statement. In each iteration, function add filter()
is called for the red, green, and blue channel.
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add filter() returns the sum of the two input images when the alpha mask
value of the second image is not 0. When the value is 0, it returns the color value
of the first image. Since the summation may overflow the maximum value (255),
the code stores the temporary data in the unsigned short type, and checks the
value range. Therefore, the serial code contains type conversion and branching.

Listing 5 shows the ACLE implementation of the composition code. Note that
the function has additional argument p. It is because the compiler generates a
predicate value to process the remainder loop as shown in Sect. 3. We assume
that SVE vector functions always have a predicate variable as a first argument.
It is not used in type inference shown in Sect. 4.

The ACLE version uses svqadd u8(), saturating integer addition, to calculate
the summation. When the summation is outside the range, svqadd u8() ensures



72 J. Lee et al.

that the value will be the maximum (255). This can avoid type conversion shown
in the serial version and therefore increase performance. In SVE, branches can be
replaced by SIMD instructions with predicate registers. The alpha mask values
are checked in parallel by svcmpgt u8(), which generates a predicate value. It can
be used to generate the second operand of the summation to avoid the branch.
The values are set to zero when the corresponding predicate value is inactive.
As a result, the ACLE implementation can exploit the SIMD-level parallelism
for unsigned char (8-bits) on the target hardware.

Listing 6 shows the main loop code written in ACLE. Even though ACLE pro-
vides a generic programming interface, porting to ACLE requires manual trans-
formation including rewriting loops, generating predicates, and adding vector
load/store instructions. As shown in Listing 4, this transformation is transparent
and portable in our approach since it is programmed by the OMP simd directive.

5.2 Evaluation Results

Figure 4 shows the performance of the auto-vectorized serial code and the hand-
written ACLE code. Since we do not assume any specific hardware implementa-
tion, the performance is measured by counting the number of instructions issued
during the execution of the loop. We have evaluated the performance with two
dataset sizes, 32× 32 and 320× 320 pixels, using two simulated hardware imple-
mentations, with 256-bit and 1024-bit wide vectors.

The results show that the hand-written code simulating alias simd executes
less instructions compared with the auto-vectorized code. In most cases, the
auto-vectorized code executes 3.7 ∼ 3.8 times more instructions than the hand-
written code. When increasing the vector length in the small data set (32 × 32
with 1024-bit SIMD), the ratio is decreased to 3.4 because the total instruction
number is small and instructions for loop control becomes significant.
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Fig. 4. Performance of Image Composition Kernel, as number of total instructions
issued when executing the loop

The serial version includes the type conversion from unsigned char to
unsigned short to calculate summation of two pixels. In auto-vectorization, the
compiler generates SIMD addition instructions for unsigned short, which dou-
bles the number of SIMD add instructions per iteration compared to the intrinsic
code. Before the calculation, the compiler generates type conversion instructions.
It also adds extra calculations which do not exist in the intrinsic code.

The branch used for color clamping to the maximum value is translated to
SIMD compare and selection instructions in auto-vectorization. There are type
conversion to unsigned short since the calculated values are stored in the unsigned
short type. After the calculation, the data type is converted into unsigned char.
The check for alpha mask is translated in the same way.

On the other hand, the intrinsic version calculates the summation using
unsigned char type instructions. Since it uses the saturating addition instruc-
tion, svqadd u8(), the range check and clamping is unnecessary. The optimization
is intended to avoid the unnecessary type conversion to reduce the number of
instruction executed, and improve the instruction throughput by using unsigned
char type SIMD instructions.

It should be emphasized that our approach provides an explicit way of pro-
gramming SIMD instructions. The performance result shows that our approach
can successfully change the way how the code uses the SIMD instructions, which
cannot be done with existing OMP SIMD directives. This is important even for
a product-level compiler since it cannot always generate the optimal SIMD code.
And there may be a gap between high-level languages and hardware instruction
sets which make it difficult to describe the optimal SIMD code. We have used
the saturating addition instruction in SVE, which cannot be described directly
in the C language without using a wider type.

Our proposal is designed to be independent from instruction sets. If we imple-
ment the code transformation of alias simd for a specific SIMD instruction set
and the vector ABI, we can describe user-defined SIMD functions to optimize
the SIMD performance on the target architecture. For example, we can optimize
the SIMD performance using Intel AVX intrinsic functions on Intel processors
(e.g. generating a histogram using Intel AVX512-CD).
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6 Conclusion

In this paper, we proposed a new OMP directive, alias simd. It specifies user-
defined SIMD variants of functions called in SIMD loops. The compiler uses
the SIMD variant when translating OMP loops instead of auto-vectorized SIMD
variants. The user can optimize the SIMD performance by implementing highly-
optimized SIMD variants with intrinsic functions. Even for a product-level com-
piler, it is difficult to generate optimal SIMD code for every case. Our proposal
provide an explicit way to program SIMD-level parallelism while keeping com-
mon and trivial parts (e.g. loop iteration transformation) portable. For the next
step, we will implement our proposal in the LLVM compiler so that we can try
various examples and instruction sets.
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Abstract. Beginning with an existing well-optimized lattice quantum
chromodynamics solver using OpenMP+MPI, we develop two task-based
implementations, one with OpenMP tasking and one with hand-coded
“untasking”. We achieve better overlap of MPI communication and com-
putation with both methods, and expose some performance issues in
OpenMP tasking. Both task-based implementations outperform the orig-
inal implementation when strong scaling.

Keywords: Openmp · Tasking · MPI

1 Introduction

Overlapping MPI communication with computation is a key optimization tech-
nique for many HPC applications. MPI provides asynchronous send and receive
calls, but there is still code inside the MPI library that needs to execute on
the processor. To hide the largest amount of MPI time, this code needs to be
executed in parallel with computation.

The CCS-QCD benchmark [1] offloads MPI to dedicated cores using a simple
shared-memory synchronization mechanism. This mechanism works well but has
some limitations:

– The dedicated cores are idle when not running MPI code.
– The list of dedicated cores must be communicated to the application, and the

application must be run in such a way that those cores are not included in the
cores used for computation. This may be a challenge in many job launching
systems.

– There is overhead associated with the synchronization mechanism used to
perform the offload.

– The number of MPI ranks per node is limited by the number of dedicated
cores.

In this paper we present two alternative versions of CCS-QCD that use tasks
to multiplex MPI with computation on the same set of cores. In Sect. 2 we

c© Springer International Publishing AG 2017
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describe the hardware and software used for the performance results. Section 3
describes CCS-QCD. Sections 4 and 5 present a OpenMP tasking implementa-
tion. Section 6 presents an alternate task-based implementation. Section 7 ana-
lyzes performance and compares the three implementation. Section 8 is conclu-
sions and future work.

2 Hardware and Software

We used the following hardware and software for the results presented in this
paper:

Processor: Intel R© Xeon PhiTM 7250 processor with 68 cores, 1.4 GHz, 96 GiB
DDR, 16 GiB MCDRAM.

Fabric: Intel R© Omni-Path Architecture cards, cables, and switches with
100 Gb/sec theoretical bi-directional bandwidth.

Compilers: Intel R© C++ Composer XE and Intel R© Fortran Composer XE
version 17.0.2.174.

OS: Linux 3.10.0-327.36.3.el7.xppsl 1.4.3.3482.x86 64, a Centos 7.2 kernel
with patches for Intel R© Xeon PhiTM processor support. The OS is booted with
nohz full=1-271 which allows all OS CPUs except for CPU 0 to enter tickless
mode, reducing the frequency of OS timer interrupts.

All runs were made using only 64 cores for compute and avoiding the first
two cores for compute threads.

3 The CCS-QCD Benchmark

The CCS-QCD quark solver benchmark was developed at the Center for Com-
putational Sciences (CCS) at the University of Tsukuba, Japan. It solves the
Wilson-Clover quark propagator using a single precision BiCGStab solver.

The full solver consists of calls to the Wilson-Clover Dirac hopping matrix
multiplication (called Mult in this paper), calls to BLAS-like routines, and calls
to MPI Allreduce. In this paper we discuss only the Mult routine, which takes
approximately 65% of the total solver time.

Mult is a 4-dimensional 9-point stencil on a matrix of fermion sites. Each
iteration of the nested stencil loop operates on a site, combining the fermion
sites with the gauge links for each dimension. The data structures have been
optimized for SIMD, so each site in the program consists of several sites from
the lattice. The inner loop is highly optimized using AVX-512 intrinsics [3].
Similar techniques are described in the references from [1] and in [4].

We exploit the reuse inherent in the stencil by tiling the 4-dimensional loop
nest to improve L2 locality. Thus the loop nest consists of four outer loops over
the blocks followed by 4 inner loops over each tile.

MPI decomposition simply divides the iteration space in one or more dimen-
sions. Boundaries in each distributed dimension are exchanged during each call
to the Mult routine. We do not use explicit halo regions. Rather, the buffer for
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each surface is packed and sent, and the receive side applies the buffer to the
corresponding surface in the post and final computations as described below.

Since the stencil is only ±1 in each dimension, all of the inner sites can
be computed without needing any data from other ranks. In other words, the
interior computation can progress in parallel with the MPI data transfer. Figure 1
illustrates a three-dimensional 83 lattice.

Fig. 1. 83 3d lattice showing interior (Interior), surfaces (Final+Post), post-
computation (Post), and final computation (Final).

We therefore implement Mult in six phases:

1. Post asynchronous receives (MPI Irecv)
2. Pack data for each surface into a buffer.
3. Send buffers to neighbors (MPI Isend)
4. Compute the interior
5. Wait for the receives (and sends) to complete
6. Apply each recieve buffer to its corresponding surface.

In the initial implementation of the benchmark we assumed that the asyn-
chronous MPI calls could progress independently of the interior computation,
thus hiding some or all of the MPI time. We found two problems with this app-
roach: First, the asynchronous MPI calls themselves take a noticable amount
of time, and this time is completely serial. Second, MPI implementations often
require calls into MPI in order to make progress; in this approach there are no
calls into MPI while the interior computation is occurring.

We therefore decided to offload the MPI calls to a separate thread. The
baseline version of the benchmark described in this paper uses this offload imple-
mentation. It turned out to be a relatively simple modification, using a simple
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Listing 1. Taskloop replacement code
template <typename T> void
for_recursive(int low , int high , int grain , T body) {
tail_recurse:

int count = high - low;
if (count > grain) {
int mid = low + count / 2;

#pragma omp task for_recursive <T>(low , mid , grain , body);

low = mid; goto tail_recurse;
}
body(low , high);

}
...
#pragma omp taskgroup for_recursive (0, n, 1, [=](low ,high) {
for (int i = low; i < high; ++i)

loop_body(i);
});

queue; the application puts requests on a queue and the offload thread executes
them. Each MPI rank has its own offload thread. This thread is explicitly cre-
ated with pthread create and bound to the first two cores. The first two cores
are excluded from the cores used by the rest of the application. This gives us
a dedicated MPI “engine”. We ensure MPI progress in the offload engine by
alternately polling for new MPI requests from the application and polling MPI
with MPI Test calls for outstanding MPI requests.

4 Tasking Implementation

Because of the issues mentioned in the introduction we decided to explore an
alternate approach to overlapping MPI and communication. Measurement shows
that the offload MPI threads do relatively little work. If, instead, we can borrow
one of the application threads when we need to perform MPI calls, and also use
that thread to perform work while waiting for MPI to complete, we can avoid
the awkwardness and overhead of MPI offload and also gain more flexibility in
running multiple ranks per core.

As described in the previous section, the existing implementation has 6
phases. Phases 2, 4, and 6 are parallel regions. Phases 1 and 5 are serial regions.
If we analyze the dependences between computations and MPI sends or receives,
we can create a finer-grained dependence graph that allows more available par-
allelism without synchronization, as described below.

Note: The taskloop construct has not been optimized in the compiler we
used, so instead we used a recursive divide-and-conquer construct as shown in
Listing 1.

(1) The MPI send buffer for a given dimension and direction depends only
on the corresponding surface. We call these surface computations the pre-
computations. In this step the surface consists of the full surface (Final+Post
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in Fig. 1). The code for the pre-computation and send for each distributed dimen-
sion and direction DIR is:
#pragma omp task
{

#pragma omp taskgroup
for_recursive (0, DIR_nblocks , 1, [=]( int low , int high) {
for (int block = low; block < high; ++block) {

pre_compute(DIR , block);
}
}); // for_recursive
// implicit wait for taskgroup
MPI_Isend(DIR_buf , ..., &req);
MPI_Wait (&req);

} // task

(2) The interior computation is completely independent of both the pre- and
post-computations, and is implemented with a single taskloop:
#pragma omp task
{

for_recursive (0, nblocks , 1, [=]( int low , int high) {
for (int block = low; block < high; ++block) {

bulk_compute(block);
}
});

}

(3) Each application of a received MPI buffer to its corresponding surface
depends only on the receive for that dimension and direction. We call these
surface computations the post-computations. The code for the receive and post-
computation for distriibuted dimension and direction DIR is:
#pragma omp task
{

// DIR_req is from irecv for dimension and direction DIR
// posted outside of parallel region
MPI_Wait(DIR_req);
for_recursive (0, DIR_nblocks , 1, [=]( int low , int high) {
for (int block = low; block < high; ++block) {

// post compute using buffer for DIR
post_compute(DIR , block);

}
}); // for_recursive

}

We express these independent computations inside a single parallel region.
The master thread spawns tasks for step (1) for each distributed dimension and
direction, then spawns a task for step (2), then finally spawns tasks for step (3)
for each distributed dimension and direction.

There is a minor problem in this revised formulation: It turns out that the
post-computations are not completely independent. The post-computation itera-
tions at the edges depend on buffers for more than one dimension. We handle this
by constraining all the post-computations to the interiors of the surfaces, labelled
as “Post” in Fig. 1. We then enclose all the post-computations in a taskgroup.
When the taskgroup completes we spawn tasks to execute the final cleanup iter-
ations for the edges, labelled as “Final” in the figure. The code modifies step (3)
and adds an additional step as follows:
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#pragma omp master
{

#pragma omp taskgroup
{

// code from step (3) for each distributed direction and dimension
...

}
// implicit wait for taskgroup
for (each final edge E) {

#pragma omp task
postcompute(E);

}
}

The postcompute function takes the array bounds for the particular block to
be computed. Note that the iterations for the post-computations themselves are
blocked, as seen in the code for step (3); however, the final computations are
not blocked. The extra code to block the final computations slowed the program
down.

Finally, rather than calling the MPI functions directly as shown in the psuedo
code, we instead poll the MPI library to allow other tasks to progress while
waiting for MPI completions. We use an OpenMP lock to serialize access to the
MPI library.1 We poll on the lock and use the taskyield directive to execute
other work while waiting for it to become available. Also, rather than calling
MPI Wait we poll on MPI Test when waiting for completions.

5 Initial Performance Results

We ran the application on a 324 problem (distributed in up to 3 dimensions)
using both the original version and the tasking version. Since the original version
requires one extra core per MPI rank we ran it on only 1 and 2 MPI ranks per
node.2 We ran the tasking version on 1, 2, 4, and 8 ranks. We used one thread
per core (in this and all runs).

The baseline version uses the static workstealing scheduler described in [2].
The data in Fig. 2 shows that there is negligible penalty for replacing the

bulk Mult loop with tasks, even with two ranks per node. At 8 nodes, tasking
with 8 ranks per node is faster than baseline, and with 4 ranks per node is equal
to baseline. However, on fewer than eight nodes the performance is worse. To
understand why, we profiled the 324 8 rank single node run. The data shows
89.5% of the time in the application code and 10.1% of the time in the OpenMP
runtime. Much of the OpenMP runtime is in routines for task scheduling. We
therefore initially assumed that part of the slowdown is due to overhead in the
OpenMP task scheduling. This motivated us to rewrite the code to use our own
tasking system, which we call untasking. This is described in the next section.

1 The quality and even availablity of MPI THREAD MULTIPLE varies between implemen-
tations, and it is a good place for taskyield.

2 Since there are 68 cores, we should have been able to run up to 4MPI ranks per
node, but we were unable to persuade the MPI implementation to avoid the first 4
cores.
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Ranks/ Baseline Tasking
Nodes Node (seconds) (seconds)

1 1 16.46 16.91
1 2 17.18 16.75
1 4 17.07
1 8 18.24
2 1 9.20 9.22
2 2 9.24 9.72
2 4 9.84
2 8 9.55
4 1 5.77 8.69
4 2 7.00 8.89
4 4 6.16
4 8 6.06
8 1 7.03 11.26
8 2 5.98 7.87
8 4 5.99
8 8 4.48

2 4 8
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Fig. 2. Baseline vs. Tasking

6 Tasking by Hand, or Untasking

Careful consideration of the Mult algorithm reveals that the OpenMP task-
ing implementation can perform more work than is needed. The matrix sizes
are determined by the problem size, which does not change during the run, and
therefore the number of iterations for each computation phase is constant for the
duration of the program. Also, we can describe each iteration with only three val-
ues: the iteration number, the phase (pre-computation, bulk, post-computation,
final), and the direction (T, Z, Y, X up and down for pre- and post-computation
phases).

Therefore, the only task type we need be concerned with is an iteration,
which we describe with the following data structure:
enum { TaskPre = 0, TaskBulk = 1, TaskPost = 2, TaskFinal = 3 };
struct Task {

unsigned int kind :2; // phase
unsigned int dir:3; // direction
int iter :27; // iteration

};

We precompute several arrays of Task structs: one for each direction for each
distributed dimension, which is used by both the pre- and the post-computation
for that dimension and direction; one for the bulk computation; and one for the
final computation. We also precompute a static distribution per thread for each
of the arrays.

We use the Intel R© Threading Building Blocks (Intel R© TBB) concurrent
queue class to implement a task stealing scheduler. There is one concurrent
queue (declared as tbb::concurrent queue<Task>) for each OpenMP thread.
The task scheduling loop for a thread dequeues Tasks (iterations) from the
thread’s queue until the queue is empty, then searches all the queues looking
for a task to steal.
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Listing 2. Untask Master Thread
do { // wait for pre - computations

predone = 1;
for (int dir = 0; dir < 8; ++dir) { // (up ,down) for T,Z,Y,X direction

if (dirDone(dir , pre)) continue;
while (! dirDone(dir , pre) && taskQ[tid].pop(task))

doTask(task)
if (dirDone(dir , pre))

MPI_Isend(buffer[dir], ...)
else predone = 0;

}
} while (! predone);
do { // wait for receives and enqueue post - computations

recvdone = 1;
for (int dir = 0; dir < 8; ++dir) {

if (dirDone(dir , recv)) continue;
recvdone = 0;
if (MPI_Test(req[dir] ,...))

for (int j = 0; j < nthreads; ++j) { // add post for this dir
start = surfacedist[j][dir]. start; n = surfacedist[j][dir].end;
for (int i = start; i < start+n; ++i)

taskQ[j].push(taskBuf[dir][i]);
}

}
} while (! recvdone);
do { // wait for post - computations

postdone = 1;
for (int dir = 0; dir < 8; ++dir) { // (up ,down) for T,Z,Y,X direction

if (dirDone(dir , post)) continue;
while (! dirDone(dir , post) && taskQ[tid].pop(task))

doTask(task)
else postdone = 0;

}
} while (! postdone);
for (int j = 0; j < nthreads; ++j) { // enqueue final iterations

start = finaldist[j][dir]. start; n = finaldist[j][dir].end;
for (int i = start; i < end; ++i)

taskQ[j].push(finalBuf[i])
} // fallthrough to execute tasks

The master thread posts all the receives with MPI Irecv before entering the
parallel region. This adds to the serial time but it is important to post the
receives before the matching sends whenever possible to avoid extra overhead.
Then, after entering the parallel region, each thread first enqueues all of its
iterations from the static distribution for the pre-computations and the bulk
computation. Then, the master thread enters the region in Listing 2, while the
worker threads enter the task scheduling loop.

The master thread has a special role in the untasking implementation. It is
used to enforce required dependences on MPI buffers, as well as executing tasks
while waiting for dependences to be satisfied.

When enqueuing the pre-computations and bulk iterations, we make sure to
enqueue the pre-computations first, since we want to get the MPI sends posted
as quickly as possible to avoid delaying other ranks. The first loop in the master
region repeatedly loops through the directions and checks to see if a direction
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is finished. If the direction is not finished the master thread executes iterations
from its own queue until the iterations for that direction are finished, then calls
MPI Isend with the buffer for that direction. The loop continues until all pre-
computations are complete.

To check that a given pre-computation direction is complete we maintain an
atomic counter for each direction. As a thread completes an iteration for that
direction, it increments the corresponding counter. The master thread reads
the counter and compares it to the total number of iterations required for that
direction.

After the master thread notes that all pre-computations are complete, it
goes into another loop waiting for the receives for each direction to complete.
We choose to execute no tasks during this loop so that we complete the receives
as early as possible and so that we always have a thread active in the MPI library
to ensure progress. As each receive completes, the master thread enqueues the
iterations for the matching post-computation for all the threads.

Once the receives are all complete, the master thread loops waiting for each
direction’s post-computations to complete, as well as executing its own iterations
while waiting.

Finally, when all the post-computations are complete, the master thread
enqueues all the final iterations for all the threads, and then exits the master
region to participate in completing all the remaining tasks.

7 Revised Performance Results

Figure 3 is a copy of Fig. 2 with the untasking results added. The untasking result
with 8 ranks per node is the winner after two nodes. Strong scaling to 8 nodes
is 55% efficient, vs. 46% for tasking and 34% for baseline.

Ranks/ Baseline Tasking Untasking
Nodes Node (seconds) (seconds) (seconds)

1 1 16.46 16.91 16.18
1 2 17.18 16.75 16.18
1 4 17.07 16.34
1 8 18.24 17.36
2 1 9.20 9.22 8.59
2 2 9.24 9.72 8.61
2 4 9.84 9.22
2 8 9.55 8.80
4 1 5.77 8.69 6.10
4 2 7.00 8.89 6.61
4 4 6.16 5.34
4 8 6.06 5.29
8 1 7.03 11.26 6.73
8 2 5.98 7.87 5.53
8 4 5.99 4.55
8 8 4.48 3.73 1 2 4 8
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Fig. 3. Baseline, tasking, and untasking
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It is useful to analyze strong scaling in more detail. As we double the num-
ber of nodes, the computational work per node is cut in half. The MPI traffic
also changes, but the progression is more complicated and depends on the total
number of ranks, not just the number of nodes. Further, some MPI traffic is
internode and some is intranode and the ratio changes with the number of nodes
and ranks. The general trend is toward more and smaller messages as the num-
ber of ranks increases, but the total message volume also gets larger since there
is more exposed surface area.

When strong scaling, at some point the MPI time exceeds the computation
time, and from there on the MPI time becomes an increasingly large portion of
the total time. Performance analysis will help us to understand how the MPI
time varies as we increase the number of nodes and change the number of ranks
per node, how effective we are at hiding the MPI time, and how much time is
spent not doing useful work (parallel overhead and load imbalance).

Table 1 shows one method of time accounting on the three different implemen-
tations on 2 and 8 nodes. The following three subsections describe the method
used to analyze each implementation and the meanings of the table entries, then
a final subsection has our interpretation of the results.

Table 1. Time accounting

Metric Baseline Tasking Untasking

2× 2 8× 2 2× 2 8× 8 2× 2 8× 8

Work/thread (106 cycles) 10,680 3,684 9,416 2,709 10,759 3,554

MPI time (106 cycles) 3,760 5,281 3,870 3,881 3,992 1,611

Elapsed time (106 cycles) 12,938 8,379 13,276 6,390 11,885 5,006

MPI MB/node 31,394 12,558 31,394 18,837

MPI GB/sec/node 11.69 3.33 11.01 16.37

Work % 82.55 43.97 70.92 42.39 90.53 71.00

MPI % 0.36 34.96 4.35 27.47

Overhead % 2.58 5.51 8.77 28.08

Unaccounted % 17.10 21.07 22.15 24.63 0.70 0.92

Imbal % 6.28 11.03 2.80 4.37 1.24 4.23

7.1 Baseline Timing Data

In the baseline code, the MPI work is performed asynchronously by the offload
thread, and the application waits in a serial region for the offload thread to
report completion. We measure the time spent in the application waiting for the
offload thread. This is the amount of MPI time that was not hidden by the bulk
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computation. We estimate the work time using event-based sampling and count
the samples in the Mult routine. Since this data is per-thread we can also use it
to estimate imbalance.

Some of the unaccounted time is explained by this load imbalance. More of
the unaccounted time is due to OpenMP fork-join overhead; the baseline code
has three separate parallel regions.

7.2 Tasking Timing Data

The tasking code was a challenge to instrument. The usual trick of estimating
fork-join overhead and overall load imbalance by timing the threads inside the
parallel region does not work here, because the threads are executing OpenMP
tasks while waiting in the barrier. We ended up using two methods. First, each
computational task is timed; the timing points are equivalent to those in the
untasking code. Second, we used the OMPT ompt callback idle callback to
measure the idle time.

Fig. 4. Execution timeline for tasking
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The unaccounted time is quite high, so to better understand the behavior
we instrumented both the tasking and the untasking code to collect begin and
end timestamps for the tasks and for the MPI communication. Figure 4 shows
data for one Mult call at about one second into the computational portion of
the benchmark for one MPI rank. We plot durations for each instance of the
different task types as well as the total MPI send and wait (for receive) duration
for each MPI instance. The time spent in the MPI lock routine (recall that it
tests an OpenMP lock and issues taskyield if the lock is busy) is overlaid on
the MPI operation in which it occurs.

7.3 Untasking Timing Data

We instrumented the untasking code to count the cycles spent executing tasks,
waiting for work, and enqueing tasks. We also measured the time for each thread
inside the parallel region, and the time on the master thread to execute each
parallel region. This gives us a measure of OpenMP fork-join time. We also
instrumented the master thread to measure MPI wait time. As with tasking,
we also instrumented the code to record the start and duration of each instance
of each untask type and the start and duration of the MPI wait loop (refer to
Listing 2). This data is plotted in Fig. 5.

We have high confidence in the untasking time accounting because of the tiny
unaccounted time. The additional data in Fig. 5 helps us to understand where
the idle portion of the overhead occurs.
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Fig. 5. Execution timeline for untasking

7.4 Comparison

Referring to Table 1 we can see that the amount of work performed by the
baseline and untasking versions is very similar, as expected. When going from
2 to 8 nodes, we would hope for the work to decrease by a factor of 4, but it
decreases by closer to a factor of 3. This is explained by the increased surface to
volume ratio obtained by using more ranks.

The amount of work performed by the tasking code is about 10% less for
2 nodes and about 15% less for 8 nodes. This is not understood. The work
measurement was confirmed by comparison with event sampling results, so the
difference is real. More detailed analysis is required. Unfortunately, this reduced
work does not lead to better performance.

We see that the MPI time increases from 2 to 8 nodes in the baseline case,
even though the number of bytes per node decreases. In the untasking case,
even though we are transferring more bytes per node, the MPI time decreases
dramatically. This is explained by the increased parallelism afforded by 8 ranks
per node.

In the tasking case, the MPI time as measured from within the code does
not decrease as expected from 2 to 8 nodes. To see why we must refer again to
Fig. 4. There are three long-duration send instances, and two long-duration wait
instances. The expectation was that the lock calls, which include taskyield,
would allow those threads to execute other tasks while waiting for the MPI lock.
In practice the timeline data shows that even though several long-duration lock
waits (with accompanying taskyields) occurred, no other tasks were executed
during that time, thus only about half the threads were doing non-MPI work for
much of the interval. Further, the MPI time, which includes the time waiting for
the lock, is artificially inflated.

The MPI bandwidth numbers are somewhat misleading, as they do not dis-
tinguish between inter- and intra-node transfers, and also include any load imbal-
ance that shows up as MPI wait time. However, they are a perfectly valid met-
ric to compare different implementations, node counts, and rank layouts. The
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numbers are absent for the tasking code because we cannot measure MPI time
accurately.

The poor scaling of the baseline case from 2 to 8 nodes is largely explained
by the exposed MPI time of 34.96%.

In the untasking case we turn again to Fig. 5. There is almost a 100us gap
from the time the last pre-iteration completes until the master thread starts
waiting for receives to start the post-iterations. Careful examination of the code
in Listing 2 reveals that the master thread does not call into the MPI library
for every iteration of the send loop. We therefore suspect that some of this gap
is due to delayed MPI progress. Some of it may also be due to the cost of the
atomic counters used for synchronization.

Gaps in the post-iteration portion of the chart are expected due to delay
in receiving messages from other ranks; this also leads to delay in starting the
final iterations which are dependent on all the receives. There is about 10µs of
load imbalance because of the granularity of the post iterations (thread 1 is the
laggard).

8 Conclusions and Future Work

With 8 nodes and 8 ranks per node, both the OpenMP tasking implementation
and the untasking implementation outperform the baseline implementation, by
1.3x in the tasking case and 1.6x in the untasking case. The untasking imple-
mentation is 1.2x faster than the tasking implementation.

The detailed timeline of the OpenMP tasking implementation in Fig. 4 reveals
that taskyield does not function as we expected it to. This is under investi-
gation. Inspection of the figure suggests that the tasking implementation would
perform much better if this were resolved.

We found that it was essential to collect not only summary times but traces
of task execution in order to understand (and debug) the behavior. Because of
the very fine granularity of the tasks in this benchmark (from 1000 to 50,000
cycles), collection overhead must be kept very low. We used inline hand instru-
mentation with the RDTSC instruction and stored all timestamps in memory,
then dumped them to a file for each MPI rank. We continue to explore meth-
ods for incorporating such find-grained low-overhead instrumentation into more
general-purpose tools. A high-quality interactive viewer for general timeline data
would have been welcome.

The baseline implementation is able to use cooperative hierarchical thread-
ing, where threads on a core cooperate on the same tiled loop iteration (described
by Meadows et al. in [2]). We did not use this method in the OpenMP tasking
implementation, and therefore used only one thread per core. For fair comparison
we used only one thread per core in the baseline and untasking runs. Running
with only one thread per core reduced the performance of the baseline code. In
the untasking implementation it would be possible to add hierarchical thread-
ing, since we have complete control over threading and task execution. In the
OpenMP tasking implementation, we would have to use nested OpenMP within
each task, and the overhead is prohibitive at this granularity.
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CCS-QCD is still somewhat slower than the best LQCD implementations
(Peter Boyle’s Grid in [5] and QphiX in [4]) on Intel R© Xeon PhiTM proces-
sors, and falls short of the processor’s best micro-architectural performance for
this code. An alternative implementation that uses a different tiling strategy
and better prefetching should allow us to improve performance when using one
thread per core while also making the tasks larger, reducing the impact of task
scheduling overhead.
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Abstract. This paper will present our work on optimising and compar-
ing the performance of an irregular algorithm for the increasingly impor-
tant fast multipole method with the use of tasks. Our aim is to provide
insight into how different methods of synchronisation can affect the per-
formance of tree-based particle methods, finding that performance can be
improved by 21% on some platforms. We also compare the performance
of the chosen application between different OpenMP implementations
and to other task-parallel programming models, finding that significant
performance differences can be observed on both NUMA and Many Inte-
grated Core architectures.

Keywords: OpenMP · Tasks · Mini-apps · Locks · Atomics

1 Introduction

Introduced in 2007, OpenMP tasks have allowed for the simplification of express-
ing parallel execution of irregular problems, such as divide and conquer algo-
rithms. The mapping of tasks to threads is non-deterministic and the scheduling
efficiency is highly dependant on the underlying runtime. The availability of dif-
ferent OpenMP implementations and other similar task-parallel programming
models, such as OmpSs [1], Intel Threading Building Blocks [2], and Cilk [3],
has given application developers many options to choose from, whilst differences
in scheduling techniques and the features provided has lead to differences in
performance.

As the tasks constructs in the OpenMP standard have been expanded and
matured in the past 10 years, the level of parallelism in current architectures has
increased dramatically. Non-unified Memory Access (NUMA) architectures are
now commonplace in high performance systems, with current generation Intel
architectures comprising of as many as 22 cores per socket. In addition to NUMA
architectures, the introduction of many integrated core architectures, such as the
72 core Intel Knights Landing chip, has demonstrated the need for low-overhead
and scalable parallel runtimes.

In addition to simplifying the expression of irregular problems, task-
parallelism has the potential to increase performance on systems with large
c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 92–106, 2017.
DOI: 10.1007/978-3-319-65578-9 7
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numbers of cores. Using fine-grained parallelism by way of task dependencies,
tasks are only executed when the specific data they operate on is available. This
is in contrast to conventional OpenMP programs that make use of fork-join
constructs whereby steps of an algorithm are executed in a series of parallel
for-loops, whilst a task-based approach would allow for each step to overlap and
correctness assured through the programmer’s use of task-dependencies.

OpenMP has become the de facto standard for thread-parallelism in HPC,
with a large range of different implementations from groups such as Intel, GNU,
and Cray; it has become a simple and powerful way to parallelise both existing
and new applications. It is not the only parallel programming model that offers
task-parallelism however. Cilk [3], TBB [2], StarPU [4], OmpSs [1], Kokkos [5],
and even the C++11 standard all now offer task constructs, giving an application
developer a wide range of options. However, there is also great uncertainty in
which models provide both the richest and the most convenient APIs, while also
offering the greatest performance on modern, highly parallel architectures.

This paper will present a comparison of a range of different programming
models and OpenMP implementations using a representative application, known
as a ‘mini-app’. Mini-apps are scaled-down applications that capture the perfor-
mance characteristics of real scientific codes; they are commonly used to rapidly
compare and test both programming models and architectures [6]. Currently
however, few mini-apps exist that can make good use of tasks and can be used
to assess current tasking programming models. Hence, the comparison will be
performed using a new Fast Multipole Method mini-app, MiniFMM1, developed
at the University of Bristol. The method works primarily around a tree traversal
algorithm and can exhibit high load imbalance, thus providing an interesting
real application to compare and test tasking performance.

The outline of the paper is as follows: Sect. 3 briefly describes the FMM
and details of the particular variant used, Sect. 4 gives details of the OpenMP
implementation and discusses the challenges faced using the tasking model with
FMM, Sect. 5 gives an overview of differences in OpenMP implementations and
similar programming models, Sect. 6 provides a comparison and discussion of
the different programming models, and Sect. 7 concludes the paper describing
how the results can be generalised and applied to other task-based methods to
improve performance.

2 Background and Related Work

Previous work has shown the significant design and performance differences
between OpenMP implementations. Most work has focused on comparing the
performance and runtime execution characteristics of micro-benchmarks, such
as computing Fibonacci numbers and sorting arrays. Olivier et al. [7] had pre-
viously compared the parallel performance of OpenMP tasks using the BOTS
benchmark suite [8], finding that the overhead costs and idle thread times varied
greatly between benchmarks. This work was then extended by Virouleau et al.
1 https://github.com/uob-hpc/minifmm.

https://github.com/uob-hpc/minifmm
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who looked at the KASTORS benchmark suite from BSC [9], which examined
the performance of tasks with data dependencies, finding that the performance
of some of the benchmarks could be impacted by the OpenMP runtime used.
Whilst these benchmarks have provided key insights, the aim of this paper is to
examine how the performance of a representative application is affected by both
parallel overheads and runtime decisions.

Previous efforts to parallelise the fast multipole method (FMM) have
shown that task-based approaches provide large performance benefits. The tree-
traversal algorithm designed by Yakota et al. [10] was initially implemented
with tasking features from Intel TBB and large performance improvements
were gained over similar methods. Following on from this, Pericas et al. [11]
extended this work by implementing the tree-traversal step using tasks with data-
dependencies in OpenMP, finding only minor performance improvements could
be gained. Making use of extra data-dependency constructs available in StarPU,
Agullo et al. [12], found that performance could be improved over OpenMP.

3 Method Overview

The FMM has many uses in the fields of physics and computational mathe-
matics, including calculating gravitational/electrostatic forces, fluid dynamics,
plasma simulation, and acoustics [13]. Fundamentally, the algorithm provides a
linear time approximation to O(n2) problems and allows for tunable precision
of results. It works by grouping particles via a space partitioning tree (such as
an octree), where groups of particles are located at each tree node. As in the
N-body problem, each particle will need to calculate the force due to all other
particles in the system. The difference using the FMM is that particles are com-
pared group to group; each target group of particles is compared to all other
nodes in the tree, resulting in two outcomes:

1. If the two nodes are far enough away, the force contribution for a source node
can be approximated for the target node.

2. Else the forces for each particle will be calculated directly.

If the force contribution can be approximated, then the target doesn’t need
to consider any tree node below that source node. This has the very important
property of the application’s control flow not being known until runtime; the
control flow is data-dependant. It is also of note that the application is compute-
bound due to the high FLOP/byte ratio of directly computing the forces of
particles in nodes that are close together.

The Dual Tree Traversal method for FMM, devised by Yakota and
Dehnen [10], has been shown to be an efficient tree traversal method that also
allows user control over the distance required to approximate node interactions,
hence greater control over the precision of the final results. It is worth noting
that other FMM implementations exist that do not allow for control over the dis-
tance at which approximations are made; this affects the implementation when
using tasks and is outlined further in Sect. 4.1. Pseudo-code for the tree traversal
is shown in Listing 1.1.
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dtt ( node source , node target )
{

// c a l c u l a t e d i s t ance between source and ta rg e t
. . .

i f ( source and target well separated )
approximate_force ( source , target )

e l s e i f ( is_leaf ( source ) && is_leaf ( target )
direct_force ( source , target )

e l s e
{

i f ( source . radius > target . radius )
f o r ( child in target )

dtt ( child , source )

e l s e
f o r ( child in source )

dtt ( target , child )
}

}
Listing 1.1. Dual Tree Traversal

All of the results collected in this paper are run with an input of O(106) par-
ticles uniformly distributed inside a box. At the finest level of the tree structure,
the maximum number of particles per node is set to 300. These input parame-
ters were selected to match those seen in previous work [10,11]. Unless stated,
all tests are performed using double precision values.

4 Implementation Overview

As the method evaluates all pairs of nodes in the tree, it is possible for two
threads to be calculating the force contribution for the same target node. In
OpenMP, task dependencies, atomics, and locks can all be used to ensure cor-
rectness. This section will detail efforts to increase performance of synchroni-
sation in a task-based application using the architectures listed in Table 1 and
using the Intel C Compiler (17.0).

4.1 Task Dependencies

Using task dependencies introduced in the OpenMP 4.0 standard, we can avoid
memory read/write conflicts. However, optimal performance won’t be achieved
for two reasons. Firstly, task dependencies are resolved in the order in which
tasks are created, hence an unnecessary ordering on tasks is enforced; the fast
multipole method permits updating particle values in any order. Secondly, the
work of finding the distance between nodes and deciding whether to approximate
or calculate the force directly and creating a task to do so, is too great for a
single thread to perform whilst issuing enough tasks to saturate the other threads
with work, hence the entire computation is stalled by the thread issuing tasks.
With large numbers of threads this can cause a severe bottleneck; running on 256
threads of a KNL and using data-dependencies in this way results in performance
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that is ∼22x slower than alternatives and as such a parallel traversal is required.
However, using a parallel traversal with data-dependencies has the issue of task
dependencies only being enforced for the immediate child tasks of the current
task, hence data conflicts would not be enforced across threads.

4.2 Atomics

An alternative to task dependencies would be to make the accumulations within
a task be atomic operations. Hence, for both the direct and approximate calcu-
lations, the force updates are applied atomically for each particle. As the force
calculations are over all particles in a node, this can mean many atomic oper-
ations are required. In addition, the method requires complex numbers (added
to C standard in ISO C99) and built-in complex data-type atomic operations
are not supported within OpenMP, hence separate arrays of real and imaginary
types are required instead.

4.3 Locks

Another option would be to create a lock for every node in the tree, then lock
and unlock a node to update the entire group of particles inside a node.

Which of these two options (locks or atomics) performs better depends
entirely on the execution of the method. Atomically updating the forces for
each particle introduces a fixed overhead compared to locks, however, high lock
contention will cause large amounts of idle thread time. As can be seen in Fig. 1a,
using atomics results in superior performance on Broadwell for both single and
double precision data. However, on Intel Xeon Phi Knights Landing (KNL),
Fig. 1b shows that double precision performance is roughly equivalent, whilst
locks outperform atomics for single precision.
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Fig. 1. Comparison of synchronisation methods on (a) two sockets of 22-core Broadwell
(b) 64-core Xeon Phi Knights Landing
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It is also possible to improve the performance of locks when combined with
task constructs in OpenMP. Introduced by Chalk [14], the use of taskyield
when a task cannot acquire a lock, shown in Fig. 1.2, as opposed to using
omp set lock, can dramatically improve performance. Essentially, a thread exe-
cuting a task tries to acquire a lock and if it is unsuccessful, a task scheduling
point is reached, allowing for the runtime to suspend the execution of the current
task. This allows the executing thread to do other work in the hope that when
the task execution is resumed, the lock can now be acquired. In Figs. 1a and b,
this method is referred to as ‘yield lock’ and, as can be seen, this alone has little
effect when compared to omp set lock. However, when combined with untied
tasks, i.e. pragma omp task untied, the performance difference is noticeably
improved. The use of the untied keyword allows for any thread to resume the
execution of a suspended task. Whilst it was measured to have no performance
impact when combined with atomics or omp set lock, using untied tasks in con-
junction with taskyield and locks leads to a performance increase (‘yield locks
untied’ in Figs. 1a and b). This is due to threads being able to resume tasks that
were suspended by another thread when a lock could not be acquired; overall
this leads to better load balance of tasks.

i n t locked = 0 ;
whi le ( ! locked )
{

locked = omp_test_lock (&target−>lock ) ;
i f ( ! locked )
{

#pragma omp ta s ky i e l d
}

}
Listing 1.2. Locking with taskyield

Instead of using a single lock per tree node, two locks could also be used.
One to prevent a race condition on the approximate force accumulation and one
to prevent the race condition on the direct force accumulation. Using two locks,
the same synchronisation methods were tested and the results are displayed in
Figs. 2a and b. Overall, this results in the best performance as lock contention
was reduced, however some interesting effects were observed. Firstly, there is
little benefit gained from the use of #taskyield lock variant on Broadwell.
This is because as lock contention is lower, the #taskyield is less likely to
be encountered. Whilst on KNL, higher thread counts result in high enough
lock contention that the use of #taskyield is still marginally beneficial when
using double-precision values. The use of untied tasks generally results in worse
performance when using two locks.

From these results it was concluded that if you have highly contended locks,
as in the case where a single lock was used per tree node, then there are perfor-
mance benefits from using ‘yield locks’ and untied tasks. In contrast, with locks
that have lower contention, these keywords aren’t needed and can result in the
same or even worse performance.
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Fig. 2. Comparison of synchronisation methods using two locks per tree node on (a)
two sockets of 22-core Broadwell (b) 64-core Xeon Phi Knights Landing

Another attempt to optimise lock performance was to specify the lock
implementation via the omp init lock with hint function added in OpenMP
4.5. This allows a user to request a lock optimised for high contention
(uncontended/contended) and/or speculative locks. It was found that in all
cases uncontended locks performed worse than contended, and whilst specu-
lative locks are supported on Intel Xeon CPUs (but not Xeon Phi), the use of
the hint had no effect. The ability to specify the lock implementation was only
available in the Intel OpenMP implementation, whilst the Cray compiler and
GCC lacked this feature.

Whilst this alternative to task dependencies, referred to as ‘conflicts’ in
Chalk [14], could be added to the OpenMP standard as a task clause, it can
be seen that in this application, there is not a definitive method to implement-
ing ‘conflicts’; as seen in Fig. 1a, atomics still outperform the alternatives when
using double precision values in the mini-app, whilst locking with taskyield
and untied tasks perform better in other cases.

4.4 Extensions to Task Dependencies

Programming models such as OmpSs and StarPU have the ability to declare
commutative task dependencies. This feature allows for the specified data loca-
tions to be updated in any order, regardless of the order the tasks were issued.
This is in contrast to data dependencies in OpenMP, where for a data depen-
dency, the order in which tasks are created is the order in which the tasks have to
be executed. Hence, commutative task dependencies provide benefits to appli-
cations such as fast multipole; however, due to having to perform a parallel
tree traversal, the data dependencies won’t be enforced for all threads (as in
Sect. 4.1).
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4.5 Comparison Baseline

In contrast to a task-based approach, the algorithm can also be implemented in
a thread-parallel fashion. This is done by recursing down the tree and instead
of issuing tasks, we record whether to perform the direct or approximate force
calculation for the current node. Then, each node can be iterated over in a
parallel for loop, performing the required operations. A dynamic schedule
was found to be optimal due to the high load imbalance between the number of
operations each node needed to perform. This has the advantage of avoiding the
race condition in that no two threads will write to the same target node. How-
ever, using tasks still has a number of advantages. Firstly, there’s an overhead
cost of initially building the list of nodes needing to be operated on per thread;
a small cost in performance, which can dramatically increase memory usage; in
the worst case each node will store a list of all other nodes in the tree. When
implemented, this thread-parallel version tripled the number of lines of code
compared to the task-based approach of the tree traversal. Therefore, whilst it
is possible that the task-based approach may not offer a significant performance
increase over this approach, a runtime that is able to match the performance
of a thread-parallel implementation will be deemed a success, demonstrating
tasking can reduce code size without impacting performance. However, due to
the overhead of initially finding the lists of interactions, it was hoped that task-
ing implementations could be slightly faster than the thread-parallel equivalent.
This thread-parallel implementation of the algorithm is referred to as the ‘loop’
implementation of the algorithm for the remainder of the paper.

To compare to other FMM implementations we profiled the task-parallel
method, observing that 96% of the runtime was spent calculating the forces
directly. Counting the number of interactions between particles and knowing the
number of FLOPs per interaction tells us the compute performance achieved
in the direct force calculation, which was measured to be approximately 882
DP GFLOPs on the dual socket Broadwell CPU. Comparing this to previous
work [10] (and to the peak FLOPs) would indicate that the mini-app was both
representative of larger FMM applications and achieved reasonable performance.

5 Programming Models

This section briefly introduces each of the programming models used in the
comparison and discusses key features identified in each.

OmpSs - OmpSs provides a testing ground for new OpenMP features,
and has previously motivated changes to the OpenMP standard, such as task
data-dependencies. The OmpSs programming model is syntactically similar to
OpenMP and provides both a compiler that allows for additional task exten-
sions as well as a runtime system. For our tests we are using the Intel compiler
backend (17.0) for OmpSs [1].

BOLT - BOLT stands for ‘BOLT is OpenMP over Lightweight Threads’.
From Argonne National Laboratory, the BOLT project aims to provide a light-
weight threading runtime based on the LLVM OpenMP runtime [15]. In contrast
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to current OpenMP implementations based on OS-level threads, BOLT aims to
use light-weight threads, provided by Argobots [15], to improve performance.

Intel Cilk Plus - Built as an extension to Cilk++, Cilk plus provides a
simple interface of three keywords that enable task and data parallelism. The
scheduling policy has been shown to provide load balance close to optimal [3].

Intel TBB - An object-oriented C++ runtime library, Intel TBB maintains
a double-ended queue per thread, retrieving new tasks from the back of its queue
to exploit temporal locality. If a thread has finished its work, it steals from the
front of another thread’s queue [2].

OpenMP - Previous work has highlighted some of the implementation deci-
sions of each of the OpenMP runtimes finding that, depending on the architec-
ture, significant performance differences can be observed. For example, the Intel
implementation maintains a task queue per thread as opposed to a single task
queue for all threads (as in GNU OpenMP). This has the effect of improving
data locality by allowing threads to enqueue tasks on each thread’s own queue
first, in the hope that data can be reused from recently executed tasks.

Table 1. Target machines

Broadwell KNL

Processor Xeon E5-2699 v4 Xeon Phi 7210

Sockets 2 -

Total cores 22 64

Total threads 44 256

Total TFLOPS 1.54 2.66

6 Results

The performance evaluation was conducted on two of the most recently released
architectures. This was done to both reflect current devices in some of the largest
supercomputers and to examine the performance characteristics of different task-
parallel runtimes with both high numbers of threads and NUMA architectures.
The details of the target machines appear in Table 1. The results were obtained
with both Hyper-Threading turned on and off for Broadwell, whilst on KNL
three different configurations were tested with 1, 2, or 4 threads per core.

For the results, the Intel Compiler (17.0) was used for OpenMP, TBB, Cilk,
and the OpenMP parallel loop version of the algorithm. GCC 6.3 and Cray CCE
8.5.8 were used for the OpenMP GNU and Cray results respectively. The OmpSs
version used was 16.06.3.

6.1 Broadwell

Figures 3 and 4 show the parallel speedup when increasing the number of cores
and, as can be seen, the different programming models and runtimes exhibit sim-
ilar scaling performance. The GNU and Cray OpenMP implementations exhibit
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Table 2. Serial and fastest runtimes achieved using Broadwell

OpenMP

Intel GNU Cray BOLT Loop OmpSs Cilk TBB

Serial (s) 156.057 157.365 154.120 156.170 156.721 157.855 156.100 156.825

Parallel (s) 4.654 4.843 4.871 4.656 4.654 4.719 4.632 4.745
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Fig. 3. Parallel speedup on Broadwell with 1 thread per core

the poorest parallel times, whilst the serial times do not differ from the other
frameworks. The Intel OpenMP runtime performs well however and was consis-
tently measured, along with Cilk, to give the best performance (Table 2).

The BOLT OpenMP implementation exhibits very similar performance to
the Intel OpenMP implementation. This could be due to the Intel OpenMP
runtime being open-sourced and used as the OpenMP backend for LLVM, on
which BOLT is based. Cilk exhibits good performance on both Broadwell and
KNL, being the fastest on both architectures - this is impressive because of its
relatively small feature-set. Intel TBB achieves reasonable performance on both
targets, but slightly lags behind other Intel runtime implementations.

The majority of the runtimes compete with the baseline parallel loop imple-
mentation (as described in Sect. 4.5) when using tasking, hence for this CPU
architecture, tasks provide a scalable and efficient way to parallelise the mini-
app whilst reducing the amount of code.
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Fig. 4. Parallel speedup on Broadwell with 2 threads per core
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Fig. 5. Parallel speedup on KNL with 1 thread per core
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Table 3. Serial and fastest runtimes achieved using KNL

OpenMP

Intel GNU Cray BOLT Loop OmpSs Cilk TBB

Serial (s) 181.385 199.271 185.728 181.401 175.975 190.622 181.272 181.371

Parallel (s) 2.059 3.508 3.224 2.054 1.949 2.192 2.010 2.533
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Fig. 6. Parallel speedup on KNL with 2 threads per core

6.2 Knights Landing

On KNL the performance of tasks in all frameworks were slightly worse than the
parallel loop implementation. The Intel and Bolt OpenMP runtimes performed
the best when running the task parallel approach, yet the parallel loop method
was 1.05x faster. Most runtimes achieved similar performance when running with
a single thread per core, however, running 2 and 4 Hyper-Threads per core high-
lighted the weakness in some of the other runtimes. The Intel implementation
of OpenMP and Cilk both exhibited good scaling with high numbers of threads
whilst TBB lagged slightly behind. However, the Cray OpenMP implementa-
tion exhibited poor scaling with all three thread configurations and gave poorer
performance as the number of threads per core increased (Table 3).

The GNU OpenMP runtime actually results in a degradation in performance
as more threads are added. Whilst initially showing good performance in Fig. 5,
it can be seen that performance starts to degrade when using two Hyper-Threads
per core (Fig. 6). Then finally with 4 Hyper-Threads per core (Fig. 7), the run-
time of the application becomes severely limited when the number of threads
used increases.
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Initially the performance of OmpSs on KNL was extremely limited and with
256 threads was roughly 10x slower than the parallel loop implementation of
the method. This is due to the default scheduler being unsuitable for many-
integrated core architectures as it maintains a single global ready queue for
tasks, which causes high contention on this data-structure when utilising large
numbers of threads. Instead, the distributed breadth-first scheduler was used.
This scheduler maintains a task queue per thread and work-steals, resulting in
performance similar to the other implementations. Like the default scheduler in
OmpSs, GNU OpenMP also maintains a single task queue for all threads, thus
explaining the poor performance seen in Figs. 6 and 7.
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Fig. 7. Parallel speedup on KNL with 4 threads per core

7 Conclusion

The OpenMP tasking constructs were designed to allow users to easily express
the parallelism of recursive and irregular algorithms. In terms of productiv-
ity, OpenMP task features were a simple and powerful way to parallelise the
mini-app, drastically reducing the code required compared to the parallel loop
implementation.

Using our FMM mini-app, we have looked at how task synchronisation can
be improved for particle methods by comparing atomics and various ways of
using locks in OpenMP, finding that performance can be improved by up to 21%
on KNL whilst also bringing improvements on Xeon CPUs.
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A common pattern in N-body, finite element, and unstructured mesh appli-
cations is to have data locations receiving multiple, unordered contributions.
Hence, the work done on examining synchronisation features in OpenMP could
be generalised and applied to a wide range of applications.

In addition to examining language features, we also compared OpenMP
implementations to each other and to other task-parallel programming models.
We found that on Broadwell, most programming models and OpenMP imple-
mentations performed well, competing with an equivalent parallel loop imple-
mentation. However, on KNL we found that a parallel loop implementation out-
performed all task implementations of the method. Therefore, future work will
focus on understanding this difference and investigating solutions to improving
task performance on this platform.

This work builds upon the success of previous mini-app work within the
HPC group at the University of Bristol [16], demonstrating that mini-apps are
powerful tools to both compare and test different programming models, as well
investigate different language features that can lead to increased performance
for a more general set of applications.
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Abstract. We describe for the VASP application (a widely used
electronic structure code written in FORTRAN) the transition from an
MPI-only to a hybrid code base leveraging the three relevant levels of par-
allelism to be addressed when optimizing for an effective execution on
modern computer platforms: multiprocessing, multithreading and SIMD
vectorization. To achieve code portability, we draw on MPI parallelization
together with OpenMP threading and SIMD constructs. Combining the
latter can be challenging in complex code bases. Optimization targets are
combining multithreading and vectorization in different calling contexts as
well as whole function vectorization. In addition to outlining design deci-
sions made throughout the code transformation process, we will demon-
strate the effectiveness of the code adaptations using different compilers
(GNU, Intel) and target platforms (CPU, Intel Xeon Phi (KNL)).

1 Introduction

Computational electronic structure (ES) methods are indispensable tools in
materials research, in search of novel materials for battery energy storage and
quantum computing as well as in understanding fundamental materials proper-
ties. The Vienna Ab-initio Simulation Package (VASP) [1,2] is a state-of-the-art
parallel ES code, supporting a wide range of electronic structure methods, from
Density-Functional-Theory (DFT), Hartree-Fock (HF) and hybrid (HF/DFT)
functionals, to the many-body-perturbative approaches based on the random-
phase-approximation (GW and ACFDT) [3–5]. Distributed parallel computers
and the MPI programming model have been critical from the beginning for VASP
to solve bigger and complex materials problems faster.

The recent increase in computing power is largely driven by the parallelism on a
shared-memory processor (SMP) throughmany cores and (hardware) threads, and
wide SIMD vector units. For instance, the second generation Intel R© Xeon PhiTM
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processor, formerly code named Knights Landing (KNL) [6], has up to 72 cores,
4 hardware threads and two 512-bit wide SIMD units per core, and up to 16 GB
of high bandwidth memory. However, treating each core as a distributed memory
node and relying on MPI only can incur high overhead in terms of memory use
and communication, leaving a lot of performance on the table. OpenMP, the stan-
dard SMP parallel programming model, provides attractive solutions for VASP
to increase the performance through multithreading and SIMD vectorization, all
enabled by optimizing compilers and runtime.

Transforming VASP to better exploit modern processors by introducing addi-
tional levels of parallelism is challenging: the organically grown VASP contains
100 k lines of code spread across hundreds of FORTRAN (90) source files. Adapt-
ing the code base to meet modern computer platform requirements, we have to
ensure the portability, extensibility and maintainability as well. This work sum-
marizes our efforts to extend the parallelism on a node by adopting OpenMP mul-
tithreading and vectorization standards, including the integration of threaded
libraries, which itself is critical to performance. We apply SIMD optimizations
at various levels and focus on two specific examples of OpenMP 4 SIMD con-
structs in FORTRAN codes to highlight its power and limitations.

2 Core Computations in VASP

In essence, VASP solves a set of Schrödinger-like eigenvalue equations

H[{ψ}]ψn = εnψn, n = 1, .., N (1)

for N eigenvalue/-function pairs {εn, ψn}, where N is of the order of the number
of electrons in the simulation box (typically N < 103). The operator H[{ψ}],
the Hamiltonian, depends on the set of solutions {ψ}, requiring iterations until
the self-consistency is achieved in terms of the total energy and electron density.
These equations are solved by means of iterative matrix diagonalization algo-
rithms, e.g., Blocked-Davidson or RMM-DIIS [1,2]. The set of solutions {ψ} to
Eq. 1 must be explicitly kept orthonormal:∫

ψ∗
n(r)ψm(r)dr = δnm. (2)

This is done by means of Gram-Schmidt orthogonalization.
The eigenfunctions ψn are basically expressed in a plane wave basis set, i.e.,

VASP stores their Fourier coefficients. The last statement is a bit of a simpli-
fication since in reality VASP uses a Projector-Augmented-Wave (PAW) basis.
A description of the PAW method, however, is beyond the scope of this paper.
For details, we refer the reader to the paper by Kresse and Joubert [7]. Here it
suffices to know that a key ingredient of the PAW method is the projection of
the eigenfunctions onto a set of localized functions pα centered on the atomic
sites in the simulation box:

cαn =
∫

Ωα

pα(r)ψn(r)dr , (3)

where Ωα is a certain volume around the atomic site on which pα is localized.
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Computationally speaking, an N -electron VASP calculation consists of many
independent 3d FFTs, matrix-matrix multiplications, matrix diagonalizations,
and other linear algebra methods. The Gram-Schmidt orthogonalization of the
eigenfunctions involves Cholesky decomposition and inversion of N × N matri-
ces and requires all-to-all communication. Ideally, VASP can be expressed as
a sequence of optimized library calls, reaping the benefits of highly optimized
parallel numerical libraries (FFT, BLAS and LAPACK/ScaLAPACK) on each
platform. In practice, achieving a high fraction of the peak FLOPS on a node
and scaling towards hundreds of nodes is challenging because of the following:
(i) NG the basis size (number of plane-wave coefficients) is much larger than N ,
leading to skinny-tall matrix shapes; (ii) the number of 3d FFTs grows as N or
higher, but each 3d FFT is small, typically 100× 100× 100; and (iii) computa-
tions in multiple libraries and user codes and “collective” communications have
to be coordinated.

2.1 MPI Parallelization

In order to handle a wide range of ES methods and problem sizes, VASP imple-
ments parallelization schemes which distribute data and work over MPI-ranks
at two levels:

1. High-level: the eigenfunctions ψn are distributed over the MPI-ranks in a
round-robin fashion. Large parts of the work can be distributed similarly in
a natural way. For instance, solving Eq. 1 using the RMM-DIIS algorithm
can in principle be done on a pure by-function basis, i.e., each MPI-rank
works solely on the functions it owns locally. This is the default level of
parallelization under MPI.

2. Low-level: in addition to the distribution of data and work over eigenfunctions,
data and work may be further distributed over the Fourier components that
make up a single eigenfunction. VASP implements its own MPI-enabled 3d
FFT based on a series of 1d FFTs and MPI Alltoall(v).

P2.1. Blocked evaluation of the action of H on ψ: Schematically, the blocked
evaluation of the action of the Hamiltonian H onto the eigenfunctions is made
up of the following elemental steps:

Algorithm 1. For each ψi, i ∈ {Nb}loc: in blocks of nb

1: Fourier transforms ψj(r) = FFT{ψj(G)}(r) for j ∈ block

2: PAW projections cαj =
∑

r∈Ωα
pα(r)ψj(r), j ∈ block, ∀ α

3: Local potential [V ψ]j (r) = V (r)ψj(r), j ∈ block, ∀ r

4: Non-local potential [VNLψ]j (r) =
∑

αβ pα(r)V NL
αβ cβj j ∈ block, r ∈ Ωα

5: Kinetic energy [Tψ]j (G) = T (G)ψj(G), j ∈ block, G ∈ {G}loc

6: Total action [Hψ]j (G) = [Tψ]j (G) + FFT{[V ψ + VNLψ]j (r)}(G), j ∈
block, G ∈ {G}loc
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{Nb}loc denotes the set of eigenfunctions owned locally by a certain MPI-rank
(high-level), and {G}loc is the set of Fourier coefficients of these eigenfunctions
owned by that MPI-rank (low-level). We name the kinetic energy operator T (G),
the local potential V (r), and the non-local potential V NL

αβ without additional
explanation.

The Fourier transforms (steps 1 and 6) are either 3d FFTs or 1d FFTs +
MPI Allto allv. The latter is used if Fourier components of an eigenfunction
are distributed over multiple MPI-ranks (as well). Steps 2 and 4 invoke BLAS3
DGEMM. The element wise products (steps 3 and 5) and sum (step 6) are done by
means of BLAS1 calls.

P2.2. Global contractions: With global contractions we denote, for instance,
computing Hij =

∫
ψ∗

i (r)Hψj(r)dr with i, j = 1, .., N , where N denotes all
eigenfunctions (not only those local to a particular MPI-rank). These operations
are done as follows:

1. Action: compute the action of the Hamiltonian H onto the eigenfunctions
owned locally by each (group of) MPI-rank(s). See the previous paragraph.

2. Redistribute the data: VASP redistributes the Fourier components of the
eigenfunctions from a situation where each MPI-rank holds part of the coeffi-
cients of part of the eigenfunctions ψ and the action Hψ (i.e., a combination of
the parallelization levels mentioned at the top), to a situation where it holds
a certain part of the coefficients of all eigenfunctions and the corresponding
coefficients of the action.

3. Local contraction: each MPI-rank computes

Hij =
∑

{G}red
ψ∗

i (G) [Hψ]j (G), ∀ i, j . (4)

4. Global sum: A global sum across all MPI-ranks is taken over Hij ,∀ i, j.
5. Back distribution: the eigenfunctions are redistributed back to the original

situation where each MPI-rank held a certain part of the Fourier coefficients
of part of the eigenfunctions.

Steps 2, 4 and 5 involve global MPI communication: the data redistribution and
back-distribution (steps 2 and 5) are done by means of MPI Alltoall calls and
the global sum invokes MPI Allreduce across all MPI-ranks. The local contrac-
tions (step 3) are done with BLAS3 ZGEMM calls.

3 MPI+OpenMP Threading

3.1 OpenMP Threading Strategy

Similar to the MPI parallelization strategy, explicit OpenMP threading was
added at two levels as well:
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1. High-level: many algorithms that work on the eigenfunctions locally owned
by a particular MPI-rank {Nb}loc process these in blocks of nb functions (see
Paragraph P 2.1.). Blocking increases data reuse and allows certain operations
to be done by means of BLAS3 (matrix×matrix) instead of BLAS2 calls. At
the highest level, OpenMP threading was introduced by distributing the work
on these blocks of nb eigenfunctions over threads by straightforward loop-level
parallelism (!$omp parallel do) over the functions within a block.

2. Low-level: many elemental steps involve point-by-point computations on the
Fourier components or the real-space grid points. The distribution of work over
OpenMP threads was achieved (i) by the introduction of loop-level parallelism
using “!$omp parallel do” over {r} and {G} (steps 3, 5 and 6 of Algorithm [1]);
(ii) by explicit domain decomposition of {Ωα} over threads (steps 2 and 4); and
(iii) by use of threaded versions of FFT and BLAS/LAPACK.

When the library calls are made within the user-level parallel constructs, they
are executed serially. SclaLAPACK or ELPA utilizes the threaded BLAS.

At present we do not allow for nesting of OpenMP parallel regions, and the
combination of high- and low-level threading has not been extensively explored
until now. The combination of parallelization under MPI and OpenMP threading
is subject to some constraints as well. Currently, we avoid MPI communication
inside OpenMP parallel regions completely and choose MPI THREAD SINGLE at
the MPI initialization. As a consequence the combination of low-level MPI par-
allelization and high-level OpenMP threading can be troublesome: many algo-
rithms involve loops over the eigenfunctions in a block (potential candidates for
OpenMP loop parallelism) that contain local reductions of quantities over the
MPI-ranks that share the Fourier coefficients of an eigenfunction, e.g.,

do i = 1,n_b
call some_work(psi(i),result(i))
call MPI_Reduce(MPI_comm_low_level ,result(i))

enddo

These constructs have to be restructured to avoid communication within
OpenMP parallel loops:

!$omp parallel do
do i = 1,n_b

call some_work(psi(i),result(i))
enddo
!$omp end parallel do
call MPI_Reduce(MPI_comm_low_level ,result (1:n_b))

which looks trivial here, but is not always easily achievable. The upside of the
high-level OpenMP threading strategy is that the OpenMP parallel regions tend
to contain a fair amount of work, and that it in principle constitutes an additional
level of parallelism. The low-level OpenMP parallelization strategy supplants the
low-level MPI parallelization (distribution of Fourier coefficients over MPI-ranks)
and consists of many small OpenMP parallel regions.

Somewhat surprisingly, the combination of high-level MPI parallelization plus
low-level OpenMP threading, is the most efficient: the combination of the distri-
bution of individual eigenfunctions (data and work) over MPI-ranks and the use
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of threaded 3d FFT, BLAS3 and explicit parallel loop constructs. We attribute
this to the improved OpenMP runtimes: “hot teams” in case of Intel OpenMP, for
instance. Any modern implementation of the latter maintains a pool of OS threads
that once created helps avoid the cost of newly creating and destroying threads
whenever they are needed. This significantly reduces the overhead of fine-grained
fork-join operations, some of which are necessary to use the threaded libraries.

Figure 1 illustrates the LOOP+ execution times—total program execution
time excluding the pre- and post-processing, which becomes negligible for real-
istic computations—of the hybrid VASP version for three different inputs and
combinations of MPI/OpenMP (we use high-level MPI and low-level OpenMP).1
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Fig. 1. LOOP+ execution times of the hybrid VASP version for three different inputs
and with different combinations of MPI/OpenMP (we use high-level MPI and low-level
OpenMP). The colored bars denote the fastest executions, and the numbers on top of
these bars refer to the performance gain over an MPI-only execution for the given node
count (if present). (Color figure online)

1 Benchmarks were done on Cori, a Cray XC40 system at NERSC. It has over 9300
Intel Xeon Phi 7250 (KNL) nodes with 68 CPU cores (272 threads) @1.4 GHz and
96 GB DDR4 main memory per node. In addition, Cori has over 2000 dual-socket
16-core Intel Xeon E5-2698v3 (“Haswell”) nodes, each with 32 CPU cores
(64 threads) @2.3 GHz, a 256-bit wide vector unit per CPU core, and 128 GB DDR4
memory. Cori’s nodes are interconnected with Cray’s Aries network with Dragonfly
topology. A comprehensive study of the different kinds of parameters and options
when building and running VASP on Cori is given in [8].



Porting VASP from MPI to MPI+OpenMP [SIMD] 113

In all cases we use 32 CPU cores per Haswell node and 64 CPU cores per Xeon
Phi (KNL) node. Using 8 OpenMP threads per MPI-rank then means, that there
are 4 and 8 MPI-ranks per node, respectively. We use three different inputs to
cover important use cases: (PdO4) DFT calculation of oxygens on Pd surface;
(CuC-vdW) van Der Waals DFT calculation of di-carbon on Cu surface, and
(Si256) HSE hybrid calculation of a vacancy in bulk silicon. They differ in prob-
lem sizes, constituent ionic types and ES methods, exercising various code paths
in VASP. They represent medium production runs and are chosen to evaluate
the performance and the scalability from a node to 8 nodes.

For all inputs, the transition from MPI-only to hybrid MPI+OpenMP results
in an improved overall program performance when using up to 8 and 4 OpenMP
threads per MPI-rank on the Haswell CPU and the Xeon Phi, respectively. The
colored bars denote the fastest executions, and the numbers on top of these bars
refer to the performance gain over an MPI-only execution for the given node
count (if present). Hybrid VASP executes up to 1.47x and 2.66x faster than the
MPI-only version on Haswell and KNL, respectively. A major benefit of hybrid
runs is the reduced memory footprint, which impacts KNL performance more
than Haswell. All the hybrid runs fit into 16 GB and thus can take advantage
of the high-bandwidth MCDRAM on KNL. The missing Si256 data on KNL in
Fig. 1 are due to the allocation of enough 2 MB huge pages on the Cori system
failed with 64 tasks per node.

Going beyond 8 threads per MPI-rank, the performance drops—significantly
more distinct on the Xeon Phi. This is attributed to the limited scalability of
the low-level OpenMP parallelization including both the user-level constructs
and threaded “smallish” 3d FFTs—being performed for many VASP inputs.
Another important factor is the change in communication patterns. The collec-
tive communication of large messages typically scales as (M/np) log2 np for np

tasks. Larger message sizes of the collectives over fewer communication channels
can lead to an increased communication time and cancel out the performance
gains in computations through OpenMP parallelization.

4 SIMD Vectorization

Modern CPUs increasingly draw on the Single-Instruction Multiple-Data
(SIMD) execution model as a third level of parallelism beside conventional multi-
processing and multithreading to achieve high compute performance. The Intel
Xeon Phi (KNL), for instance, features 512-bit wide vectors to operate eight
64-bit words at once by executing the same instruction on each of its eight
SIMD lanes. Only a single (vector) instruction needs to be fetched and decoded,
resulting in a largely increased arithmetic throughput over scalar execution at
the cost of only a bit more logic on the chip.

4.1 OpenMP 4 SIMD Constructs

For the programmer to approach SIMD vectorization in the code, OpenMP
4.0 introduced compiler directives [9] for (i) loop vectorization via !$omp
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simd, and (ii) function vectorization via !$omp declare simd. Both of the
two can be extended using additional clauses like simdlen(x) to specify the
number x of data elements to be processed throughout SIMD execution, or
aligned(varlist[:alignment]) to tell the compiler about data alignment of
variables in the list. The uniform(varlist) clause instructs the compiler to
broadcast the values of variables in varlist across all SIMD lanes. A compre-
hensive outline of the available clauses in the OpenMP 4.0 and the current 4.5
standard can be found in [10,11].

SIMD vectorization in VASP happens either implicitly through and within
library calls or explicitly in the user code on the loop-level using compiler directives.
For complex loops, however, the effectiveness of the compiler generated SIMD code
strongly depends on the loop structure. Math function calls like exp, log and pow,
or control flow divergences can even prevent the compiler from SIMD vectorization
at all. Subsequently, we focus on two techniques we found very useful when tackling
even complex codes: whole function vectorization and manual loop splitting, both
using high-level vector data types and OpenMP 4 compiler directives.

Combining multithreading and SIMD vectorization in VASP is realized via
the !$omp parallel do simd construct, enabling both at the same time for a
single loop or a loop nest. It also allows for (implicit) context dependent switching
between “multithreading+SIMD” and “SIMD” if nested parallelism is disabled,
which is usually the case in the HPC field.

As many VASP subroutines and functions are used in different calling contexts,
this way it is always guaranteed that SIMD parallelism is addressed. However,
depending on the loop trip count, chunks can be distributed among threads in an
unfortunate way so that the chunk size is not a multiple of the native SIMD width
of the target platform. As a consequence, data alignment issues might result in
loading unaligned data, and for short loops loop peeling and remainder loop
execution might be dominant. To approach that issue, OpenMP 4.5 introduced
the schedule(simd:static) clause to automatically match the chunk size with
the width of the SIMD registers. With the current GNU compiler2 not supporting

2 At the time of the writing of this paper, we used the GNU compiler gfortran-6.3.
This version does not fully support OpenMP 4.5 for Fortran (the same seems to be
true for gfortran- 7.1—tested on a local workstation). For remarks on that, see
the text below.



Porting VASP from MPI to MPI+OpenMP [SIMD] 115

the full OpenMP 4.5 standard, one can use schedule(static, x) instead with
some x that is a multiple of the SIMD width.

4.2 Whole Function Vectorization in VASP

Among the compute intensive code sections in the user-level part of VASP is those
using hybrid functionals. For certain classes of workloads a non-negligible amount
of time is spent within the ggaall grid routine containing the hotspot loop

subroutine ggaall_grid(x_1 ,..,x_k ,e)
..

!$omp simd
do i = 1,n

call ggaall(x_1(i) ,..,x_k(i),y_1(i) ,..,y_l(i),c_1)
e = e+f(y_1(i) ,..,y_l(i))

enddo
..

end subroutine ggaall_grid

with “large” n. Inside ggaall a nest of subroutine calls is implemented with
runtime dependent control flow. One such hierarchy looks as follows:

ggaall
+-> calc_expchwpbe_sp
| +-> ex
| +-> ex_sr
| +-> vx
| +-> vx_sr
| +-> wpbe_spline
| +-> wpbe_splin2
+-> corunsppbe

+-> gcor2

Within any of these routines loops with small trip counts are mixed with scalar
code. SIMD vectorization thus can be effective only along the calling hierarchy.
Staying entirely within OpenMP 4 without adapting the code base too much,
we modified each of the above listed subroutines as follows:

subroutine foo(..[,c_1])
!$omp declare simd (foo) simdlen(VL) [uniform(c_1)]
..
end subroutine foo

The uniform clause applies only to the top-level function ggaall in the hierarchy
with c 1 affecting the branching in ggaall. Compiling the modified code base,
only the Intel compiler was capable of generating an executable.3 According
to its optimization report, subroutine and function arguments in all cases are
transferred using gather and scatter operations because Fortran passes dummy
arguments by reference. While on the caller side the information that these
references are pointing to addresses that are consecutive in main memory is

3 gfortran-6.3 found fault with the !$omp declare simd (foo) directive for sub-
routine definitions within Fortran modules (not so for functions): it states that
foo has been host associated already. Working around by moving subroutines out-
side the module causes conflicts with variable scoping. We did not implement that
workaround, as subroutine vectorization fails only with the GNU compiler, and only
in the module context.
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present, on the callee side the compiler has to assume they are not, hence
generating vector gather and scatter operations. To fix that issue, we use the
ref modifier together with the linear clause: !$omp declare simd (foo)
linear(ref(x 1,..,x k,y 1,..,y l)).. (not supported by gfortran-6.3).

The performance improvements over executing the hotspot loop in
ggaall grid sequentially are quite different for the considered target platforms.
The execution on the Haswell CPU seems to benefit only slightly from SIMD
vectorization. About a factor 1.35 gain can be measured opposed to a factor
4.36 on the Xeon Phi (see Table 1). For the Haswell CPU, the assembly contains
both SSE and AVX SIMD instructions, despite building with -xcore-avx2 and
specifying the simdlen(VL) clause with VL=4 for execution with AVX(2)—all
these specifics are reported by the Intel compiler within its optimization report.
Currently, the Fortran !$omp declare simd construct seems to be a tripping
hazard when heading for code portability and effective SIMD vectorization at
the same time.

To get rid of these limitations, we integrated into VASP a high-level vec-
tor coding scheme combining real vectors with OpenMP 4 compiler directives
to promote SIMD vectorization when looping over the vector elements [12,13].
Figure 2 contains the definition of the Fortran simd module. For the GNU com-
piler, we provide an interface to access vector math calls through libmvec [14]
(we use glibc-2.25).

Fig. 2. Fortran simd module. SIMD WIDTH is defined as a constant in a separate file
simd.inc. For the GNU compiler, we provide an interface to access vector math calls
through libmvec.

Using these high-level vectors means to manually split the relevant loops into
chunks of size SIMD WIDTH (defined in a separate file simd.inc in a generic way),
pack and unpack data to vectors, and then to apply the scalar-to-vector code
expansion, including subroutine and function definitions. The scheme is illus-
trated in Fig. 3—the overhead of vector un-/packing and mask creation becomes
negligible in case of complex loops. At the cost of more or less intensive code
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Fig. 3. Manual scalar-to-vector (left to right) expansion of a simple Fortran code
snippet.

adaptations, the advantages of using this coding scheme comprise dealing with
vectors and masks in a natural way as well as a straightforward mixing of scalar
and vector code, e.g., if there is library calls or print statements throughout the
SIMD execution. With the SIMD WIDTH parameter, vector lengths can be adapted
to any meaningful value, matching at least the native SIMD vector length.

Code compilation with the Intel compiler resulted in the above listed calling
tree (comprising 20 loops after the adaptations) could be effectively vectorized,
with the (compiler-)estimated performance gains close to the theoretical expec-
tations (4x and 8x for computations on 64-bit words with AVX(2) and AVX512,
respectively). Additionally, we used the optimization report to further tune the
computation by removing unnecessary divides and re-computations of interme-
diate values, for instance—all these optimizations have been back-ported to the
other code versions for a fair comparison. The GNU compiler, however, achieved
success in vectorizing only 5 out of the 20 loops, missing the most compute
intensive ones. Among these 5 loops are two with calls to log, exp and pow,
supporting our interface definitions to libmvec (we verified the respective calls
in the assembly). The remaining 15 loops contain control flow divergences and
“smallish” loop nests. However, it is not totally clear to us why gfortran failed
vectorizing them, as for similar loop structures gcc achieves success [13].

Considering the execution times for the hotspot loop in ggaall grid, listed
in Table 1, the relevance of an effective SIMD vectorization is evident. With the
Xeon Phi behind the Haswell CPU in the reference case, switching to SIMD
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execution, it goes ahead significantly when using the Intel compiler. The almost
3x gain over the execution on the Haswell CPU to a large fraction results from
twice the SIMD vector width and the fact that on KNL there is two SIMD units
per CPU core, together with native support for vector masks. For the GNU
compiler, we only see that our high-level vector scheme is working at least in the
sense that it improves data locality.

Table 1. Execution time (in seconds) of the hotspot loop in ggaall grid on a Haswell
CPU and an Intel Xeon Phi (KNL). The “reference” refers to the optimized scalar
code, while the other two are for SIMD vectorized code via OpenMP 4 directives only,
and with high-level vectors.

gfortran-6.3 ifort-17 (update 2)

Haswell Xeon Phi KNL Haswell Xeon Phi KNL

reference 93 s 168 s 80 s 96 s

!$omp declare simd – – 59 s (1.35x) 22 s (4.36x)

high-level vectors 74 s (1.26x) 98 s (1.71x) 42 s (1.90x) 14 s (6.86x)

4.3 Loop Splitting

Another kind of computation with a significant amount of time spent in the user
code is the integration of the dynamically screened two electron integrals over
frequency

σ(ω) =
i

2π

∫ +∞

−∞

W (ω′)
ω + ω′ − ε2 + iΔsign(ε2 − μ)

dω′. (5)

It is implemented as an interpolation using those n satisfying ω′
n < nΔ ≤ ω′

n+1.
Determining these n introduces loop depencenes, as going for ω′

n+1 happens
faster with ω′

n known already. The loop structure for this computation is shown
in Fig. 4.

Fig. 4. Structure of the reference code for the integration of the dynamically screened
two electron integrals over frequency according to Eq. 5.
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SIMD vectorization of the i-loop suffers from the above mentioned loop
dependencies introduced by determining the n-values. All computation start-
ing at line “tmp = .. ,” however, is independent of the other iterations. We
therefore split the i-loop into chunks of size SIMD WIDTH, and further decompose
the resulting inner loop over ii, ranging from 0 to SIMD WIDTH - 1, into 3 parts
lk (see Fig. 5): l1, the pre-computation of the n-values, l2, gathering all needed
data into vtmp indexed through n (this results in gather loads), and l3, the actual
computation using vtmp.

Fig. 5. Loop splitting applied to the code listed in Fig. 4 using high-level vectors.

Both, the second and third inner most loop are candidates for SIMD vectoriza-
tion. However, we annotate only the third one using OpenMP 4 directives, and
let the compiler decide about vectorization of the second loop. Depending on
whether the target platform supports vector gather operations, the latter will
be vectorized or not. As the loop splitting into parts requires to store (or “back
up”) those intermediate values computed in lq and needed in at least one other
lq′≥q (e.g. vn and vtmp in Fig. 5), our high-level vector approach is the natural
way for an effective implementation.

We also considered using the !$omp ordered simd construct for l1 (determin-
ing the n-values) (see Fig. 6). According to the OpenMP 4.5 standard [11], the
execution of the block enclosed by the ordered simd construct happens exactly
in the order given by the sequential execution of the surrounding loop using a
single SIMD lane. However, there seems to be no guarantee that intermediate
results of the serialized execution are kept for subsequent SIMD executions. In
our sample it is the per-loop-iteration n-values that are needed subsequent to
the ordered block to access the right data in each iteration of the i-loop. We
found with the Intel Fortran compiler (gfortran-6.3 did not vectorize the code
with the ordered construct) a non-deterministic behavior regarding what is kept
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Fig. 6. SIMD version of the code listed in Fig. 4 using the ordered simd construct.
The computation when executed in SIMD mode might give faulty results (see the text
for explanation).

and what is not kept, resulting in wrong simulation results. Assuming our obser-
vation is correct, we propose to extend the !omp ordered simd construct by a
keep(varlist) clause to instruct the compiler to move intermediate values of
any of varlist to the corresponding SIMD lane of a vector equivalent which
then can be accessed thereafter.

In the above loop, we would extend the line containing !$omp ordered simd
by the keep(n) clause. We would expect the compiler to transform the code
(in its intermediate representation) into something similar to what is shown in
Fig. 5, but with l2 and l3 merged.

Table 2 summarizes the execution times spent in the integration procedure
on a Haswell CPU and an Intel Xeon Phi. Both the GNU and the Intel compiler
achieved success when vectorizing the high-level vector code, eventhough the
Intel compiler generates the faster executable for the Xeon Phi.

Table 2. Execution time (in seconds) of the integration of the dynamically screened
two electron integrals over frequency on a Haswell CPU and an Intel Xeon Phi (KNL).

gfortran-6.3 ifort-17 (update 2)

Haswell Xeon Phi KNL Haswell Xeon Phi KNL

reference 12.8 s 44 s 11.1 s 29 s

high-level vectors 6.9 s (1.86x) 6.8 s (6.47x) 6.6 s (1.68x) 4.2 s (6.90x)

5 Insights and Proposals

Extending large codes so as to address all levels of parallelism needed to fully uti-
lize modern CPU’s compute capabilities was and is a very challenging task. For
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the VASP application, we gave a brief overview of the transition from an MPI-
only to a hybrid MPI+OpenMP [SIMD] code, and pointed out relevant design
decisions related to, for instance, what level of granularity OpenMP actually
should be located at to complement with the already existing MPI parallelism.
We found the most efficient way to achieve that in VASP is placing MPI and
OpenMP at the different ends of the workload partitioning. More precisely, MPI
is the means for work distribution at the outer most level of parallelism, whereas
OpenMP sits at a very low-level of the calling hierarchy, either within library
calls (e.g., threaded FFT and BLAS/LAPACK calls) or on the loop level within
the user code.

Interchanging both of the two, so that MPI happens from within OpenMP,
or raising OpenMP to the same level as MPI, however, is difficult to handle due
to some VASP-internal constraints but more importantly due to poor interop-
erability between MPI and OpenMP. The current MPI standards and limited
support for MPI THREAD MULTIPLE narrow our design space and force unneces-
sary barriers and synchronization points. Few MPI libraries provide optimized
implementations that take advantage of the shared memory on a node and the
available thread pool and communication channels. While computations may be
greatly improved through thread-level parallelization, new communication paths
can become bottlenecks and diminish the performance gain. A prime example is
the reduction of large messages that can be “parallelized” by segments and mul-
tiple message queues. The thread scaling of the current VASP hybrid thus solely
relies on the effectiveness of (OpenMP) threading within the libraries and loop
parallelization and runtimes. Improved interoperability of MPI and OpenMP
and flexible library APIs is critically needed to extend the thread scalability and
in turn, the overall scalability. Nevertheless, for a set of representative workloads,
we demonstrated on both a Haswell CPU and a Xeon Phi (KNL) system an over-
all improved execution with up to 8 OpenMP threads per MPI-rank compared
to running MPI-only.

Additionally, at the low-level end of the calling hierarchy, SIMD vectorization
by means of OpenMP 4 SIMD constructs complements OpenMP threading. We
illustrated two kinds of optimizations that apply to different sections in the
VASP code: whole function vectorization and loop splitting, both for complex
loop structures. A direct comparison of the vectorization capabilities of the GNU
gfortran-6.3 and the Intel ifort-17 (update 2) compiler showed that the GNU
Fortran compiler and support for OpenMP 4.5 lags behind significantly. As in
complex codes mixing scalar and SIMD vector code is unavoidable, we propose,
for reasons discussed in Sect. 4.3, to extend the ordered simd construct by a
keep(varlist) clause to make per-loop-iteration intermediate results available
to subsequent SIMD execution.
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activities at ZIB, by the ASCAR Office in the DOE, Office of Science, under contract
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5. Liu, P., Kaltak, M., Klimeš, J., Kresse, G.: Cubic scaling GW : towards fast quasi-
particle calculations. Phys. Rev. B: Condens. Matter 94(16), 165109 (2016)

6. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S.,
Hutsell, S., Agarwal, R., Liu, Y.C.: Knights landing: second-generation Intel Xeon
Phi product. IEEE Micro 36(2), 34–46 (2016)

7. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

8. Zhao, Z., Marsman, M., Wende, F., Kim, J.: Performance of hybrid MPI/OpenMP
VASP on Cray XC40 based on Intel Knights landing many integrated core archi-
tecture. In: CUG Proceedings (2017)

9. Klemm, M., Duran, A., Tian, X., Saito, H., Caballero, D., Martorell, X.: Extend-
ing OpenMP* with vector constructs for modern multicore SIMD architectures.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 59–72. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8 5

10. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.0. (2013). http://www.openmp.org

11. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.5. (2015). http://www.openmp.org/
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Abstract. We describe the design and implementation of hierarchical
high-order basis functions with OpenMP* SIMD constructs in the Elmer
Finite Element software. We give rationale of our design decisions and
present some of the key challenges encountered during the implementa-
tion. Our numerical results on a platform supporting IntelR© AVX2 show
that the new basis function implementation is 3x to 4x faster when com-
pared to the same code without OpenMP SIMD in use, or 5x to 10x
faster when compared to the original Elmer implementation. In addition,
our numerical results show similar speedups for the entire finite element
assembly process.

Keywords: Finite elements · Basis functions · Implementation ·
OpenMP · SIMD

1 Introduction

Numerical solution of partial differential equations with the Finite Element
Method (FEM) is theoretically well-established and understood [5]. Numerical
solutions of high accuracy can be attained with the hp-version of the finite ele-
ment method, which allows varying local polynomial orders and mesh refinement
for the elements (see [16,17] and references thereof).

The main caveat of hp-FEM is the complexity of its implementation, at least
when compared to the standard FEM. Nowadays several software packages and
libraries exist which implement, either partially or fully, the hp-finite element
method. In addition to Elmer, such software packages include, among others,
deal.II [2], 3Dhp [6,7], and NGsolve [13,14]. For a fully automated framework
approach based on a special purpose compiler, we refer the reader to FeniCS [10].

The aim of this paper is to describe the implementation of higher-order basis
functions using the OpenMP* SIMD constructs. To our knowledge, this is the
first attempt to SIMD vectorize such an application with OpenMP SIMD direc-
tives. In addition, recent multi-threading improvements in Elmer are discussed.
c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 123–137, 2017.
DOI: 10.1007/978-3-319-65578-9 9
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For multi-threading in the finite element assembly process, we describe the design
decisions made to achieve a parallel efficiency similar to the existing MPI imple-
mentation. As we focus on OpenMP SIMD constructs in this work, we do not
investigate the parameter space to determine the effect of altering the number
of MPI ranks versus the number of OpenMP threads.

The structure of the paper is as follows. Section 2 introduces the multi-
physical finite element solver Elmer [11], highlights some of its capabilities,
and shortly describes its existing MPI parallelization scheme. Section 3 gives
an overview of the design choices for multi-level parallelism in Elmer, followed
by a description of the OpenMP multi-threading. The basic structure and the
implementation of high-order finite element basis functions using OpenMP SIMD
constructs is described in Sect. 4. Performance results are given in Sect. 5. Finally,
Sect. 6 concludes the paper and presents future work.

2 Elmer FEM

Elmer is a multi-physics, finite element software package that has its origins in
the Finnish national CFD technology program from 1995 funded by the Finnish
agency of technology and innovation. Since September 2005, Elmer is open source
under the GNU Public License (GPL) with a later extension to LGPL (2012)
for its library functionality. The official Elmer repository is hosted at GitHub at
https://github.com/ElmerCSC/elmerfem.

Elmer contains a multitude of physical models [12], starting from the tradi-
tional engineering disciplines of elastic body deformation (Navier equation) and
fluid problem (Navier-Stokes equations), reaching over from heat transfer to the
recent improvements in electrodynamics, currently under active development
under the support of the Finnish agency of technology (TEKES). An impor-
tant scientific application field of Elmer is numerical Glaciology, i.e., numerical
simulation of ice-sheets and glaciers in the context of climate change and paleo-
climate reconstructions. Combining elements from fluid flow, heat transfer, and
solid body deformation, Elmer/Ice [9] (http://elmerice.elmerfem.org) is a good
example of utilizing multi-physics and apply it to an important topic for the
wider public, as the melting of land-based ice masses is suspected to directly
contribute to sea-level rise.

Elmer’s solvers are written in Fortran 2003 with parts of the core routines in
C. The Elmer package contains additional programs, such as a simple graphical
user interface, ElmerGUI, and a mesh/CAD translation tool, ElmerGrid. The
solver utilizes shared object libraries and provides optional interfaces to common
linear algebra packages, such as Trilinos, Hypre, and MUMPS.

The solver modules are either library or user code, both of which are dynam-
ically loaded during run-time. The solver to use is defined in the solver input
file. A typical run of a solver consists of the following steps:

1. read input files and populate internal data structures, including mesh data
and other model definitions, and

2. call the solver’s entry function and passing it the model data as a handle.

https://github.com/ElmerCSC/elmerfem
http://elmerice.elmerfem.org
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Apart from decomposing the mesh for MPI ranks, no further mesh pre-processing
is needed for the solver.

The steps taken by a typical solver module are:

1. Finite element assembly (loops over active elements):
(a) Evaluate right hand side functions and material data at the nodes of the

element.
(b) Loop over integration points on the element (numerical integration).

i. Evaluate the basis functions at the integration points (library call).
ii. Interpolate the load functions and material data to integration points
iii. Loop over the evaluated basis functions and evaluate the contribution

of the bilinear forms, associated with the problem, to the local stiffness
matrix.

(c) Glue the local stiffness matrix to the sparse structure representing the
global stiffness matrix (library call).

2. Linear system solve (solves the arising linear system through a library call).

Normally only the problem specific parts of a solver code, such as defining the
used load function, are implemented by the end-user. The problem non-specific
parts, such as evaluation of the basis functions or solution of the linear system,
are implemented as library calls.

In a typical finite element computation, there are N = 104 . . . 109 elements,
each of which has K = 100 . . . 102 basis functions, where K depends on the
element polynomial degree p and its type.

For numerical integration, the basis functions need to be evaluated at inte-
gration points. The number of integration points depends on the polynomial
degree of the integrands. Denote by d the element dimension. As Elmer uses a
scaled composite Gaussian quadrature rule for high order elements, to accurately
integrate a product of two degree p polynomials

NI =
(

�2p + 1
2

�
)d

(2.1)

integration points are needed. Thus, as the number of basis functions scales
linearly to the element degree, the amount of computational work needed for
basis function evaluation via direct computation scales as O(pd+1).

The main parallelization method utilized by Elmer is implemented via
domain decomposition and the Message Passing Interface (MPI) [15]. The mesh
is partitioned into different domains which are distributed to different MPI ranks.
The processes mutually communicate by exchanging messages when needed.
Figure 1 shows a horizontally, partitioned vertically extruded mesh for a typ-
ical run of Elmer/Ice on the Antarctic ice sheet.

By the nature of the finite element method, the assembly part—the main loop
over the elements in the pseudo code above—contains local operations within
elements. As elements are fully contained in only one of the mesh partitions, the
assembly does not require communication across tasks. On the other hand, the
solution of the resulting linear system is a global operation and thus requires
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Fig. 1. Typical partition pattern (left) and mesh (right) for an Elmer/Ice application of
the Antarctic ice sheet obtained with Gmsh/YAMS/ElmerGrid. The mesh consists of
10 internally extruded wedge-prism layers (3×104 elements in one layer) with horizontal
refinements according to the gradient of the measured surface velocities (range from
0–≈4000 m a−1, with a cut-off at 1000m a−1 in the picture).

the processes to communicate. In Elmer, the solution of the linear system is
typically achieved by an externally linked linear algebra package specialized for
the solution of sparse matrix systems in parallel.

In the example shown in Fig. 1, the solution of the Stokes equations as well
as the heat transfer equation is needed. Consequently, the finite element com-
putation needs stabilization to satisfy the LBB-condition (see, e.g., [3], Chap. 3,
Sect. 4). In Elmer stabilization can be achieved either using the residual based
stabilized finite elements method [8] or the residual-free bubbles method [1]. For
the work described in this paper, the latter method is a strong motivator: as
the residual free bubbles are generally of high polynomial degree p, by Eq. 2.1 a
large amount of integration points is needed, making the assembly of the stiffness
matrix a computationally intensive operation.

3 Implementation of Multi-level Parallelism

In this section, we describe the design choices and implementation of the multi-
level parallelism in Elmer with OpenMP threading. As described in Sect. 2, Elmer
is currently mostly parallelized through MPI and domain decomposition.

The two main computational components of Elmer are the finite element
assembly and the resulting (sparse) linear solve. The focus of our work is on
adding SIMD and multi-threaded parallelism to the finite element assembly. For
having multi-threading in the linear solver part, threading has been previously
added to its key computational kernels, such as sparse matrix-vector products,
vector additions, and vector dot products. In case the linear solve is implemented
through a library call, the library is assumed to support multi-threading in a
proper fashion.
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INTEGER :: nzlocal , nzglobal
INTEGER :: ind(nzlocal)
REAL(KIND=dp):: lval(nzlocal), gval(nzglobal)
! Construction of ind index vector omitted
DO i=1,nzlocal

gval(ind(i)) = gval(ind(i)) + lval(i)
END DO

Listing 1. Innermost loop of the finite element gluing process.

Algorithmically the finite element assembly is nearly trivially parallel, with
access conflicts arising only where the entries of the local stiffness matrix is
summed, or glued, to the entries of a global stiffness matrix. The innermost loop
of this gluing process is described in Listing 1, where gval denotes the array of
global stiffness matrix values, lval the local stiffness matrix values, ind the local
matrix indices corresponding to the entries in the global matrix, and nzlocal
and nzglobal the number of global and local entries, respectively. For a single
element the values of ind are unique. For two or more neighboring elements
values of ind overlap and thus synchronization is needed to guarantee atomicity
of the update.

Let NT denote the number of threads. For the design of multi-threaded con-
currency in the finite element assembly process, the following algorithmic options
were considered:

– Sub-domain decomposition: Decompose elements in each domain into NT sub-
domains. Then first process the elements in each sub-domain with a single
thread in parallel and then process the internal boundaries either serially or
in parallel by using ATOMIC and CRITICAL constructs for synchronization.

– Coloring: Perform a lightweight decomposition of domains into fully indepen-
dent units of work by multi-coloring the finite element mesh. Process elements
one color at a time in parallel with NT threads.

– Concurrent access: Process elements in each domain with NT threads. In the
case of concurrent access, use ATOMIC and CRITICAL-constructs for synchro-
nization.

Although initially considered attractive, use of the sub-domain decomposition
approach was rejected due to its limited scalability arising from the decreasing
volume-to-surface ratio. That is, as the size of the sub-domains gets smaller,
the size of the internal boundaries, which require either serial computations
or synchronization, tends to increase rapidly. The same argument for avoiding
synchronization holds for the straightforward model with concurrent access as
well. In addition, the use of ATOMIC prevents SIMD vectorization of the loops
requiring synchronization, i.e., the loop in Listing 1 becomes a scalar operation.

Coloring was selected as the method of choice. Using coloring allows to com-
pletely avoid the use of synchronization constructs and thus will not suffer from
any locking overhead. Such atomicity arises from the definition of coloring: in a
colored mesh two adjacent elements are of different color by construction, i.e.,
elements of the same color are independent. In terms of Listing 1, it follows
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that the index vectors ind for elements of the same color do not overlap. Thus
no ATOMIC construct is needed and SIMD vectorization of the gluing process is
attainable.

The downside of using coloring is that it requires an additional loop over the
colors. With coloring, the finite element assembly process described in Sect. 2
becomes:

1. Finite element assembly (loops over colors):
(a) Finite element assembly (loops over active elements of the current color):

i. Evaluate right hand side functions and material data at the nodes of
the element.

ii. Loop over integration points on the element (numerical integration).
A. ...

Deactivating coloring needs no special treatment as it is equivalent to per-
forming the assembly over a single color. The coloring itself is also an additional,
although inexpensive, step which needs to be added to the mesh read-in process.

To avoid a serial bottleneck due to the coloring process, we adopted a multi-
threaded coloring algorithm from [4]. To make the change as transparent as
possible, and to avoid adding coloring loops to all element assembly loops, we
implemented coloring on the Elmer solver core level such that the Elmer solver
core performs the assembly over a single color at a time.

4 Implementation of SIMD Basis Functions

In this section, we describe the design and implementation of high-order basis
functions with OpenMP SIMD constructs in Elmer. Elmer has existing imple-
mentations for high-order elements for all supported element types, i.e., line
(1D), triangle and quadrilateral (2D), tetrahedral, pyramidal, prismatic, and
hexahedral elements (3D). The nodal basis functions of line, triangular, and
tetrahedral elements are linear, whereas quadrilaterals and hexahedrals have a
bilinear nodal basis, and prismatic elements are a mix between the two.

4.1 Algorithmic Background

The implementation found in Elmer uses the definitions of high-order finite ele-
ment basis functions defined in the literature (see [17] and also [16]) and auto-
matically enforces the continuity of the basis functions in the global mesh. This
is sometimes also referred to as enforcing parity. Due to processing only one
integration point at time, the existing implementation of high-order basis func-
tions in Elmer is purely scalar and difficult to turn into an efficient SIMD code
because of the conditional constructs used for enforcing parity.

Denote the polynomial degree of the basis functions by p. In the follow-
ing we describe the low-level structure of the high-order basis functions used
in Elmer, and show how to map the structure to an efficient OpenMP SIMD
implementation.
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To ensure that the resulting discretization is well-conditioned, high-order
finite element basis functions are typically based on some class of orthogonal
polynomials. The implementation in Elmer is based on Legendre polynomials
Pj(x), defined recursively as

P0(x) =1, P1(x) = x,

Pj+1(x) =
2j + 1
j + 1

xPj(x) − j

j + 1
Pj−1(x).

(4.1)

With Legendre polynomials Pj(x), we define an integrated Legendre polynomial
φj(x) as

φj(x) =

√
1

2(2j − 1)

∫ x

−1

Pj−1(x′)dx′

=

√
1

2(2j − 1)
(Pj(x) − Pj−2(x)),

(4.2)

and ϕj(x) as

ϕj(x) =
4φj(x)
1 − x2

, (4.3)

with j ≥ 2 for both Eqs. 4.2 and 4.31. For instance, for j = 2, . . . , 4, we have
φ2(ξ) =

√
6
4 (ξ2−1), φ3 =

√
10
4 ξ(ξ2−1), φ4 =

√
14
16 (5ξ4−6ξ2+1) and ϕ2(x) =

√
6,

ϕ3(x) = −√
10x and ϕ4(x) = −

√
14
4 (5x2 − 1).

The values of polynomials Pj(x), φj(x), and ϕj(x) are evaluated at points
xk ∈ [−1, 1], with typical values of j ≤ 12 and k ≤ 500. When the values of
ϕj(x) are computed directly from those of φj(x), the endpoints of the interval,
i.e., x = −1 and x = 1 are problematic as they will cause a division by zero. The
approach taken in Elmer to overcome such difficulties is to simplify polynomials
Pj(x), φj(x), and ϕj(x) up to a suitably large value and then switch by the value
of j during runtime as needed. For a shortened version of the implementation of
Pj(x) in Elmer, see Listing 2. The functions φj(x) and ϕj have been implemented
similarly, up to p = 16.

High-order finite element basis functions are defined through functions Pj(x),
φj(x), and ϕj(x). Like normal nodal finite elements, high-order finite elements
have (bi)linear basis functions of degree one associated with the element nodes.
In addition, high-order elements have basis functions of degree p > 1 associated
with their edges (edge functions in 2D and 3D), their faces (face functions in 3D),
and their interior (bubble functions in 1D, 2D, and 3D). Edge and face functions
are directed such that the global direction over two neighboring elements is
consistent. Bubble functions have a direction in 1D or 2D if they are associated
with a boundary mesh of a higher dimensional mesh.

By definition, for p ≥ 2, edge functions are defined along one edge of an
element and vanish towards the other edges. Similarly, face functions are defined
along one face and vanish towards the other element faces.
1 Note that φj(x) is a scaled φj(x) with its zeroes at x = ±1 removed.
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FUNCTION LegendreP(j,x) RESULT(fval)
INTEGER , INTENT(IN) :: j
REAL (KIND=dp) :: x, fval
SELECT CASE(j)
CASE (0)

fval = 1
CASE (1)

fval = x
CASE (2)

fval = -0.1D1 / 0.2D1 + 0.3D1 / 0.2D1 * x ** 2
! Rest of the cases omitted for brevity

Listing 2. Legendre function implementation in Elmer.

Denote by A and B the local nodes of an edge E = (A,B) and by A, B, and
C the nodes local nodes of a face F = (A,B,C). Let LX(n) denote the linear
function of a node n. For linear elements such as triangles and tetrahedrons,
these correspond to regular nodal basis functions, but for quadrilaterals and
hexahedral elements they are separately defined as having a value of 1 at the
node and vanishing towards the other element nodes linearly. Figure 2 shows the
parity enforcing numbering scheme used in Elmer for element edges and faces.

Fig. 2. Mesh directivity for element edges and faces.

For triangles and tetrahedral elements, the edge functions are defined as

N
(A,B)
j (x) = LA(x)LB(x)ϕj(LB(x) − LA(x)). (4.4)

Edge basis functions of other element types are defined in a similar fashion. We
note that quadrilateral and hexahedral elements have some added complexity
arising from the definition of the nodal basis functions. However, as the structure
of the basis functions is not relevant to the subject of this paper, we refrain from
discussing such technicalities any further. Definition 4.4 enables enforcing the
continuity of the edge functions in the global mesh. We simply check the global
indices corresponding to the endpoints of a local edge endpoints and swap the
local edge endpoints if necessary.
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INTEGER :: j, k, A, B, pmax_edge , nbasis , nbmax
REAL(KIND=dp) :: La, Lb, u(nvec), v(nvec), N(nvec ,nbmax)
! Loop over element edges and
! setting A and B to enforce continuity omitted
DO j=2,pmax_edge

!$OMP SIMD PRIVATE(La, Lb)
DO k=1,nvec

La = TriangleL(A,u(k),v(k))
Lb = TriangleL(B,u(k),v(k))

N(k,nbasis+j-1) = La*Lb*VarPhi(j,Lb-La)
END DO
nbasis = nbasis + pmax_edge - 1
!$OMP END SIMD

END DO

Listing 3. Triangle element basis function implementation.

FUNCTION TriangleL(node , u, v) RESULT(fval)
INTEGER , INTENT(IN) :: node
REAL(KIND=dp), INTENT(IN) :: u,v
REAL(KIND=dp) :: fval
REAL(KIND=dp), PARAMETER :: c = 1D0/2D0, &

d = 1D0/SQRT(3D0)
!$OMP DECLARE SIMD(TriangleL) UNIFORM(node) &
!$OMP LINEAR(REF(u)) LINEAR(REF(v)) NOTINBRANCH

SELECT CASE(node)
CASE (1)

fval = c*(1-u-d*v)
CASE (2)

fval = c*(1+u-d*v)
CASE (3)

fval = d*v
END SELECT

END FUNCTION TriangleL

Listing 4. Ln(x, y) SIMD function definition.

4.2 SIMD Implementation

The relevant part of an OpenMP SIMD implementation of a triangle basis func-
tion calculation, based on Eq. 4.4, is described in Listing 3. The functions L
and ϕj , called from Listing 3 are implemented via the OpenMP DECLARE SIMD
construct as shown in Listings 4 and 5.

For each edge, A and B are invariant in the SIMD loop after the global edge
direction has been determined. The parameter j behaves similarly, i.e., it remains
constant for each SIMD lane. Thus we can declare the input parameters node
in TriangleL and j in varPhi with the UNIFORM clause, which in conjunction
with NOTINBRANCH enables the compiler to generate code avoiding masking. To
hint the compiler that the other function arguments are accessed in a unit stride
fashion, LINEAR clause with REF modifier is used.

Bubble functions triangles and face functions tetrahedral elements are
defined as

N
(A,B,C)
i,j (x) = LA(x)LB(x)LC(x)Pi(LB(x) − LA(x))Pj(2Lc(x) − 1), (4.5)
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with i, j = 0, 1, 2, . . . , p − 3, i + j = 0, 1, . . . , p − 3 and where Pi denotes a
Legendre function (see Eq. 4.1). Modifying Listing 2 to include DECLARE SIMD
definitions analogously to Listing 5, a SIMD version of Pi can be constructed.
Equation 4.5 can then be implemented similarly to Eq. 4.4: for a SIMD lane of
points to evaluate, the values of A, B, and C are constant after the determining
the face’s direction. Values i and j are also fixed and determined by p.

FUNCTION VarPhi(k, x) RESULT(fval)
INTEGER , INTENT(IN) :: k
REAL (KIND=dp), INTENT(IN) :: x
REAL (KIND=dp) :: fval
!$OMP DECLARE SIMD(VarPhi) UNIFORM(k) &
!$OMP LINEAR(REF(x)) NOTINBRANCH

SELECT CASE(k)
CASE (2)

fval = -SQRT (0.6D1)
CASE (3)

fval = -x * SQRT (0.10D2)
! Rest of implementation omitted for brevity

Listing 5. ϕj(x) SIMD function definition.

In Sect. 2, we described the pseudocode to compute the entries of the local
element stiffness matrix by iterating over the integration points. As previously,
denote by K the total number of basis functions for a single element and by NI

the total number of integration points needed, see Eq. 2.1. Let ui(x) denote the
ith basis function of an element and let Ij denote the jth integration point.

For each element all the basis functions must be evaluated for all integration
points Ij . Therefore ui(x) can be evaluated for all integration points at once
instead of calling library functions repeatedly for a single integration point at a
time. For instance, in Listing 3 the original pointwise approach corresponds to
the case nvec = 1, whereas the new approach corresponds to the case nvec = NI .
In terms of the data layout, the old approach corresponds to

[
u1(I1) u2(I1) · · · uK(I1)

]

whereas the new approach is equivalent to
⎡
⎢⎢⎢⎣

u1(I1) u2(I1) · · · uK(I1)
u1(I2) u2(I2) · · · uK(I2)

...
...

...
u1(IK) u2(IK) · · · uK(IK)

⎤
⎥⎥⎥⎦ . (4.6)

The new data layout is more favorable to the local matrix assembly. Having
the number of integration points as the leading dimension leads to operations
with NI × K matrices instead of 1 × K vectors. Hence the arithmetic intensity
of the operations is improved and the finite element assembly process becomes
computationally more efficient.
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5 Performance Evaluation

In this section, we evaluate the new OpenMP SIMD basis function implementa-
tion and compare its performance to the old one. We also make a performance
comparison between the new threaded implementation with mesh coloring and
MPI for finite element assembly. As a test system we use a two socket Intel R©

Xeon R© E5-2697v3 system with 14 cores per socket running at 2.60 GHz. The
server contains 64 GB main memory with 2133 MHz frequency. We use the tools
of Intel R© Parallel Studio XE 2017, update 2 (Intel Fortran compiler, Intel MKL,
and Intel MPI). As compiler flags to compile Elmer we use -O2 -xCORE-AVX2
-vecabi=cmdtarget.

We first evaluate the time to calculate finite element basis functions for dif-
ferent element types and different basis function degree p. The number of inte-
gration points was selected according to Eq. 2.1 and a composite integration rule
was used, i.e., we use NI = 4, 9, 16, 25, 36, 49 and NI = 8, 27, 64, 125, 216, 343
integration points for p = 1, . . . , 6, in 2D and 3D, respectively.

The combined time to evaluate the full basis set 100 times for triangular and
hexahedral elements is given in Fig. 3. We compare the old implementation with
the new implementation with OpenMP SIMD constructs disabled and enabled.
We note that only a single thread was used, i.e., the timings are purely serial.

Fig. 3. Evaluation times of basis functions with OpenMP enabled (solid lines) and
disabled (dashed lines) against basis function polynomial order p.

From Fig. 3, we observe that for the selected element types, the new imple-
mentation with OpenMP SIMD constructs is almost an order of magnitude faster
than the old implementation for large p. Disabling OpenMP SIMD functional-
ity negatively affects performance for large p: the new implementation is only
approximately 30% better than the old one. For p = 1, the new implementation
seems significantly more efficient than the old one (with or without OpenMP
SIMD), especially for 3D elements. The difference is due to the new data layout
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being more SIMD friendly and the compiler being able to auto-vectorize the
code without DECLARE SIMD constructs.

To study the performance of the FE assembly, we set up a unit cube of 125K
hexahedral elements and solve a Poisson model problem. As the polynomial
degree p increases, the FE assembly operation becomes more compute bound.
We compare the old code and data layout with the new code on a full node with
28 threads in total. In Table 1, novec refers to the old implementation, nocol and
col to the new implementation with and without mesh coloring.

Table 1. Average timings (in milliseconds) per thread for different phases of FE assem-
bly for a Poisson model problem in unit cube with 125K hexahedral elements.

p Local matrix Update Assembly total

novec col novec nocol col novec nocol col

1 33.1 11.6 7.39 6.57 5.00 45.7 24.1 25.2

2 297 75.1 65.4 33.8 39.0 395 118 149

3 1155 207 192 85.4 75.6 1387 325 398

4 4667 838 398 153 97.3 5369 1020 969

5 15833 2635 714 247 133 16806 3036 2890

Table 1 shows that although the new implementation is faster for small p,
the performance gains from Fig. 3 are not fully realized when the whole matrix
assembly is considered, especially when p is small. A similar situation occurs
when a single thread is used. Further profiling reveals that the difference is due
to overhead from other solver routines called when performing the assembly, for
instance, querying material parameters. For larger p, the new implementation is
over 4x faster than the old one, because of the new data layout for SIMD. The
use of mesh coloring is beneficial, especially when p is large and the size of the
local stiffness matrix is large.

As the assembly phase is trivially parallel when coloring is in use, the tim-
ings can be expected to be approximately equal to those obtained with domain
decomposition and MPI. To verify the hypothesis, we compare the timings of
assembly with mesh coloring to those of MPI. In both cases, we use the OpenMP
SIMD version of the code and the new data layout. Table 2 describes the results
on a full node with 28 threads or MPI ranks.

The update operation with MPI domain decomposition is similar to assem-
bly with just one color, i.e., it avoids the use of an ATOMIC construct and thus
vectorizes well. Timings between OpenMP and MPI are generally very simi-
lar. For large p, MPI is consistently slightly faster due to NUMA effects, that
is, Elmer initializes the global stiffness matrix in a single thread during solver
initialization.



OpenMP∗ SIMD Vectorization and Threading 135

Table 2. Average timings (in milliseconds) for MPI with domain decomposition vs.
mesh coloring for a Poisson model problem in a unit cube with 125K hexahedral ele-
ments.

p Local matrix Update Assembly total

MPI col MPI col MPI col

1 10.8 11.6 4.20 5.00 19.1 25.2

2 88.0 75.1 21.8 39.0 116 149

3 217 207 46.9 75.6 272 398

4 906 838 79.1 97.3 995 969

5 2743 2635 124 133 2876 2890

6 Conclusion

We have presented an implementation of higher-order finite element basis func-
tions in Elmer using OpenMP SIMD constructs. To our knowledge this is the
first attempt of using such constructs for such computations. In addition, we
presented how multi-threading of the finite element assembly process of Elmer
has been implemented via multi-coloring the element mesh. Our experimental
results show that the new implementation is significantly more efficient than
the old one and that for the finite element assembly process, a multi-threaded
implementation with coloring can match the performance of an existing MPI
domain decomposition.

As a future work, with the new SIMD basis and multi-threading improve-
ments now implemented, our intention is to modify solvers needed in compu-
tational Glaciology to support both the new OpenMP SIMD basis and multi-
threading based on our experiments. We are confident that such enhancements
will allow modeling of scientifically interesting problems, such as those related to
climate change, more efficiently and accurately. With the shift towards OpenMP
threading and SIMD, the best possible setting for the number of MPI ranks per
node and the number OpenMP threads per MPI ranks needs to be determined.
This exercise is also left for future work, as searching the parameter space is
beyond the scope of this paper.
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Abstract. The upcoming profiling API standard OMPT can describe
almost all profiling events required to construct grain graphs, a recent
visualization that simplifies OpenMP performance analysis. We propose
OMPT extensions that provide the missing descriptions of task creation
and parallel for-loop chunk scheduling events, making OMPT a sufficient,
standard source for grain graphs. Our extensions adhere to OMPT design
objectives and incur a low overhead for BOTS (up to 2% overhead) and
SPEC OMP2012 (1%) programs. Although motivated by grain graphs,
the events described by the extensions are general and can enable cost-
effective, precise measurements in other profiling tools as well.

Keywords: OMPT · Performance analysis · Performance visualization

1 Introduction

Programmers are required to write parallelized code to take advantage of the
multiple cores and accelerators exposed by modern processors. The OpenMP
standard API [3] is among the leading techniques for parallel programming used
by programmers. All programmers have to do is incrementally insert OpenMP
directives into otherwise serial code. The directives are translated by compilers
into parallel programs that are scheduled by runtime systems.

Getting OpenMP programs to perform well is often difficult since program-
mers work with limited information. Program translation and execution happens
in the background driven by compiler and runtime system decisions unknown to
programmers. Performance visualizations depict these background actions faith-
fully and do a poor job of connecting problems to code semantics understood by
programmers.

The grain graph is a OpenMP visualization method for OpenMP that shows
performance problems on a fork-join graph of grains – task and parallel for-loop
chunk instances [15]. Problem diagnosis becomes effective since programmers can
easily match the fork-join structure to the code they wrote. Insightful metrics
derived from the graph guide optimization decisions. The graph is constructed
post-execution using profiling measurements from the MIR runtime system [14].

We have previously found [11] that except for task creation and parallel for-
loop chunk scheduling, the upcoming OpenMP Tools API (OMPT) [7,19] stan-
dard can describe all profiling events required to obtain measurements for grain
c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 141–155, 2017.
DOI: 10.1007/978-3-319-65578-9 10
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graphs. In the paper, we propose OMPT extensions that provide the missing
descriptions. Our extensions adhere to the design objectives of OMPT and incur
a low overhead for standard benchmarks and programs from EPCC [1,2] (up to
3% overhead for schedbench excluding statically scheduled loops with small
chunks, 2.7% for taskbench), BOTS [6] (2%) and SPEC OMP2012 [17] (1%),
when evaluated extensively with and without OMPT tools attached. Although
our extensions are motivated by grain graphs, the events they describe are gen-
eral and can enable cost-effective, precise measurements in other profiling tools
as well.

2 Background

We explain required background information on OMPT and grain graphs in the
section.

2.1 OMPT

The OpenMP Tools API (OMPT) [7,19] is an upcoming addition to the OpenMP
specification to enable creation of portable performance analysis tools. OMPT
supports asynchronous sampling and instrumentation-based monitoring of run-
time events.

Tools based on OMPT, hereafter simply called tools, are a collection of func-
tions that reside in the address space of the program being profiled. During
startup, the runtime system calls the tool’s initialization function, which in turn
registers callback functions with the runtime system to be called at specific events
such as starting a thread, starting a worksharing region, task creation, and task
scheduling.

The foremost design objectives of OMPT [7] are:

– Tools should be able to obtain adequate information to attribute costs to
application source code and the runtime system.

– OMPT support incorporated in an OpenMP runtime system should add neg-
ligible overhead when no tool is in use.

2.2 Grain Graphs

The grain graph is a recent visualization method for OpenMP that works at the
level of task and parallel for-loop chunk instances, collectively called grains [15].
The graph captures the fork-join program progression familiar to programmers
by placing parent and child grains in close proximity without timing as a place-
ment constraint. Grains with performance problems such as work inflation, inad-
equate parallelism, and low parallelization benefit are pin-pointed on the graph.
Example grain graphs are shown in Fig. 1.
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Fig. 1. Example grain graphs. (a) Graph of BOTS Fibonacci program for small input
(n= 32, cutoff = 4). Grain colors encode location in source code. (b) Graph of a simple
OpenMP parallel for-loop with 10 iterations executed on two threads with the dynamic
schedule. Grain colors encode the worker thread. Problematic chunks (here, those with
low parallel benefit) are pinpointed with a superimposed red highlight and other chunks
are dimmed. (Color figure online)

The grain graph visualization is implemented in a reference prototype [16]
that relies on detailed profiling measurements from the MIR runtime system [14].
Per-grain metrics from MIR such as execution time and parallelization cost are
combined with the grain graph structure to derive metrics that guide optimiza-
tions.

Parallel benefit is a derived metric equal to a grain’s execution time divided
by its parallelization cost including creation time. Parallel benefit aids inlining
and cutoff decisions by quantifying whether parallelization is beneficial. Grains
with low parallel benefit should be executed sequentially to reduce overhead.

3 Extending OMPT

We propose two extensions to make OMPT a sufficient source for descriptions of
profiling events required to construct grain graphs. The first extension enables
measuring time spent in creating task instances. Task creation time is required to
derive the parallel benefit metric of grain graphs. The second extension describes
detailed parallel for-loop execution events including chunk assignment, enabling
performance analysis at the chunk-level – a key feature of grain graphs. Both
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extensions adhere to OMPT design objectives (Sect. 2.1) and separate concerns
similar to the rest of the interfaces. More details about the extensions follow.

3.1 Task Creation Duration

Creating a task instance typically involves pushing it into a task queue after
allocating and initializing book-keeping data structures. This can take an uneven
amount of time subject to memory allocation latencies and queue contention. An
existing callback in OMPT called ompt callback task create can notify
tools that task creation is taking place. However, it does not allow measuring
the duration of the process. Allowing tools to determine per-task creation time
enables precise guidance about inlining and cutoffs. Also, situations where task
creation duration estimates computed by tools are outdated or mismatched with
the runtime system can be avoided.

To extend OMPT with the ability to inform tools about task creation dura-
tion, we considered three alternative approaches:

1. Add an endpoint parameter to the ompt callback task create callback,
and let the callback be invoked both at the start and end of task creation. This
enables tools to measure the time between calls at the expense of changing
the signature and the semantics of an existing callback.

2. Introduce a new callback that denotes the beginning of task creation and let
the existing callback ompt callback task create be called at the end of
task creation. This approach differs from the first in that it avoids changing
the signature of an existing callback but introduces a new one. An advantage
of the approach is that tools can measure other metrics and not just time
between the begin and end callbacks.

3. Measure the task creation duration inside the runtime system and report it
to the tool as an extra parameter to ompt callback task create. The
advantage of this approach is that it avoids an additional callback invocation
before each task creation event. However, it forces tools to agree on the notion
of time. Some tools may require time measured in processor cycles, while
others may only need microsecond precision. To complicate things further,
the runtime system may decide to measure elapsed processor cycles using
a hardware performance counter – a scarce resource for tools. In the case
that multiple cycle counters exist, the tool would not necessarily know which
counter is used by the runtime system.

We chose the third approach because it reduced callback overhead and was
specific to time. The time agreement disadvantage was solved by allowing tools
to register a function in tool-space that returns the current time. This function
is called by the runtime system before and after task creation, and the difference
between the two time values is returned as a callback parameter.

Our design for the task creation duration extension has the following new
function signatures:
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// The signature of the new ompt_tool_time callback to
// register a tool-space time function
typedef double (*ompt_tool_time_t) (void);
// The proposed new signature to ompt_callback_task_create
typedef void (*ompt_callback_task_create_t) (

ompt_data_t *parent_task_data,
const ompt_frame_t *parent_frame,
ompt_data_t *new_task_data,
ompt_task_type_t type,
int has_dependences,
double event_duration, // A new addition to return duration
const void *codeptr_ra

);

The event duration parameter is typed as a double-precision float-
ing point number to give tools increased precision and be consistent with
omp get wtime. If the tool has not registered an ompt tool time function,
the event duration is reported as 0. We chose to return 0 instead of falling
back to a low-precision timer consistent with omp get wtime so that no extra
timing overhead is incurred if tools opt out of registering a time function. The
value 0 is also returned if the runtime system or compiler decides the task cre-
ation duration is lower than the overhead to call the ompt tool time function
twice.

3.2 Extended For-loop Events

Currently, OMPT lacks interfaces to understand chunks. Parallel for-loop sup-
port is also meager. The existing loop-focused callback ompt callback work
carries little information about looping parameters. Tools can help programmers
correctly diagnose parallel for-loop problems if enabled with per-chunk metrics
such as creation duration, execution duration, and iteration range, as demon-
strated by grain graphs [15].

We propose extending OMPT with two new callbacks, one for chunks and the
other for loops, that improve the quality of information provided at loop events
to tools, enabling them to measure the execution time of individual chunks and
map chunks to iterations or worker threads.

The signatures for the new callbacks are shown below.

// The proposed ompt_callback_chunk signature
typedef void (*ompt_callback_chunk_t) (

ompt_data_t *task_data, // The implicit task of the worker
int64_t lower, // Lower bound of chunk
int64_t upper, // Upper bound of chunk
double create_duration, // Interval found from tool-supplied instants
int is_last_chunk // Is it the last chunk?

);
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// The proposed ompt_callback_loop signature
typedef void (*ompt_callback_loop_t) (

omp_sched_t loop_sched, // Actual schedule type used
ompt_scope_endpoint_t endpoint, // Begin or end?
ompt_data_t *parallel_data, // The parallel region
ompt_data_t *task_data, // The implicit task of the worker
int is_iter_signed, // Signed loop iteration variable?
int64_t step, // Loop increment
const void *codeptr_ra // Runtime call return address

);

The proposed callback ompt callback chunk is called before a chunk
starts execution. It describes the iteration range and creation time of the chunk.
Chunk creation time is calculated using a tool-space ompt tool time function
if provided, similar to approach for tasks (Sect. 3.1). The information can be
used by tools to identify chunks that execute shorter than their creation time
and guide chunk size selection, as demonstrated by grain graphs.

The new loop callback ompt callback loop is meant to be called instead
of the existing ompt callback work whenever a parallel for-loop is encoun-
tered. This callback provides additional loop-level information such as loop incre-
ment and the schedule type at runtime. Schedule type is not always set in the
source code and can be decided by the compiler, runtime system, and envi-
ronment variables. The is iter signed parameter is used to inform tools
about the signedness of the iteration variable, so that tools can cast the itera-
tion bounds reported by ompt callback chunk to the correct type.

The extensions require minimal changes to existing OMPT implementations.
The ompt callback work callback is simply replaced by ompt callback
loop in code that processes the for construct. Calls to ompt callback chunk
should be made in runtime system functions that handle assignment of chunks to
worker threads executing dynamically scheduled for-loops.

A relatively larger change is required to handle statically scheduled for-loops
where worker threads calculate their chunk iteration ranges directly through code
inserted by the compiler. In this case, compilers should additionally generate calls
to ompt callback chunk, preferably through a call to the runtime system.
Calling the runtime system for every chunk is expensive if chunk sizes are small.
We avoid this overhead when there is no tool attached, or when the attached tool
has not registered for the ompt callback chunk callback, by conditionally
calling the runtime system as shown in the pseudocode snippet below.

bool callbackPerChunk = __omp_runtime_should_callback_per_chunk();
while (UB = min(UB, GlobalUB), idx = LB, idx < UB) {

if (callbackPerChunk) {
__omp_runtime_for_static_chunk(...)

}
for (idx = LB; idx <= UB; ++idx) {

BODY;
}
LB = LB + stride; UB = UB + stride;

}
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Notice that the snippet does not contain code to compute chunk creation
time. For statically scheduled loops, we chose to return 0 as the creation duration
in the ompt callback chunk callback since only a few simple operations are
required to create a chunk. Compiler writers can instead decide to call the tool-
space time function if chunk creation is more involved.

4 Evaluation

Evaluation of the proposed extensions is discussed in this section.

4.1 Experimental Setup

Our test machine has two Intel Xeon E5-2630 2.2 Ghz 10-core processors. Each
core has private 32 KB L1 instruction and data caches, and a 256 KB L2 cache.
Each processor has a shared 25 MB L3 cache. Hyper-threading is disabled. The
system has 64 GB RAM and runs CentOS Linux with kernel version 3.10.

We selected a wide range of benchmarks to test the extensions. Our bench-
mark set consisted of schedbench and taskbench micro-benchmarks from the
EPCC OpenMP micro-benchmark suite [1,2] and programs from BOTS [6] and
SPEC OMP2012 [17].

Benchmarks from schedbench and taskbench capture overhead of supporting
parallel for-loops and tasks respectively. Both sets have the following parameters:
Outer repetitions specifies how many times to repeat the test, test time specifies
the target time for each test, and delay time specifies the busy-wait duration
inside loop iterations and tasks. We parameterized schedbench with 50 outer
repetitions, test time 30 ms, delay time 0.1 µs, and 4096 iterations per thread to
produce the same conditions on our modern test system as the original authors of
schedbench [1]. We used default parameters for taskbench except for increasing
the number of outer repetitions to 50 and the test time to 30 ms to significantly
reduce variance. We report median measurements of 20 runs for schedbench and
taskbench benchmarks.

We included all programs from BOTS and C/C++ programs from SPEC
OMP2012 in our benchmark set. We used large inputs when available, medium
otherwise for BOTS programs. The task creation cutoffs used with BOTS pro-
grams were 256 for FFT, 20 for Fib, 8 for N Queens, 5 for Floorplan, 3 for
Strassen, and 2 for Health. For Sort, the sequential merge and quicksort cut-
offs used were 2048 and the insertion sort cutoff was 20. Reference inputs were
used for SPEC OMP2012 programs except 376.kdtree. This program has a bug
found by grain graphs [15] that SPEC has since acknowledged and resolved to
fix in a future release. Providing the reference input to the bug-fixed version of
376.kdtree lowers the parallelism exposed, so we increased the cutoff from 2 to
8. Nested parallelism in 352.nab causes high execution time variance, so we ran
it with nested parallelism disabled. We report median measurements of 20 and
12 runs for BOTS and SPEC OMP2012 programs respectively.



148 P.V. Langdal et al.

We ran benchmarks with and without a tool attached. The setup without an
attached tool is called no tool in the paper. The attached tool had two flavors:
a no callbacks variant that registered no callbacks and a with callbacks variant
that registered relevant callbacks but did not execute any code within.

All benchmarks were run on 20 threads, with each thread pinned to a core.
Threads with even IDs were pinned to cores on the same processor. Those with
odd IDs were pinned to cores on the other processor.

Benchmarks, tools, and different versions of the LLVM OpenMP runtime
were compiled using LLVM Clang version 4.0 with −O3 optimization. The
default OpenMP runtime system of Clang 4.0 supports an outdated OMPT
specification. We refer to this runtime system as TR2 since it supports a subset
of the OMPT Technical Report 2. The group behind OMPT has augmented
TR2 with support for the more recent OMPT Technical Report 4 [18]. We refer
to this runtime system as TR4. We modified TR4 to include our extensions and
called it TR4E. We also modified Clang to generated code that supports the
chunk scheduling extension in statically scheduled for-loops. This modified com-
piler was used to compile benchmarks that linked with TR4E. Our modifications
in TR4E and Clang are consistent with the prevailing implementation style and
are publicly available for review [12].

Table 1. Callbacks registered by the with callbacks tool variant are runtime system
specific.

Callbacks registered by tools are shown in Table 1. These differ because the
runtime systems support different versions of OMPT. TR2 did not have a direct
equivalent to the ompt callback task create callback of TR4. We used the
TR2 callback ompt event task begin, a close match called once before task
execution.

4.2 Experimental Results

Overhead of supporting the extensions and attaching tools are discussed in the
section. We refer to callbacks that describe parallel for-loop and chunk events as
loop and chunk callbacks respectively.

The EPCC micro-benchmarks schedbench and taskbench work by first per-
forming some work W sequentially without using OpenMP, and then doing the
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same amount of work W on N threads using OpenMP. The difference in exe-
cution time of the two work operations is reported as timing overhead by the
micro-benchmarks. We report these timing overhead measurements relative to
our baseline TR4, calling them relative overhead in the paper.

Fig. 2. Relative overhead of loop-based extensions measured with schedbench micro-
benchmarks are up to 3% except for statically scheduled small chunks that require a
runtime system call per-chunk. TR4 is the baseline.
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Results of schedbench experiments are shown in Fig. 2. TR2 has the lowest
relative overhead since it supports an outdated OMPT implementation with
fewer features. TR4E incurs less than 1% overhead over TR4 when no tool is
attached, except for the guided schedule with chunk size 1 where the difference
is 2.8%. When a tool with no callbacks is attached, the guided schedule again
experiences the highest increase in overhead, up to 2.5%. The tool variant with
callbacks registers the loop callback with all runtime systems, and additionally
the chunk callback in TR4E. With callbacks registered, TR4E incurs up to 3%
higher overhead than TR4, except for the case of statically scheduled loops
with chunk sizes below 32 where enabling the conditional per-chunk runtime
system call (Sect. 3.2) incurs up to 50% overhead given the fine-grained nature
of iterations. The overhead of the chunk callback is low in all other scenarios.
We also ran tests where only the loop callback is registered in TR4E. Results of
these tests are not discussed in the paper due to space reasons and available in
an external database for review [10].

Results of taskbench experiments are shown in Fig. 3. We note that perfor-
mance flaws of TR2 have been rectified in the TR4. Specifically, thread syn-
chronization needed to assign unique task IDs in parallel for OMPT callbacks in

Fig. 3. The proposed task creation extension incurs up to 2.7% relative overhead for
taskbench micro-benchmarks. TR4 is the baseline.
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TR2 is problematic and increases overhead for NESTED TASK and PARALLEL
TASK micro-benchmarks when a tool is attached. MASTER TASK generates
tasks only on the master thread, and therefore is not affected. TR4E adds neg-
ligible task creation overhead over TR4 since it requires less than 1% extra
instructions. With no tool attached, the highest increase in overhead is 1.7%,

Fig. 4. SPEC OMP2012 and BOTS programs incur up to 1% and 2% overhead respec-
tively with the proposed extensions. TR4 is the baseline. Programs with alpha-numeric
names are from SPEC OMP2012.
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seen with the MASTER TASK micro-benchmark. When the tool variant that
does not register callbacks is attached, PARALLEL TASK incurs a 2.7% increase
in overhead. Registering callbacks shown in Table 1 leads to equal overheads in
TR4 and TR4E.

Results of experiments with SPEC OMP2012 and BOTS programs are shown
in Fig. 4. We compare overall execution times to evaluate the overhead of the
proposed extensions. Alignment and SparseLU are present in both benchmark
suites. We show variants from SPEC OMP2012 since they use larger inputs.
Most programs see no change in execution times. 376.kdtree runs 4% faster
due to incidental optimization opportunities used by the modified Clang 4 com-
piler. Also, this program does not run to completion with an attached tool even
after 5 h of execution due to the previously mentioned problem with parallel
task ID assignment in TR2, so the results are omitted. With no tool attached,
372.smithwa and Health run 1% slower. When the tool variant that does not
register callbacks is attached, no significant slowdown is observed. Registering
callbacks causes Health to run 2% slower on TR4E.

5 Related Work

The main motivation for the proposed extensions is to construct grain graphs
portably. However, the events described by the extensions have found use in
other profiling APIs and tools.

The POMP API [13], a base for OMPT, included events to describe the start
and completion of for-loop chunks.

Qawasmeh et al. [20] analyze timing and cache performance of runtime events
including task creation to decide on optimal scheduling strategies in the OpenUH
runtime system. They extend [21] the Sun/Oracle Collector API [9] to record
the events. The task creation event in their design is described using separate
start and stop events. The same two events are used by Servat et al. [22] for
instrumenting the Nanos++ runtime system.

The proposed chunk callback enables tools to understand and support for-
loops better. For example, Yoga et al. [23] build data race detectors that rely on
structured parallelism events such as task creation and synchronization events
to flag conflicting memory accesses in Intel TBB programs. Their technique can
potentially be extended to OpenMP for-loop chunks by plugging in our chunk
callback and treating chunks as tasks.

Drebes et al. [5] augment the LLVM OpenMP runtime system to collect par-
allel for-loop chunk traces. The traces are used to map chunks to worker threads
in their Aftermath tool [4], enabling diagnosis of load imbalance problems. Unlike
our extension, their implementation does not trace chunks of statically scheduled
parallel for-loops – a dominant parallelization pattern. Excluding 367.imagick,
91/105 parallel for-loops in SPEC OMP2012 are statically scheduled.

Intel’s VTune Amplifier [8] recently improved its OpenMP debugging feature
set by characterizing loop schedules, chunk sizes, and time spent scheduling
iterations. These are understood through source code inspection and sampling,
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provided profiled programs use Intel or GCC runtime systems. Our proposed
OMPT extensions enable tools to portably compute similar metrics without
need for source code inspection.

6 Conclusions

We presented extensions to OMPT that add a time duration parameter to the
task creation callback, improve information provided by the loop callback, and
introduce a new callback to describe chunk events, with the intention to con-
struct grain graphs portably from any OMPT-compliant runtime system. Over-
head incurred by the extensions with or without tools attached is low – up to
3% for EPCC micro-benchmarks, excluding the use of the chunk callback for
statically scheduled chunks of sizes below 32. Programs from BOTS and SPEC
OMP2012 slowdown negligibly, with only outliers slowing down by up to 2% and
1% respectively. The extensions adhere to OMPT design objectives, are imple-
mented in a consistent, maintainable manner in a standard toolchain, and are
publicly available [12]. Although motivated by grain graphs, the events described
by the extensions are general and can enable cost-effective, precise measurements
in other profiling tools as well.
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Abstract. Starting with version 4.0, the OpenMP standard has intro-
duced data dependencies to provide a way for synchronizing the concur-
rent execution of task based on dataflow information. This indirect app-
roach to fine-grained sychronization offers a convenient way for creating
a task graph without having to explicitly synchronize individual tasks
and can be used to parallelize both regular and irregular applications
to expose a higher level of concurrency to the runtime system. How-
ever, the cost associated with task creation and management, including
matching input and output dependencies, is a crucial factor in designing
the granularity of individual tasks, i.e., the amount of work to encap-
sulate in a task. In this work, we present a set of benchmarks designed
to determine the overhead associated with dependency management and
give an overview of the performance characteristics of a set of compil-
ers widely used in parallel computing. We hope to provide application
developers with a way to make informed decisions on the granularity
of their tasks given the dependency patterns dictated by the algorithm.
Our benchmark results show varying performance characteristics of dif-
ferent implementations that are both interesting and important to have
in mind throughout the task design process.

1 Introduction

The concept of expressing concurrency through tasks continues to gain traction
among developers of thread-parallel applications. The OpenMP standard has
introduced the concept of tasks to broad user community with the release of
version 3.0. In contrast to traditional parallel loop constructs, the tasking con-
cept allows users to expose irregular or unstructured concurrent patterns, e.g.,
tree traversal. Tasks can have arbitrary size, ranging from a few instructions to
complex computations involving nested tasks.

Starting with version 4.0 of the standard, OpenMP allows users to specify
data dependencies between tasks they define in their application [1]. Data depen-
dencies provide a convenient way of controlling the order of tasks without explicit
synchronization calls. Using the dependency information provided by the user,
the scheduler can build a task dependency graph that contains information on
the required ordering of the tasks.
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-65578-9 11



Patterns for OpenMP Task Data Dependency Overhead Measurements 157

OpenMP allows to specify two types of dependencies: output (out and its
alias inout) and input (in) dependencies. Output dependencies signal the sched-
uler that the task will produce data at the specified data location for consump-
tion by other tasks. Tasks with similar output dependencies on the same data
location have to be scheduled in the order they were defined.

Input dependencies, on the other hand, inform the scheduler that the spec-
ified data point will be consumed by the task and thus the task should run
after any previously defined task with a matching output dependency. Tasks
with input dependencies on the same data location can be executed in parallel
as they only consume data without altering it. It is up to the user to correctly
specify the data dependencies of tasks to ensure correctness of the application
as compilers supporting the OpenMP standard are not required to validate the
defined dependencies.

Dependencies can be either matched or unmatched, e.g., an input with no cor-
responding output dependencies is unmatched. We consider a output dependen-
cies to be matched if at least one corresponding input and output dependencies
has or will be defined, respectively.

While task dependencies provide a convenient way for users to control task
execution, their implementation is not trivial as it requires a significant amount
of book-keeping needed to track the specified memory locations of dependen-
cies and determine the order of tasks. This may have a significant impact on
the time needed to create and execute tasks with data dependencies. Informa-
tion on the overhead incurred by the different numbers of task dependencies is
important in the design of an application using tasks with task dependencies,
i.e., the minimum workload performed by a task should be large enough to com-
pensate for the additional work needed to handle task dependencies. This paper
presents our efforts to create a set of benchmarks to determine the overhead of
different OpenMP implementations in handling tasks with different numbers of
dependencies, both matched and unmatched.

The remainder of the paper is structured as follows: Sect. 2 presents a survey
of related work, which is followed by a description of our benchmark design in
Sect. 3, an outline of the measurement methodology in Sect. 4, and the results
in Sect. 5. From that, we draw our conclusions in Sect. 6.

2 Related Work

Bull et al. have presented a microbenchmark suite for OpenMP tasks, which has
been integrated into the EPCC OpenMP benchmark suite [3]. They showed a
large variation in overhead for task creation and synchronization, dependending
on the compiler, machine, and number of threads used. The current version of the
benchmarks suite does not cover OpenMP task data dependencies. We decided
to use this benchmark suite as the basis for our implementation presented in
Sect. 3.3. A similar microbenchmark suite has been presented by Lagrone et al.
in [10]. However, the set of benchmarks presented there is smaller than with the
EPCC benchmark suite and does not cover data dependencies either.
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Others have focused on application-based benchmarks, both for OpenMP
(SPEC OpenMP [2,11], the Barcelona OpenMP Tasks Suite [8]) and Intel TBB
tasks (PARSEC benchmark suite [5]). However, none of these benchmark suites
cover task dependencies.

The PARSECSs benchmark suite is a task-based implementation of the
PARSEC application benchmark suite using dependencies for data-flow con-
trol [4]. The KASTORS benchmark suite covers OpenMP task data dependencies
through a set of micro-kernels, comparing the performance of their implemen-
tations with and without data dependencies [14]. While these approaches are
useful for estimating the overall performance of task-based parallelization, they
are less suitable for deciding design aspects such as the size of individual tasks.

Recent attempts have been made to perform task dependency management
and scheduling in hardware rather than software to reduce the overhead. Two
such designs are presented in [7] and [15], respectively. However, systematic
studies of the overheads have not been presented in either work.

To the best of our knowledge, there have been no previous attempts to mea-
suring the overhead of task data dependencies in OpenMP.

3 Benchmark Design

The main contribution of this paper is the design of a set of patterns, which
characterize the performance of creating and executing tasks with data depen-
dencies between them. We have experimented with different task graph patterns
to determine the impact of the following properties to the performance of task
creation in an implementation of OpenMP 4.0: (i) The number N of data depen-
dencies defined per task, with N ∈ {1, 2, 4, 8, 16, 24, 32}; (ii) the overall number
of memory locations referenced in dependencies; (iii) matched vs unmatched
dependencies; and (iv) the dependency type (input and output dependencies).

While determining the cost associated with creating tasks with varying num-
ber of defined data dependencies has been the initial motivation for this work,
we decided to also look at the other factors. The following paragraphs shortly
describe the patterns together with the properties they are meant to explore.

3.1 Basic Patterns

P1: The Chain Pattern is the most straight-forward pattern in our collection
and forms a sequence of tasks with N dependencies (links) between two suc-
ceeding task, as depicted in Fig. 1(a). The number of distinct memory locations
used as in the dependencies is fixed to N . The use of input dependencies would
require the same amount of output dependencies from the previous task and
would thus double the number of dependencies per task.
P2: The Linked List Pattern is a modification of the Chain pattern P1 such
that only a subset of the N defined data dependencies are actually matched by
previous or successive tasks. Thus, the pattern can be seen as a linked list with
one link between two tasks. Pattern P2 is depicted in Fig. 1(b) and is created
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by leaving N − 1 input dependencies unmatched. Since input dependencies do
not cause any ordering of tasks, each task also needs to provide one output
dependency. All dependencies point to different memory locations, thus ensuring
that all unmatched dependencies remain as such. Incidentally, this extends the
address space used in data dependency management, potentially increasing the
pressure on the respective parts of the runtime system.

With slight modifications, it is possible to turn the unmatched input depen-
dencies into output dependencies. Although we have included this modification
in our benchmarks, we do not present the results due to space constraints and
since we have not observed significant differences between the input and the
output version of this pattern.

3.2 Advanced Patterns

P3: The Stencil Pattern resembles a stencil with different numbers of neigh-
boring cells needed to compute the current cell. Thus, for this pattern N denotes
the number of neighboring cells. In order to maintain the general structure of
the pattern, a task also defines the current cell as input from the previous and
output for the next iteration, employing a double buffering scheme to ensure
independence of tasks in one iteration. Consequently, each task in this pattern
has N + 2 dependencies defined, N + 1 input and one output dependency.

Commonly, a 1D domain decomposition resembles a stencil pattern with
N = 2, as depicted in Fig. 1c. Likewise, a cell in a 2D domain decomposition has
either five (4 + 1) or nine (4 + 1) input dependencies, depending on whether the
corner cells are required as input or not. In a 3D domain decomposition, up to
27 (26 + 1) input dependencies can be required for each cell.

In this pattern, a significant number of dependencies may remain unmatched
depending on the arrangement of the tasks. Naturally, in the first iteration the
input dependencies are not matched as there have not been previous tasks with
matching output dependencies. Likewise, tasks on the boundaries and in the
last iteration will always have unmatched dependencies. We decided to choose
W = 1000 as the number of tasks per iteration (width of the task graph) and
use the number of iterations to control the overall number of tasks. The fraction
of unmatched dependencies can be approximated as 3

4N ∗ ( 1
W − 1

T )+ W
T , ranging

from 1 for T = 1000 tasks to 0.216 for T = 5000 with 32 dependencies.
Abandoned: The N -ary tree pattern would have been an obvious choice but
was eventually abandoned, considering that in a perfect N -ary tree of height
h the majority of nodes exhibits unmatched dependencies for large N , i.e., Nh

with h = �logN (N − 1) + logN (T ) − 1�. Given N = 32 output dependencies and
a tree height h = 4, approximately 97% of all nodes are leaf nodes, which do not
have any matched output dependencies. We decided to avoid this inconsistency.

3.3 Implementation

As mentioned in Sect. 2, we have implemented our benchmarks as an extension
of the EPCC OpenMP benchmark suite. The task dependencies have been
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Fig. 1. Patterns used to measure the performance of OpenMP tasks with dependencies
(N : Variable number of dependencies; T : Number of tasks; W : Width of the task graph
or number of tasks per iteration). Matched dependencies are depicted as bold arrows,
unmatched as dashed arrows.

1 char *depbuf = (char *)0 xDEADBEEF;
2 #pragma omp parallel
3 {
4 #pragma omp barrier
5 #pragma omp master
6 {
7 start_time = timer ();
8 for (int i = 0; i < num_tasks; ++i) {
9 #pragma omp task depend(out: depbuf[0], depbuf [1]) \

10 depend(out: depbuf [2], depbuf [3])
11 { delay(delayLength ); }
12 }
13 #pragma omp taskwait
14 end_time = timer ();
15 } // omp master
16 } // omp parallel

Listing 1.1. Simplified example of the Chain pattern implementation with 4 depen-
dencies.

implemented as a separate module, which makes use of the shared infrastructure
of the benchmark suite.1

An example of the Chain pattern (P1) is depicted in Listing 1.1 and shows the
basic control flow of the benchmarks. Inside a parallel region, the master thread
takes care of the timing (lines 7 and 14), with threads being synchronized by barri-
ers. The master thread then further creates the specified number of tasks with the
given number of dependencies before waiting for the tasks to be executed by all
threads in the taskwait statement (line 14). In our implementation, the number
of tasks is configurable at runtime while the number of dependencies is provided
as a C++ template parameter to allow the compiler to optimize the selection of
the code path creating the desired number of dependencies. Since OpenMP task

1 The code and result files are available at https://github.com/devreal/omp-tdb.

https://github.com/devreal/omp-tdb
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creation and dependency specification are both static, we have to provide individ-
ual statements for each dependency configuration.

The tasks themselves only perform a small amount of work in the delay func-
tion (line 11) to ensure correct time measurement. This functionality is taken
from the EPCC benchmark suite, where delayLength describes the number of
instructions to be executed, which is determined dynamically based on informa-
tion provided by the user, e.g., the minimum delay time (0.1µs by default).

4 Measurement Methodology

All experiments have been repeated 20 times and the arithmetic mean has been
used as average for the plots in Sect. 5. To improve readability in these plots, error
bars have been omitted. However, the relative error has been consistently below
8% throughout our measurements. Given the scale of the differences between the
compilers presented below, we are confident that this error does not harm the
significance of our conclusions.

Unless specified otherwise, the default task granularity has been 0.1µs.

4.1 Runtime Libraries

The GNU compiler collection (GCC) as well as the Intel and Clang compilers
all support tasking with data dependencies. The set of considered compiler ver-
sions include GCC versions 6.3.0, Intel 16.0.3 and 17.0.1, as well as Clang 3.9.1.
Initially, we also considered GCC version 5.3.0 but have not observed significant
performance differences.

In contrast to them, the manual for the Cray compiler (as of version 8.5.7)
states that “the task ‘depend’ clause is supported, but tasks with dependences are
serialized” [6, p. 70]. Our measurements have reflected this behavior. Cray kindly
provided us with access to a pre-release of the next Cray Compiler Environment
(8.6), which will come with full support for OpenMP 4.5. While we can confirm
that dependencies are handled correctly in the upcoming release, we decided not
to publish performance measurements of a pre-release version.

The PGI compiler (as of version 17) does not support the OpenMP 4.0 stan-
dard [13, Chap. 5]. We thus omitted both compilers from our measurements
presented below. At the time of this writing, the authors do not have access to
any other compiler suite.

In addition to the production-level compiler mentioned above, we also
included the OmpSs [9,12] compiler in version 16.06.3 in our measurements.
This compiler has a long-standing tradition of being used as a research vehicle
for the implementation of upcoming OpenMP features, most notably the tasking
concepts. The OmpSs compiler can be used in two modes: in the openmp mode,
the compiler links a standard compliant runtime library while ompss mode the
OpenMP pragmas are mapped to the OmpSs runtime implementation, which
diverges from the OpenMP standard with regards to certain semantics. We were
able to successfully build and run our benchmarks in both modes.
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4.2 Parameter Space

In our measurements, we have considered different parameters that might influ-
ence the performance of the different OpenMP runtime implementations, as
described below.
The Number of Dependencies N is central to our measurements and has
been motivated in Sect. 3.2 already. Our initial approach was to determine the
influence of the number of dependencies on the overhead induced by the runtime.
We decided to include 1, 2, 4, 8, 12, 16, 24, and 32 dependencies per task in our
measurements, providing a smaller step size for lower counts while also covering
the higher counts.
The Number of Tasks T might have an impact on the performance since a
higher number of tasks may require more resources for scheduling. Moreover,
in the case of the Stencil pattern P3, the number of tasks also control the per-
centage of matched output dependencies in the dependency graph. We ran our
benchmarks with 1000 and 5000 tasks and provide numbers for both if significant
differences were observable.

The Number of Threads used to execute the benchmark may have a signifi-
cant impact on the overhead with some runtime libraries, including GCC, Intel,
and Clang. The runtime may skip processing of dependencies in single-threaded
environments, in which tasks can be executed immediately without queuing. In
fact, the open source Clang runtime library (which is also used by the Intel
compiler) avoids any scheduling overhead by immediately executing tasks cre-
ated in a serial execution context. The GNU compiler does not seem to employ
this optimization. In our measurement setup, further increasing the number of
threads may lead to artificial contention because the master thread cannot cre-
ate tasks fast enough to keep all other threads busy. We have thus only included
benchmark results for runs using 1 and 2 threads. The times presented in Sect. 5
are CPU times, i.e., we have multiplied the measured time by two for runs with
two threads.

4.3 Measurement Environment

All experiments were conducted on the Cray XC40 “Hazelhen” installed at
HLRS. The system is comprised of dual-socket Haswell nodes with 128 GB main
memory. Correct pinning of all threads to a single socket was ensured through the
PBS scheduler (using aprun -cc numa node). The default Cray Programming
Environment (PE) version 5.2.82 has been used for the pre-installed compil-
ers. It should be noted that the GCC 6.3.0 and Intel 16.3.0 serve as the current
default for the respective PE modules. We have built both the Clang and OmpSs
compiler from vanilla sources using the GCC 6.3.0 compiler.
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5 Results

5.1 P1: Chain Pattern

The mean times required to create and execute a single task of length 0.1µs
with N dependencies in the output Chain pattern P1 are depicted in Fig. 2. We
have not found significant differences in overhead when increasing the number
of tasks from 1000 to 5000.

However, we have found significant differences between runs with one and
two threads, as depicted in Fig. 2. For single-threaded runs, Fig. 2a shows that
the Intel and Clang compiler exhibit almost no overhead while there is a slightly
increasing overhead visible for the GNU Compiler. This is in-line with the expec-
taions expressed in Sect. 4.2.

Fig. 2. Mean time per task for 1000 tasks in pattern P1 (output chain) with 2 threads
and increasing number of dependencies.

Using two threads, the GNU runtime as well as the Intel and Clang run-
times exhibit similar overheads depicted in Fig. 2b, which are higher than for
single-threaded execution. No significant performance difference can be observed
between these compilers with the runtimes ranging from 1.28µs for N = 1 to
2.58µs for N = 32 for a single task of length 0.1µs.
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Above that, the OmpSs research compiler in openmp mode can be found.
Unfortunately, we were unable to produce meaningful results in ompss mode at
the time of this writing.

5.2 P2: Linked List Pattern

The results for 1000 tasks in the second task pattern P2 are presented in Fig. 3a.
Both the Intel 17 and Clang runtimes exhibit a steeper slope for rising num-

bers of dependencies such that the GNU runtime outperforms both starting at
16 dependencies, the former reaching 10µs per task for 32 dependencies. Most
surprisingly, though, is the performance of the Intel 16 compiler running with
2 threads (red dashed line): we can observe a significantly overhead, which is
even higher than the OmpSs compiler in openmp mode, reaching up to 220µs
for 32 dependencies. Figure 3b shows that the slope for both Intel 17 and Clang
increases when going from 1000 to 5000 tasks. Still, this overhead remains below
100µs for both.

An interesting effect can be observed in both the Clang and Intel 17 runtime:
for 1000 tasks, the impact of increasing numbers of dependencies is only visible
above 8 dependencies. For 500 tasks, this threshold is above 4 dependencies. Our

Fig. 3. Mean time per task for pattern P2 (input linked list) with 2 threads and increas-
ing number of dependencies. (Color figure online)
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initial guess is that this effect is related to the hashmap implementation used to
track dependencies but have not investigated this any further.

The performance of the GNU compiler seems not to be affected by the number
of tasks. However, for lower numbers of dependencies (1 to 4) the GNU compiler
is outperformed by both Intel and Clang.

We have also performed measurements using the output version of this pat-
tern but have not observed significant performance differences.

5.3 Stencil Pattern

Figure 4 shows the measurements for the Stencil pattern P3. The previously
mentioned performance patterns repeat here as well, although less pronounced.
The difference between 1000 and 5000 tasks is marginal with only the Intel 16
compiler being significantly impacted, indicating that the higher number of tasks
does not impact the other compilers. It is interesting to note that the Intel 16
compiler exhibits a significantly higher overhead for 1000 tasks, presumable due
to some constant overhead whose per-task impact becomes smaller with smaller
numbers of tasks.

Fig. 4. Mean time per task creation with different compilers for pattern P3 (stencil)
with 2 threads and increasing number of dependencies.
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As described in Sect. 3.2, none of the output dependencies are actually
matched for T = W = 1000 while with 5000 tasks and the same width of
the task graph almost 80% of the output dependencies are matched.

5.4 Relative Overhead

Figure 5 presents the relative overhead for the Stencil pattern (P3) using N = 8
of the different OpenMP runtime libraries for increasing task workloads, ranging
from 0.1µs to 12.8µs. For short running tasks smaller than 0.8µs, the overhead
remains above 50% for all tested implementations. It is only for tasks larger
than 10µs that the overhead drops below 10%. Again, we were unable to fully
benchmark the OmpSs compiler but the data we have gathered suggests that
significantly longer tasks are required to reach the 10% overhead goal. Due to
space constraints we omitted overhead measurements for other task graph con-
figurations.

Fig. 5. Percentage of overhead with increasing task runtimes for 1000 tasks in the
Stencil pattern with 8 dependencies and 2 threads.

5.5 Discussion

The different runtime libraries under test exhibit different performance charac-
teristics when executing the patterns described in Sect. 3. All production-ready
compilers exhibit a rather uniform performance for the simple Chain pattern
(P1), where the number of dependencies has only a slight impact on a task’s
creation and execution time (factor 2).

This picture changes significantly for the Linked List pattern (P2) where the
spread between the different implementations is more significant. In particular,
this pattern creates a large amount of dependencies pointing to distinct memory
location, totalling to (N − 1) ∗ T memory locations. Thus, the change in slope
between 1000 and 5000 tasks leaves us to conclude that the Clang and Intel
17 compilers seem to be impacted by the higher number of memory locations
while the GNU compiler exhibits rather stable performance. This pattern also
demonstrated that the impact of the dependency type is negligible.

As a more realistic example, the Stencil pattern (P3) shows only a small
advantage of Clang and Intel 17 over the GNU compiler for small numbers of
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dependencies but no major difference when scaling the number of dependencies.
Given the ratio of unmatched dependencies in our setup (100% for 1000 tasks,
≈20% for 5000 tasks) we conclude that this ratio does yield any substantial
impact on the overhead.

It should be noted however, that the Intel 16 compiler has significant per-
formance issues. Given that this compiler might still be the default on many
HPC systems, users should be encouraged to use the latest release of the Intel
compiler.

6 Conclusion

This work presents a set of micro-benchmarks to evaluate the performance char-
acteristics of OpenMP compilers with regards to the handling of task data depen-
dencies, which had been introduced with the OpenMP 4.0 standard. The bench-
marks can be used to assess the impact of the number of tasks, the number and
type of dependencies between them, the ratio of matched and unmatched depen-
dencies, as well as the number of threads used to execute the tasks. Based on the
data presented in Sect. 5.4, we can conclude that in production-level compilers,
tasks with the specified configuration should not be shorter than 10µs or 2500
cycles (on a 2.5 GHz CPU) in order to keep the overhead below 10%. However,
this threshold likely depends on several additional factors, including the system
configuration, the overall size of the task-graph, and the load on the system.

An initial attempt to derive a model of the performance characteristics from
the performance data we gathered was not conclusive. We thus plan to further
refine the benchmarks and collect additional information on the overhead char-
acteristics, including PAPI counter values, to better understand the behavior
of the different runtime libraries. We also plan to investigate the impact of a
higher number of threads, which requires adjustments to the runtime of indi-
vidual tasks to provide sufficient work for all threads. Extending the benchmark
suite to measure the performance implications of multiple threads creating tasks
should be considered as future work as well.
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Abstract. In the last few decades, modern applications have become
larger and more complex. Among the users of these applications, the
need to simplify the process of identifying units of work increased as well.
With the approach of tasking models, this want has been satisfied. These
models make scheduling units of work much more user-friendly. However,
with the arrival of tasking models, came granularity management. Dis-
covering an application’s optimal granularity is a frequent and sometimes
challenging task for a wide range of recursive algorithms. Often, finding
the optimal granularity will cause a substantial increase in performance.

With that in mind, the quest for optimality is no easy task. Many
aspects have to be considered that are directly related to lack or excess
of parallelism in applications. There is no general solution as the opti-
mal granularity depends on both algorithm and system characteristics.
One commonly used method to find an optimal granularity consists in
experimentally tuning an application with different granularities until an
optimal is found. This paper proposes several heuristics which, combined
with the appropriate monitoring techniques, allow a runtime system to
automatically tune the granularity of recursive applications. The solu-
tion is independent of the architecture, execution environment or applica-
tion being tested. A reference implementation in OmpSs—a task-parallel
programming model—shows the programmability, ease of use and com-
petitive performance of the proposed solution. Results show that the
proposed solution is able to achieve, for any scenario, at least 75% of the
performance of optimally tuned applications.

Keywords: OmpSs · Cost · Autotuning · Threshold · Granularity ·
Cutoff

1 Introduction

The optimal unit of work in a parallel code depends on many factors. To name
a few; input data, resources allocated or the current load of a machine are some
of the most important ones to take into account. Statically setting a certain
granularity for an application in a specific environment, machine and/or input
c© Springer International Publishing AG 2017
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may cause a dramatic decrease of performance when that same application runs
with other parameters or on different machines. Once the granularity is set,
often, it will be immutable for the entire execution. Static granularities then,
are too rigid and cause applications to suffer a decrease in performance when
executed with different configurations.

Fig. 1. Effects of different granularities in performance

Figure 1 generically illustrates the consequences of choosing incorrect granu-
larities. When a certain limit Ψ of granularity is not met, fine-grained tasks are
generated and that leads to an excess of parallelism. This is worsened by stress-
ing runtime libraries with the management of an excessive amount of tasks. On
the other hand, once a certain threshold Φ on granularities is surpassed, tasks are
too coarse, which leads to a lack of parallelism and load imbalance. These gran-
ularity thresholds are highly dependent on a large number of factors. Some are
linked to the hardware architecture, and some others are related to the dynamic
behavior of the application and the system on which it runs.

Offline tuning is an extensively used technique when searching for good
granularities. It is based on executing applications with different input para-
meters and granularity cutoffs until an optimal performance is reached. Nega-
tive impacts on performance caused by choosing inadequate granularities can be
softened by limiting the number of tasks from a runtime’s point of view. This
is done in order not to stress the runtime with the creation and handling of
fine-grained tasks that would not payoff in computation. The latter approach
behaves as expected when tasks are fine grained and thus the creation of too
many of these would expose too much parallelism. However, for coarse-grained
tasks this technique prevents a level of parallelism which is needed.

Visible flaws from the aforementioned techniques and the difficulty of writing
architecture-independent code raise interest for a way to auto-tune applications
and to detect optimal granularities, taking into account factors such as input
sizes or resources. These techniques could improve if precise information about
the computation being performed by the tasks is known. Simultaneously, this
interest creates a demand for task-based programming models [1] that are able to
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manage themselves through monitoring. By monitoring, these would have access
to certain metrics, which could be used to take scheduling decisions.

This paper presents the OmpSs Autofinal Module. Its purpose is to enable
the automatic detection of the optimal granularity of recursive applications,
regardless of the architecture, input size or execution environment being used.
It consists of a monitoring infrastructure, several heuristics and language sup-
port through clauses. The monitoring infrastructure provides precise execution
metrics that combined with the heuristics and usage of language constructs,
provide information to the runtime to decide when it is worth to instantiate
tasks. In addition, this paper shows what kind of language support is recom-
mended to provide useful information to the monitoring infrastructure. Results
show that the usage of this technique achieves performance that is competitive in
comparison to manually tuned applications on several architectures and diverse
applications.

The rest of the paper is structured as follows. Section 2 overviews the related
work and introduces the most frequent techniques on granularity management.
Section 3 introduces the idea of the cost clause from a programming model’s
point of view. Section 4 thoroughly explains an implementation of Autofinal on
OmpSs. Section 5 presents a case study and evaluates its performance and lastly,
Sect. 6 concludes this work.

2 Related Work

In most task-based recursive codes, the overhead of task creation and manage-
ment causes the overall performance of the code to decrease at a certain recursion
depth. Because of this, runtime libraries provide techniques to ensure limits on
these depths. Managing and limiting granularities have previously been con-
sidered in task-based programming models. For instance, OpenMP [2] provides
several clauses to tune the task granularity. Below are some of the clauses that
are most related to this paper.

– final: For recursive problems it may be beneficial for performance to stop task
creation at certain depths to expose enough parallelism and reduce overhead.
That is, the task will not instantiate children. Instead the code is executed
on a single unit of work. Its syntax is

final (expression)

where expression evaluates into a boolean value that determines whether the
task is final .

– if: Its syntax is the following:

if (expression)

Before instantiating the task, the expression is evaluated. If its value is false,
the task is not instantiated and instead its code runs as part of the current
task.
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– mergeable: In certain scenarios, if this clause is present, the task’s parent will
share its data environment with the task.

Autotuning is often described as a general technique to automatically adapt
the execution of a program to a given parallel computer. This adaptation is done
in order to optimize one or more runtime performance metrics such as execution
time [3]. Other works, such as the one conducted by Ray S. Chen [4] or the one
conducted by Chung and Hollingsworth [5], researched ways to autotune appli-
cations. Their works rely on running applications several times by differing para-
meters until an optimal configuration or granularity is found. This paper focuses
on dynamically autotuning applications without a previous training phase. The
tuning determines the granularity to apply to the final clause.

Other works such as the one conducted by Alejandro Duran [6] discussed a
similar way of autotuning granularity, however without the usage of the final
clause nor the cost clause. It made use of bare execution times in order to deter-
mine when a granularity is fine enough, regardless of the type of the task. This
approach might work as expected with some specific architectures, applications
and input sizes, however introducing variability in any of these three factors
might trigger wrong cutoff decisions, resulting in decreases of performance. This
paper however, focuses on precisely determining the computational weight of
the tasks and make accurate predictions of execution times, regardless of the
architecture, input size or application.

3 Language Support

To make the most of the OmpSs Autofinal module, application developers have
to provide additional hints to the runtime. First, the developer must express
the intention to use Autofinal. This is necessary in order for task monitoring to
happen. Therefore, one could extend the final clause to accept keywords like the
following:

final (auto)

where auto is the keyword that expresses the desire to automatically establish
final cutoffs.

Furthermore, the accuracy of the data obtained by monitoring can be
improved by normalizing it. This is done through information about the com-
putational weight of tasks. For this purpose, the cost clause is introduced with
the following syntax:

cost (expression)

where expression corresponds to a single or a combination of algebraic functions
that evaluate into a positive real number.

4 Implementation

The OmpSs Autofinal implementation consists of the following parts: a moni-
toring infrastructure, several heuristics and a collection of constructs used by
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the runtime and provided by the programming model. Each of these parts is
explained in the next sections.

The following work was implemented in the OmpSs [7] programming model.
OmpSs—OpenMP Superscalar—is a task-based, data-flow aware parallel pro-
gramming model developed at the Barcelona Supercomputing Center. Its prox-
imity to OpenMP makes it relevant to runtime developers working on similar
implementations.

4.1 Task Monitoring

A monitoring infrastructure was added to give the runtime the ability to decide
when a task’s granularity is fine enough. The infrastructure is capable of pro-
viding a histogram of task execution times. Once a task has been executed, its
metrics are aggregated per task type. However, this information is not used as-is,
the metrics are first normalized. This is explained in the next subsection. Some
of the metrics provided are execution time, runtime execution time, number of
leaf tasks and number of tasks that have at least created one task.

4.2 Final Clause

This sections explains the implementation of the final clause in OmpSs. The
compiler first makes use of closures and duplicates every function of the user
application which creates tasks. Once those functions are executed and if the
final clause evaluates to true, the task enters in final mode. This mode prevents
the task from generating any other task.

4.3 Cost Clause

Predictions on execution times could be done by simply using the metrics
obtained by the monitoring infrastructure. This approach is exactly the one
taken if no other information is available. Nonetheless, the information provided
by the cost clause can be used to normalize the predicted execution time of
a task. The normalization and the contents of the cost clause are important
because the execution time of a task does not depend only on the type of the
task. The contents of the cost clause allow comparing the expected execution
time with other tasks of the same type. When a task does not rely on any algo-
rithmic function, and thus does not contain the cost clause, the normalized cost
will simply be the average execution time and thus the clause will not have any
negative impact on the decision. However if the task’s computation follows an
algorithmic function, the normalized average will provide much more veracious
information towards the runtime’s decision. For the OmpSs implementation of
Autofinal, this normalization consists on dividing the expected execution time
by the contents of the cost clause. Figure 2 shows the normalization under the
assumption that cost is available for the task.

This clause however is not bound to be the computational weight of a task,
as it could evaluate other kinds of expressions. As an example, an I/O intensive
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Fig. 2. Normalization of cost for a task.

task could use the cost clause by giving hints about the I/O operations it is
going to perform. Other tasks such as memory bound tasks, could make use of
the cost clause by specifying the number of load/stores it is going to perform.

The usefulness of the clause then, relies on acting as a hint given to the
runtime library. This hint is mostly used as information about the relative com-
putational weight of a task—In other words, the algorithmic cost. However, it
may be used for other purposes such as the ones discussed previously and in
Sect. 6. Figure 3 shows the usage of this clause applied to a few well known
algorithms.

Fig. 3. A few algorithms showcased using the cost clause.

In order to achieve an adaptive strategy, OmpSs’ implementation of Autofinal
has an average normalized cost. This cost, also referred in this document as
unitary cost, is seen by the runtime as the expected execution time for a unit
of cost extracted from the clause. That is, taking into account that the cost
evaluates into a positive real number, as explained in Sect. 3. The average unitary
cost is obtainable by having a window of measurements of unitary cost. By
using this strategy, normalized costs are adapted throughout the execution of the
application and its changes of behavior. In other words, the average is obtained
using the ‘N’ latest measurements.

OpenMP’s final clause, as shown previously in Sect. 2, allows users to manu-
ally set a threshold on task granularities. To use it, the developer must have
knowledge of application behaviors and the computation being done by the
affected tasks. All of this forces the developer to study said applications and
to execute them with different thresholds and figure out their behavior on the
given hardware and software setup.

Hence why it is interesting for the runtime to monitor the behavior of tasks
and automatically activate the final clause when desired. It is from this idea
that Autofinal was created. Autofinal uses task monitoring in order to estimate
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the execution time of future tasks and determine whether they should be final
or not. Figure 4 shows a pseudo code with the heuristics that have been chosen
to be taken into account in the decisions of automatic final appliance. These are
thoroughly explained immediately after.

Fig. 4. Pseudo code of heuristics used to determine if a task should be final.

The decision has two well-differentiated heuristics. When executing a certain
task, if the runtime does not have timing information of its type it can be
due to two reasons. The first occurs when a task is the first of its type to
be executed. The second occurs when all previous tasks from the same type
have not finalized their execution and therefore have not contributed to task
monitoring yet. For better understanding of the second scenario, one could think
of recursive algorithms like mergesort or fibonacci in which non-leaf tasks contain
a taskwait, which waits for its children to finish. In these, there is no complete
timing information available until one of the recursive branches of the algorithm
reaches a leaf task.

When either of the previous scenarios is met and therefore no timing infor-
mation is available, it is still useful to limit the number of instantiated and not
finalized tasks. Otherwise, tasks with very fine granularity end up being created.
The best way to do this is limiting the maximum number of tasks of a certain
type at a certain moment and, in order to do this, some metrics are needed.
In OmpSs, these metrics are the recursive depth of tasks from the same type—
recursive depth—and the average number of tasks created by a certain type
or, as referred in the pseudocode, the arity of a task. The arity is computed
taking into account the number of tasks from a certain type which have at least a
children task (parent tasks) and the number of leaf tasks (children tasks). If
at a task’s creation point the average (current tasks) surpasses a limit, the task
is created as a final task. This limit is calculated using a configurable number
of tasks per CPU and the total number of CPUs.

In the event that the runtime has timing information for a certain type of
task, it can estimate the execution time for future tasks of that type. This esti-
mation can be more precise if the developer provides computational information
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about the task through the cost clause. If the execution time estimation does
not meet a certain configurable threshold, the task is generated as a final task.

5 Results

To test Autofinal’s effectiveness, four very different recursive benchmarks were
used.

– The Fibonacci sequence: Fibonacci was chosen because it is a benchmark
with very fine granularity. The computation of tasks at the end of recursivity
is as simple as returning an integer. The sequence of the first 35 Fibonacci
numbers was chosen as the size for this benchmark.

– Mergesort: The mergesort algorithm was chosen to test a wide range of
granularities. The computation of a task can be as simple as a comparison
between two numbers or as coarse as sorting and merging two big chunks of
an array. An array of 108 doubles was used as this benchmark’s input.

– NQueens problem: In the NQueens benchmark, granularities grow expo-
nentially. Testing this attribute challenges effectiveness and accuracy of pre-
dictions. The board size used for this benchmark is 15 rows by 15 columns.

– Strassen Matrix Multiply: The Strassen matrix multiplication algorithm
was chosen to evaluate a data intensive compute-bound benchmark. The size
of the matrixes was 213.

5.1 Autofinal Heuristics

– Cost: For this heuristic, a warmup iteration was executed for every bench-
mark. That is, a whole execution of the benchmark was performed to fill
histograms with timing information. By doing this, in the second iteration,
even the first tasks to be executed will be compared against a prediction. This
heuristic covers the scenario of having previous timing information of tasks.

– Hybrid: This heuristic cuts recursive depth early to avoid fine-grained tasks.
Once the histograms are filled with timing information, this heuristic aban-
dons the first technique and continues by using the cost heuristic. Hence why
this heuristic is named hybrid. This heuristic covers the scenario of not having
previous timing information of tasks.

5.2 System Configuration

Benchmark results were obtained on four different architectures in order to test
variability of performance in different architectures and configurations. Results
were always obtained in a single node using all the available CPUs in the node.
Next is a list of all the machines used and the number of cores used in each.

– MinoTauro: Contains a cluster with 39 R421-E4 Servers, each with 2 Intel
Xeon E5-2630v3 (Haswell) 8-core processors, each @ 2.4 GHz. 16 cores were
used.
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– ThunderX: Contains 4 Nodes each equipped with 2 Cavium ThunderX sock-
ets, each of them with 48 ARMv8-A cores, each @ 1.8 GHz. 96 cores were
used.

– KNL: Each KNL machine contains an Intel Xeon Phi socket @ 1.40 GHz,
with 68 cores in each socket and 4 threads per core. 68 cores were used with
1 thread per core.

– Power8: Contains 2 Machines with 2 sockets Power8 10C @ 3.49 GHz,
8 threads each core. 20 cores were used.

5.3 Performance Results

The obtained measurements demonstrate how a statically chosen granularity for
one architecture does not perform well on others and how Autofinal improves
this situation. For each benchmark, the best granularity was manually found
on four different architectures. After that, the benchmarks were ran in every
machine with the best granularities of all four machines and with autofinal with
two different heuristics.

Figure 5 shows the results. It contains four plots, from top to bottom:
Fibonacci, Mergesort, NQueens & Strassen. The horizontal axis corresponds
to the execution of a host, and each host has six measurements. The first 4
correspond to the best granularity of the benchmark in each host, and the last
two correspond to autofinal executions with two different heuristics. These are
explained in Sect. 5.1.

The first plot then, contains the comparison of the Fibonacci benchmark. In
the horizontal axis are the hosts where the benchmark is ran. That means that
the very first six bars in the plot correspond, from left to right to:

1. Executing Fibonacci on MinoTauro with MinoTauro’s optimal granularity.
Hence why the speedup is 1.

2. Executing Fibonacci on MinoTauro with ThunderX’s optimal granularity.
3. Executing Fibonacci on MinoTauro with KNL’s optimal granularity.
4. Executing Fibonacci on MinoTauro with Power8’s optimal granularity.
5. Executing Fibonacci on MinoTauro with Autofinal’s cost heuristic.
6. Executing Fibonacci on MinoTauro with Autofinal’s hybrid heuristic.

Sometimes, statically choosing a granularity for a certain architecture causes
a dramatic decrease on performance on every other. This is highly visible when
executing Fibonacci in the ThunderX system with KNL’s optimal granularity. In
this scenario, it barely achieves 20% of the performance of the optimal granular-
ity. Autofinal however, achieves at least 90% of ThunderX’s optimal performance.
Another scenario, but not the last, is when executing Strassen in the KNL system
with Power8’s optimal granularity. The performance obtained is around 68% of the
performance of the optimal granularity, while Autofinal achieves more than 90%.

The cost heuristic is used with a previous warmup iteration of the applica-
tion and therefore can make timing predictions from the start of the execution.
These plots also exposed that the cost heuristic behaves better than the hybrid
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Fig. 5. Performance comparison of heuristics vs. optimal granularities.
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heuristic because the cost heuristic is fed on a warmed up environment. It relies
on previous timing information. The loss of performance of the hybrid heuristic
due to not having previous timing information is at most 20%, while the penalty
for using a granularity from another architecture can be as high as 90%.

Autofinal then, achieves competitive performance regardless of the architec-
ture and benchmark where it is tested. Results show that it achieves at least
75% of the optimal performance in every scenario and that using granularities
from other architectures can lead to only obtaining around 20% of the optimal
performance.

Results also show that in some cases, Autofinal is able to find an even better
granularity than the apparently optimal one. This is possible because it does not
just set a fixed granularity. Instead, it decides at execution time whether a task
should be final. Hence, in some cases it chooses a mix of granularities. This is
visible when executing Mergesort on the KNL system or the MinoTauro system,
with any Autofinal heuristic. The results indicate that the optimal granularity
is a mixture of tasks with final granularity 107 and 106.

Figure 6 shows the performance of Autofinal against manually tuning the
granularity of tasks for the NQueens Benchmark with the final clause. This
comparison is done by executing NQueens with different input sizes in order to
test Autofinal’s adaptiveness to an application’s settings. As shown, the optimal
granularity often comes linked to the input size of the application and Auto-
final is able to adapt to these settings. For completeness, this section includes
Figs. 7 and 8. These show the speedup obtained by executing the previous bench-
marks with Autofinal versus executing them with a wide range of manual cut-off

Fig. 6. Autofinal vs. manual tuning for the NQueens benchmark with different input
sizes
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Fig. 7. Autofinal vs. manual tuning for Fibonacci (Top), Mergesort (Middle) &
NQueens (Bottom)
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Fig. 8. Autofinal vs. manual tuning for the Strassen benchmark

depths. Each series corresponds to an architecture and the speedup is computed
comparing Autofinal’s cost heuristic’s performance against each cutoff step’s
performance. These plots show which are the appropriate granularities for each
benchmark in each architecture as well, and how Autofinal performs against
these. The best granularity for each benchmark then was chosen to plot the
performances seen in Fig. 5.

For the Fibonacci plot, each cutoff corresponds to the index number of the
sequence at which recursive depth is cut with the final clause. The Mergesort
plot’s cutoffs correspond to the array chunk size at which recursive depth is
cut. For the NQueens benchmark, the cutoff corresponds to the board’s column
index. Lastly, for the Strassen benchmark, the cutoff chosen is the matrix block
size at which recursive depth is cut.

6 Conclusion and Future Work

This paper presented how automatically detecting optimal granularity cutoffs
can be integrated into a task parallel programming model. Furthermore, it
showed which runtime features, as well as language support, are needed to allow
using Autofinal. Having specific information about the computation of tasks
allows making precise predictions as well as offering a general solution to auto-
matically find well performing granularities for applications. The evaluations
show that making the runtime aware of the computational weight of tasks and
monitoring them allows to predict with precision task execution times and hence
to find granularities that adapt to the architecture and the runtime environment.



182 A. Navarro et al.

The Autofinal technique raised interest in exploring its behavior with proces-
sors that allow dynamic frequencies. With that in mind, it would also be inter-
esting to compare static granularities against the usage of Autofinal in the afore-
mentioned processors.

The introduction of the cost clause in the language also provides specific met-
rics to create new capabilities on the runtime library, like cost based scheduling
policies. This raised interest in using the cost clause with the taskloop construct.
The idea relies on having extra information about the computational weight of
iterations from a taskloop in order to better balance and schedule the workload.
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Abstract. This research considers the productivity, portability, and
performance offered by the OpenMP parallel programming model, from
the perspective of scientific applications. We discuss important con-
siderations for scientific application developers tackling large software
projects with OpenMP, including straightforward code mechanisms to
improve productivity and portability. Performance results are presented
across multiple modern HPC devices, including Intel Xeon, and Xeon
Phi CPUs, POWER8 CPUs, and NVIDIA GPUs. The results are col-
lected for three exemplar applications: hydrodynamics, heat conduction
and neutral particle transport, using modern compilers with OpenMP
support. The results show that while current OpenMP implementations
are able to achieve good performance on the breadth of modern hardware
for memory bandwidth bound applications, our memory latency bound
application performs less consistently.

Keywords: OpenMP-4 · High-performance-computing · Mini-apps

1 Introduction

The diversification of modern architecture has lead to increasing demand for
parallel programming models that improve the productivity and future porta-
bility of large scientific applications. An implicit expectation is that parallel
programming models will provide the features that are necessary to achieve near
optimal performance, with some understanding that there is a trade-off between
improved productivity and portability, and absolute performance.

OpenMP provides an extensive feature set that allows application developers
to tune their applications for performance, while providing an intuitive interface
that enables relatively un-intrusive parallelisation of applications. The perfor-
mance achieved in practice is dependent not only on the features provided by
the specification, and the developer’s use of those features, but by the imple-
mentation provided by the compiler vendors.
c© Springer International Publishing AG 2017
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It is essential that both computer scientists and domain scientists are able
to effectively explore the potential programming environments without the con-
straints of porting large scientific applications. Mini-apps are widely accepted as
a powerful tool for evaluating the performance of parallel programming models,
but it is essential that a broad range of performance profiles are assessed to
observe the edge cases of performance exposed by production applications [1].

In this research we will be using a suite of mini-apps that fall under the
arch project1, developed at the University of Bristol. Each of the mini-apps
has been developed to provide research tools for computer scientists to support
applications scientists in porting real codes. Although an understanding of the
core Physics of each package is not required in this paper, we will discuss the
performance profile of each application as we present results.

2 Contributions

It is expected that the results of this research will be of use to domain scientists
and application architects looking to determine if OpenMP is a good fit for
their project, and may offer support to developers already using OpenMP for
their software projects. Through evaluating a range of proxy applications on
cutting edge hardware, we provide insights into the differences between available
OpenMP implementations that can feed into future optimisation.

This research specifically contributes the following:

– Specific code suggestions for improving productivity and portability of large
scientific applications, based on real porting experience.

– A discussion of limitations of the specification, and important differences
between OpenMP implementations.

– An extensive performance analysis of OpenMP 4 ports of three distinct appli-
cation classes: explicit hydrodynamics, sparse linear algebra, and Monte Carlo
neutral particle transport, on modern HPC hardware: Intel Xeon and Xeon
Phi CPUs, IBM POWER8 CPUs, and NVIDIA K20X and P100 GPUs.

3 Productivity

The authors have encountered issues with productivity that we expect will be
encountered by developers using OpenMP 4 for non-trivial applications.

3.1 Structured and Unstructured Data Regions

Maintaining data resident on a device is generally one of the most important
considerations for offloading to accelerators. We previously discussed the dif-
ficulties that are encountered when attempting to copy data to and from the
device using the structured target enter data directive [2].

1 https://github.com/uob-hpc/arch.

https://github.com/uob-hpc/arch
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Listing 1.1. OpenMP 4.0 approach to copying data for an application.

double* density0 = (double*)malloc(sizeof(double)*nx);

#pragma omp target enter data map(to: density0[:nx])
{

for(int tt = 0; tt < ntimesteps; ++tt) {
// Do work

}
}

With OpenMP 4.0, the initial copying of resident data into the device data
environment would be approached as shown in Listing 1.1. When the number of
arrays increases, this approach becomes less readable and maintainable. As the
structured data regions only operate upon a structured block, the application
structure will be limited if developers want to avoid redundant data movement.

Listing 1.2. OpenMP 4.5 approach to copying data for an application.

void allocate_data(double** array, size_t len) {
(*array) = (double*)malloc(sizeof(double)*len);

double* local_arr = *array;
#pragma omp target enter data map(to: local_arr[:len])

}

allocate_data(&density, nx);

for(int tt = 0; tt < ntimesteps; ++tt) {
// Do work

}

The unstructured data mapping introduced in OpenMP 4.5 allowed us to
combine the allocation and mapping into a method, as seen in Listing 1.2. This
significantly reduced the code duplication, and improved the productivity of our
porting efforts by abstracting OpenMP data allocations from the core of the
codes. Another benefit is that when arrays were resized during development it
was only necessary to propagate the change to a single location.

3.2 Copying Members of Structures

The OpenMP specification does not handle the copying of pointer members
of a structure into the device data environment. In many codes, pointer data is
exclusively passed around in structures, and developers generally want to be able
to access that data in the manner demonstrated in Listing 1.3. Unfortunately,
the specification does not state how the pointer members of the structure should
be copied onto the device. The Cray compiler implementation of OpenMP 4
currently emits a compile-time error, whereas the Clang compiler supports the
form of Listing 1.3, in spite of the limitation in the specification.
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Listing 1.3. Mapping an array section that is a member of a structure.

#pragma omp target teams distribute parallel for \
map(some_struct.a[:len])

for(int ii = 0; ii < n; ++ii) {
some_struct.a[ii] = 0.0;

}

The consequence of this missing functionality is that codes currently attempt-
ing to achieve portability between compilers with OpenMP 4.5 will have to dese-
rialise the pointer members of structures before they are mapped, and change
all kernel accesses to reference the private variables, as seen in Listing 1.4. This
significantly limits productivity for large applications, especially where Structure
of Arrays style data structures have been adopted.

Listing 1.4. Privatising an array section that is a member of a structure and then
mapping it.

double* a = some_struct.a;
#pragma omp target teams distribute parallel for map(a[:len])
for(int ii = 0; ii < n; ++ii) {

a[ii] = 0.0;
}

All of the applications we have ported, including the mini-apps investigated
in this research, pass their pointer variables through the kernel interfaces, rather
than copying them into private variables before each kernel invocation. This app-
roach still requires a significant refactoring when porting codes, but minimises
the resulting overhead in terms of new lines of code.

3.3 Tools

Access to high quality tooling is one of the most significant influences on produc-
tivity. While porting the suite of mini-apps presented in this research, the process
was supported by the compiler vendors’ tool suite. For the CPU, tools such as
VTune and CrayPat are all compatible with OpenMP, and provide detailed
OpenMP-specific insights. The NVIDIA CUDA toolkit, which includes nvprof,
also works with the OpenMP 4 implementations discussed in this paper. Appli-
cation developers can expect this tool support to improve even further with
future releases of the OpenMP specification as a new tools interface is set to be
included in version 5.0 of the specification [3].

4 Portability

OpenMP 4.5 is becoming increasingly accepted within the community, and
the implementations that can target heterogeneous architectures are constantly
improving. Intel, Cray Inc., IBM, and GNU, are all actively developing OpenMP
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support for the newest features of OpenMP. The thread parallelism features of
OpenMP 3.0 are mature and well supported, whereas the offloading features were
added more recently, and introduced new challenges to implement in a compiler.

4.1 OpenMP Compilers

There are many OpenMP compilers available, and we discuss and evaluate a
cross section of the most popular.

The Intel Compilers provided the first vendor-supported OpenMP 4 imple-
mentation, targeting the Intel Xeon Phi Knights Corner architecture, but Intel
has since moved away from the offloading models for their future architectures.
In spite of this, Intel’s OpenMP 4.5 compliant compiler (version 17.0+) can be
used to target the Intel Xeon and Intel Xeon Phi processors.

The Cray Compilers provided the first vendor-supported implementation
of OpenMP 4 that allowed developers to target NVIDIA GPUs. Cray subse-
quently ceased development of their OpenACC implementation, suggesting that
they see OpenMP as the future parallel programming model for targeting their
heterogeneous supercomputers. The Cray compiler (version 8.5.7) is not yet
OpenMP 4.5 compliant, although it is fully OpenMP 4.0 compliant and sup-
ports a number of OpenMP 4.5 features.

The Clang/LLVM Compiler Infrastructure was recently forked to
develop OpenMP 4.5 support for targeting NVIDIA GPUs by IBM Research.
The fork of the compiler2 is now OpenMP 4.5 compliant, and the support is
being actively patched into the main trunk of the Clang front-end [4]. Although
the implementation was developed from the perspective of running on the
POWER8/POWER9 and NVIDIA GPU nodes, such as those being installed in
Sierra and Summit [5], the compiler will also allow users to compile for NVIDIA
GPUs hosted on X86 platforms. One limitation for scientific application devel-
opers is that Clang is a C/C++ front-end for LLVM. A team at the Portland
Group are currently implementing an open source Fortran front-end, codenamed
Flang, which will eventually support OpenMP 4.5.

The PGI Compilers do not yet support any OpenMP 4.0 features, but
provide full support for OpenMP 3.0. The compilers support an alternative to
OpenMP, OpenACC, which is similar except for some additional features and
limitations, but allows users to offload to both CPUs and GPUs.

The XL Compilers are a closed-source compiler suite developed by IBM,
and deployed with the POWER architecture, that will support OpenMP 4.5 in
time for the installation of the Summit and Sierra supercomputers. The Clang
effort for targeting NVIDIA GPUs is more advanced at this stage, and the
research is being fed directly into XL. A subset of OpenMP 4.5 features are
supported in the version 13.1.5, which we had access to, however support was
not available for the reduction clause on target regions, or atomic opera-
tions, making it impossible to collect results for XL targeting NVIDIA GPUs in
this research.

2 https://github.com/clang-ykt.

https://github.com/clang-ykt
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The GNU Compiler Collection has officially supported OpenMP 4
offloading since version 5.0, but feature-rich implementations that target spe-
cific architecture such as GPUs are still not available. Offloading support exists
for AMD GPUs via HSA, but the support is limited to a single combined con-
struct with no clauses. The compiler is capable of targeting Intel Xeon Phi
KNLs with OpenMP 4.5, and GNU are currently working on an OpenMP 4.5
implementation that can target NVIDIA GPUs, as mentioned in the in progress
documentation for GCC 7.1.

4.2 Homogeneous Directives

We have previously shown that it is not yet possible to write a single homoge-
neous line of directives to achieve performance portability with OpenMP [2,6].
Standardisation of the compiler implementations is important for future perfor-
mance portability, for instance, the newest Clang implementation automatically
chooses optimal team and thread counts, so that the developer does not have to
list architecture-specific values. This is one of many issues with standardisation:

– The impact of the simd directive will vary significantly between architectures.
For instance, on CPUs it will generally command the compiler to generate
SIMD instructions, whereas on the GPU it might tell the compiler to spread
the iterations of a loop across the threads in a team.

– Setting a thread limit and num teams for one architecture means you
cannot choose the default compiler behaviour for other architectures.

– As seen with the porting exercises, there can be significant performance impli-
cations when using the collapse statement on different architecture.

Achieving performance portability with a single codebase requires the pre-
processor, or abstractions above OpenMP. We are hopeful that future versions
of the specification will introduce conditional capabilities to make it possible for
developers to write a homogeneous set of directives at the loop-level.

4.3 OpenMP 4.0 to OpenMP 4.5

The authors of this paper strongly believe that OpenMP implementations need
to support some key features of version 4.5 to avoid future portability issues.
Having ported scientific codes to use OpenMP 4.0 and OpenMP 4.5, we have
come across some compatibility issues between the versions. Developers who are
using compilers that target OpenMP 4.0 compliant implementations should be
aware that these pitfalls can lead to subtle bugs caused by implicit behaviour.

In OpenMP 4.0, the default copying behaviour of scalar variables was to copy
them to and from the device, when entering and leaving a target region. This
implicit behaviour was as if the map(tofrom:scalar-variable) clause had
been included on the target region. In OpenMP 4.5 the default behaviour is that
variables are declared firstprivate, and so the scalar variable will not be
copied back from the device. Developers who have written their applications to
rely upon the scalar variables being returned at the end of the target region
will encounter potentially difficult to diagnose application bugs.
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5 Mini-app Studies

No algorithmic changes are present between versions of the mini-apps, which
ensures that they resolve to within tolerance of a single result having executed
the same computational workload, regardless of the OpenMP implementation
or target device. The purpose of this section is not to compare the different
architectures or the algorithms, for which discussions can be found in other
literature [2]. This section is instead intended to consider the differences in
performance achieved by the different OpenMP compilers targeting the same
architecture. Developers familiar with OpenMP may expect there to be minor
variations between compiler implementations, but we aim to expose some cases
where more significant variance can be observed.

5.1 HPC Devices

The performance evaluation in this paper considers five modern HPC devices,
which feature, or will feature, in some of the largest supercomputers in the world.

Where possible, we compare OpenMP to optimised MPI and CUDA ports
of the mini-apps, allowing an objective assessment of the performance of the
OpenMP implementations compared to the best performance achievable. Sub-
sequent performance evaluation is conducted with the compilers in Table 1.

5.2 Hot and Flow

The flow mini-app3 is a 2d structured Lagrangian-Eulerian hydrodynamics
code, that explicitly solves the Euler equations using a chain of threaded kernels
executed across the computational mesh. The application contains little branch-
ing, and a minor load imbalance with the artificial viscous terms, but this does

Table 1. The HPC devices used in this performance evaluation, where Intel Xeon
Broadwell means dual socketed 22 core CPUs, POWER8 means dual socketed 10 core
CPUs, and Mem BW is the maximum benchmarked memory bandwidth [7]. The clang-
ykt compiler was built with all commits up to date 30th May 2017.

Device name Mem BW Compiler

Intel Xeon Broadwell
E5-2699 v4

120 GB/s ICC 17.0.2, GCC 6.1.0, PGI 17.3.0, CCE 8.5.7

NVIDIA K20X 180 GB/s CUDA 8.0 + GCC 4.9.3, CCE 8.5.7, clang-ykt

IBM POWER8 298 GB/s XL 13.1.5, GCC 6.1.0, PGI 17.3.0

Intel Xeon Phi Knights
Landing 7210

440 GB/s ICC 17.0.2, GCC 6.1.0

NVIDIA P100 500 GB/s CUDA 8.0 + GCC 4.9.3, CCE 8.5.7, clang-ykt

3 https://github.com/uob-hpc/flow.

https://github.com/uob-hpc/flow
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not generally affect performance. Due to the low computational intensity and
regular mesh access, flow is memory bandwidth bound.

The hot mini-app4 is a 2d heat diffusion code, that uses the Conjugate
Gradient method to implicitly solve the sparse linear system. The application is
memory bandwidth bound, and comprised of short linear algebra kernels, includ-
ing a sparse matrix-vector multiplication and several reductions. The kernels are
highly data parallel, with low register usage and no branching.

Both applications are optimised to achieve roughly 70–80% of achievable
memory bandwidth in the best case on the target architecture.

Porting: Both applications are comprised of multiple simple kernels, and
parallelisation of those kernels was achieved with #pragma omp parallel
for, or #pragma omp target teams distribute parallel for for
offloading. Data allocations are handled by the arch project’s data alloca-
tion wrappers, so a simple overload of the wrappers for OpenMP 4 meant data
could be mapped into the device data environment at allocation, as described
in Sect. 3.1. The reduction clause was required in both applications, and,
due to the specification implicitly mapping the scalar reduction variable as
firstprivate, it was necessary to explicitly map the reduction variable as
tofrom to copy the results back from the device. Also, vectorisation was forced
on the CPUs and KNL using the #pragma omp simd clause on the inner loops.

A major limitation with the current specification is that it was not yet pos-
sible to express CPU and GPU parallelism at the same time for our mini-apps,
meaning that multiple instances of the directives were required, as discussed in
Sect. 4.2. For the GPU ports, we noted that using collapse on the outer loops
of the applications’ kernels resulted in significantly reduced performance when
compiling with CCE, for instance hot’s runtime worsened from 44 s to 49 s on
the P100. This is due to the way that CCE maps the iteration space to the
GPU’s threads, but serves as a case where the collapse clause can have unex-
pected negative influences on performance. The effort to port both applications
was minimal, and amounted to roughly two additional lines of code per kernel.

Problem Specification: The mesh size for both applications is 40002, a large
but realistic mesh size, and each application starts with a timestep of 1.0×10−2s
for the two test cases. The hot test case sets up a high density, high temperature
region next to a low density, low temperature region. The flow test case sets up
a two-dimensional interpretation of the sod shock problem, where an immobile
square of high density, high energy fluid is surrounded by low density material.

Intel CPU and KNL Results: The Intel Xeon Broadwell (BW) results in
Figs. 1 and 2 were highly consistent between compilers. Intel and flat MPI per-
formed the best, and the largest performance difference was seen with GCC,
which required 1.03x the runtime compared to the Intel compiler.
4 https://github.com/uob-hpc/hot.

https://github.com/uob-hpc/hot
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Fig. 1. The results of running hot on the target HPC devices. Devices are ordered
from least to greatest achievable memory bandwidth.

On the KNL, application data was placed in MCDRAM, improving the run-
time by roughly 5.0x compared to DRAM, as both applications are memory
bandwidth bound. The MPI results are shown for running 128 ranks, whereas the
OpenMP implementations performed better when using all four hyperthreads for
256 threads total. OpenMP hot experienced a 1.11x performance penalty com-
pared to flat MPI, due to improved decomposition of the problem into cache
seen with the MPI implementation. For flow, the difference was not significant.

OpenMP hot compiled with GCC suffered a 1.21x performance penalty com-
pared to Intel, while OpenMP flow compiled with GCC suffered a penalty
of 4.28x. Disabling vectorisation with the Intel compiler resulted in a runtime
equivalent to GCC, suggesting that a lack of vectorisation accounts for the per-
formance difference, in spite of the use of the simd directive.

POWER8 Results: On the POWER8 CPU we found 160 threads, or 8 Simul-
taneous Multi-Threads (SMT) per core, was optimal, and OpenMP compiled
with XL was fastest for hot, while flat MPI was fastest for flow. GCC expe-
riences a significant performance penalty of roughly 1.25x compared to XL for
both hot and flow, which is significantly more than seen with the Intel CPU.

NVIDIA GPU Results: The CUDA results included for the NVIDIA GPUs
represent an upper bound on performance for each mini-app. On the K20X, CCE
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Fig. 2. The results of running flow on the target HPC devices. Devices are ordered
from least to greatest achievable memory bandwidth.

achieved impressive performance for flow, requiring only 1.10x the runtime of
CUDA, while hot was slightly less efficient at 1.20x compared to CUDA. When
compiled with Clang, flow and hot both required 1.17x the runtime of CUDA.
The performance penalty for OpenMP compared to CUDA was at worst 1.20x,
which is an impressive result and would be tolerable for the improvements to
portability and productivity offered by the programming model.

We observed a larger performance difference on the newer P100 GPUs, with
the worst case being flow at 1.63x, but we feel that this is likely a perfor-
mance bug given the results with other combinations, and continue to investigate
the root cause. Apart from this result, the performance difference increased to
around 1.25x to 1.30x, a significantly higher variation than seen on the CPU.

5.3 Neutral

The neutral mini-app5 is a new Monte Carlo Neutral Particle Transport appli-
cation that tracks particle histories across a 2d structured mesh [8,9]. The appli-
cation has high register utilisation, and inherently suffers from load imbalance at
the intra and inter node level. The algorithm parallelises over the list of particle
histories, each of which is in principal independent. Particle histories exhibit a
dependency on the computational mesh, to store tallies of the energy deposited

5 https://github.com/uob-hpc/neutral.

https://github.com/uob-hpc/neutral
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throughout the space, which means the application suffers from random memory
access and sensitivity to memory latency. At this stage in the mini-app’s devel-
opment, there is not an optimal MPI implementation, and so results for MPI
are excluded.

Porting: Given that there is a single computational kernel, the porting process
was straightforward and fast for all target architectures, following the same app-
roach as for flow and hot. The only challenge when porting the application
was that it depends upon a library, Random123 [10], for random number gener-
ation (RNG), which meant it was necessary to persuade the implementations to
compile that code correctly. A load imbalance between threads is caused by the
varying amounts of work for each history, and so we used schedule(guided)
to optimise this, generally achieving a 5–10% improvement.

When targeting NVIDIA GPUs, adding simd to the combined construct, as
#pragma omp target teams distribute parallel for simd, was essen-
tial to achieve good performance with CCE, improving the result from 211 s to 11 s
on the P100. The reason that this directive is required is that CCE relies upon the
kernel being vectorisable, and this particular kernel was so complex it needed the
simd directive as a guarantee that there were no dependencies.

Problem Specification: The test case chosen for the neutral mini-app is
the center square problem, where there is a region of high density material in the
center of a low density space. A square neutron source is placed in the bottom
left of the space, with all particles having a starting energy of 1 MeV, considering
particle histories for 10 timesteps of length 1.0 × 10−7s.

Intel CPU and KNL Results: The results shown in Fig. 3 are significantly
less consistent between the compiler vendors than seen with either flow or hot.
CCE required 1.18x the runtime of Intel and GCC required 1.98x the runtime,
on the Intel Xeon Broadwell, which is significantly less optimal than we would
have expected. The PGI compiler achieved worse than serial performance and,
through the use of the Minfo flag, we determined it was transforming the atomic
operations into critical regions. The application invokes billions of atomic
operations, and so this serialisation is highly inefficient. We tested the issue
further by removing the atomic operation, and the PGI result improved.

On the KNL we observed a 1.43x performance penalty for using GCC com-
pared to the Intel compilers. We know that vectorisation is not the cause in this
instance, and hypothesise that this is due to the way that registers are allocated
by the compilers, which we know the application is sensitive too.
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Fig. 3. The results of running neutral on the target HPC devices. Devices are ordered
from least to greatest achievable memory bandwidth.

POWER8 Results: As with the other mini-apps, we observed a significant per-
formance penalty for compiling with GCC on the POWER8, of 1.29x compared
to the XL compiler. Interestingly, the compiler has achieved a better relative
result on the POWER8 than it did on the Intel hardware when compared to the
Intel compiler. It will be important future work to understand the root cause of
this difference, and determine whether it can be easily optimised.

NVIDIA GPU Results: On the K20X, CCE suffered a 1.92x performance
penalty compared to CUDA, while Clang suffered a 2.30x performance penalty,
which is significantly less efficient than for the other mini-apps. As previously
discussed, the neutral mini-app uses a single large computational kernel that
requires many registers. When compiling CUDA for the P100, ptxas recognised
79 registers for CUDA, and when executing the OpenMP 4 code compiled with
Clang, nvprof showed that 224 registers were used during the execution of the
main computational kernel. This means that CUDA was 2.9x more efficient
allocating registers, which is a considerable difference that we expect would be
even worse for production applications with extensive Physics capabilities.

We could see that the occupancy achieved by CUDA was on average 37%,
which is an acceptable level when targeting the P100 with this application. When
compiled with Clang, the occupancy drops to 12%, demonstrating that CUDA is
achieving 3.08x the occupancy on the P100, which likely explains the majority of
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the 3.19x difference in overall runtime. The best performance that we achieved
with Clang was with the number of registers restricted to 128 for both GPUs,
which was the default behaviour for CCE.

5.4 Performance Discussion

The productivity and portability of OpenMP were highly consistent between
the mini-apps, however, the performance was not. By far the most consistent
was hot, which is intuitive as it is the simplest application, and hides many
implementation inefficiencies behind long streaming data accesses. The flow
mini-app exposed increased complexity, which meant that there was greater
variation in the performance between the implementations. Also, it demonstrated
that if you are not able to achieve vectorisation on the KNL, you may encounter
significant performance issues, and the standard techniques failed for GCC in
this case. The CCE and Clang compilers achieved impressive consistency for
both applications on the NVIDIA GPUs, and we expect maturity to improve
this even further in the future.

Although neutral has fewer kernels than the other two mini-apps, that
kernel is long and complex, and the implementations performed significantly less
consistently as a consequence. All architectures suffered from high variations in
performance, and some did not emit hardware atomics correctly. On the GPU the
primary issue was register pressure, which is actually quite a positive outcome,
as we feel that this issue should be resolvable in the long term, and we expect
that the implementations will be able to deliver significantly better performance
relative to CUDA in the near future.

6 Future Work

It will be important to continue this research in the future to include new
OpenMP 4 compilers, as well as tracking improvements to the existing implemen-
tations. As the arch project expands it will be insightful to extend the research
to consider diverse applications, for instance stressing the task parallel features
of the specification.

7 Related Work

An annual hackathon event for the improvement of OpenMP is hosted by IBM,
where a live porting exercise is performed involving multiple US labs [11]. As
an outcome of the 2015 hackathon, Karlin et al. [12] ported the applications
Kripke, Cardioid, and LULESH to OpenMP, demonstrating some issues with
the interoperability with some features of C++, and achieving performance with
LULESH within 10% of an equivalent CUDA port.
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There are many examples of studies that have looked at performance, porta-
bility and productivity of OpenMP with one or more applications [2,13–16],
generally demonstrating that OpenMP is capable of highly productive applica-
tion porting and high performance tuning. Other important studies have looked
at the differences between OpenMP and other parallel programming models
[6,17]. Lopez et al. [18], for instance, explored the ability for OpenMP 4.5 and
OpenACC to achieve performance portability, and demonstrated success with
multiple test cases, showing only minor performance differences between the
two directive-based models.

8 Conclusion

The OpenMP specification has been designed to provide performance and porta-
bility, with some productivity enhancements compared to other models. Through
this research we have discovered that performance and portability are certainly
possible to an extent, but some aspects are limited by the specification and dif-
ferences between compiler implementations. For instance, there have been few
improvements to the standardisation of compiler implementations, which contin-
ues to preclude the writing of a single homogeneous directive to target multiple
heterogeneous devices.

While porting a number of applications, we found that coupling data alloca-
tion with moving data onto the device reduces the amount of duplicate code, and
ensures that data sizes are kept consistent, reducing bugs and increasing produc-
tivity. Also, relying on the implicit behaviour of OpenMP 4.0 for mapping scalar
variables into a target region, as map(tofrom: scalar-variable), can
result in bugs when moving to OpenMP 4.5 compliant compilers.

Application developers who are used to the consistent performance deliv-
ered by the mature OpenMP implementations targeting CPU need to be aware
that the implementations targeting other architectures are less mature. We even
demonstrated that performance on the IBM POWER8 CPU is not necessarily
consistent between implementations, likely due to maturity as well. This does not
mean that the specification is not capable of enabling high performance on those
architectures, but that the compiler implementations need time to improve.

The performance results we observed on modern HPC devices showed that,
for applications with memory bandwidth bound kernels, OpenMP could gener-
ally achieve within 20–30% of the best possible performance. For the latency-
bound application, the overheads introduced by the OpenMP implementations
had a significant impact when offloading, and more variance was seen between
compilers. Register pressure posed a significant issue for the neutral mini-
app, which is something we expected from previous research efforts. It is not yet
clear how to resolve the register issues, but it will be an important step towards
achieving optimal OpenMP implementations.
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Abstract. The evolution of parallel architectures towards machines
with many-core processors and high node-level concurrency is putting an
end to the pure-MPI programming model. Simulations codes must expose
multiple levels of parallelisms inside and between nodes, combining dif-
ferent programming models (e.g., MPI+X), to productively use current
and future supercomputers. MPI+OpenMP is a common hybridization
approach. However, recent evolutions in the OpenMP standard presents
options for how OpenMP tasking constructs might be used when mix-
ing fine-grained computation and communications. Various approaches
are discussed and compared in this context. Advantages and limita-
tions of the approaches are detailed, including potential improvements
to OpenMP in order ease both the integration and progress of MPI calls.
These methods are applied to a representative stencil code and demon-
strate improvements on the overall execution time as a result of more
efficient mixing of MPI and OpenMP.

1 Introduction

Parallel scientific applications are designed to take advantage of the resources
they are provided for execution. When considering current architectures, the
optimization spectrum is wide, ranging from vectorization at a core level to
distributed operations involving millions of cores. The present rise of many-core
processors is shaping the spectrum further with greater node-level concurrency,
resulting in less memory per thread of execution. Whereas a pure MPI model [5]
has been adequate before, memory replication within a node and communication
overhead across many threads is becoming problematic. Hybrid programming
methods that combine a shared-memory model with a distributed-memory one
are has now a compulsory avenue when it comes to writing efficient parallel
code. When considering MPI+X hybridization, X = OpenMP has become the
de-facto standard. In hybridizing legacy codes, it is most often the case that
OpenMP is applied at loop level for intra-node parallelism [6], with MPI for
c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 203–216, 2017.
DOI: 10.1007/978-3-319-65578-9 14
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inter-node communication. However, by separating MPI and OpenMP phases,
parallelism is essentially bulk-synchronous, alternating between communication
and computation phases. In such a model, communications are done by a single
thread, creating a loss of parallelism combined with extra fork-join overheads.
Thus, despite being a practical approach, secluding MPI and OpenMP from each
other will expose performance factors that eventually prevent the program from
scaling.

We propose to rethink MPI+X hybridization with respect to their runtime
requirements and flexibility for closer mixing of models. In particular, we are
interested in how a program written with MPI+X in mind can express fine-
grained parallelism and communication through OpenMP. Given the new fea-
tures introduced in the OpenMP standard for programs to invoke MPI func-
tions inside parallel regions, the opportunity is there for mitigating the bulk-
synchronous nature of most MPI+OpenMP applications. Our work focuses on
OpenMP tasks and presents an approach for hybrid tasking patterns that can
be more performant. In this process, we observe some limitations in existing
OpenMP runtimes and propose extensions to OpenMP oriented towards run-
time stacking.

By considering a task-based model, the expression of both MPI and com-
putation phases is more natural. Iterations are seen as a directed graph mixing
MPI and compute tasks. Tasks are vertexes in the graphs and edges represent
dependencies between tasks. This leads to the expression of an MPI+OpenMP
program as a Directed Acyclic Graph (DAG). One benefit of a DAG represen-
tation is that finer-grained parallelism is more exposed, as are the dependencies
and critical paths that constrain performance.

To demonstrate our approach, we focus on the critical path arising in DAGs
representing stencil-based computations, including spatial dependencies. In par-
ticular, our goal is to reduce the coupling arising from communications between
distributed memory regions, by identifying as soon as possible those parts of the
computation where dependencies were satisfied. In this formalism, MPI tasks
are the one leading to the highest parallel overhead, possibly delaying compu-
tation. From this starting point, it is shown how tasking patterns can mitigate
communication impact, giving a higher priority to MPI tasks and splitting com-
putational border into multiple regions – eventually moving communications
inside the parallel region.

In the rest of the paper, we first describe task support in the context of
OpenMP runtimes and discuss how it is beneficial to the expression of hybrid
computation. After exploring various alternatives, we present an approach lever-
aging OpenMP tasks with dependencies to mix MPI and computation. The
approach is validated using the stencil benchmark, demonstrating the impact of
communication progress on the overlaps. We then present potentials improve-
ments to the OpenMP standard for model mixing when applying the tasking
model. Other research have contributed to our ideas and we give an overview of
this related work. The paper concludes with future prospects to pursue.
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2 OpenMP Tasking

OpenMP’s origins began with loop-level parallelization, but over time an increas-
ing variety of parallel constructs have been proposed for adoption in the OpenMP
standard. One of the main drawbacks of parallel execution only in loops is that
it breaks the program (within a node) into sequential and parallel regions. There
is also the fact that not all loops are easily parallelized. Some may have com-
plex dependencies and others may rely on external sequential (not thread-safe)
libraries. Or it might simply be that time has not be taken to rewrite the loop
code properly to enable parallel execution. In any case, limiting parallelism
to just loop regions can constrain the performance gain in an OpenMP pro-
gram. The well-known Amdahl Law states that the sequential part of a parallel
code will bound its strong scaling speedup. For example, if 20% of the time an
OpenMP program executes in a sequential region, maximum speedup is 5, even
under the assumption of 100% efficiency in parallel loop execution. Thus, it is
crucial to consider how OpenMP can express parallelism beyond loops.

To this end, the concept of tasks is being considered by parallel programmers
to improve the scalability of their applications. OpenMP did not provide task
until Version 3. At this point, task and taskwait are defined and the barrier is
a scheduling point for tied tasks. OpenMP v4 introduced taskgroups to allows
more abstraction and hierarchy, with depend being used to express dependencies
and explicit scheduling points for untied tasks removed. The latest version of the
OpenMP standard (v4.5) adopted taskloop and priorities. With these tasks
constructs and their functional and runtime support, OpenMP now provides a
way of defining parallel execution at a fine-grained level.

OpenMP tasking will notably enhance the opportunities for shared-memory
parallelism and efficiency. Consequently, tasking capabilities also afford us a
path to develop hybrid (MPI+OpenMP) codes with better performance than
previously obtained.

3 Hybrid Alternatives

When mixing MPI and OpenMP one crucial aspect is how runtimes are going
to interoperate. Because the MPI runtime is managing communications, it is by
definition not performing computational work. While MPI asynchronous com-
munication allows for the overlap of communication and computation, a main
interest of hybridization is to enable node-level parallelism in a manner whereby
the OpenMP runtime more efficiently interfaces with communication operations.
To better describe our approach, we present three different MPI scenarios and
reason about the performance costs involved.

In this Section we consider the MPI Irecv and MPI Isend calls. These func-
tions allow for the posting of an asynchronous message. Both functions create an
MPI Request which can be used to either wait for the communication comple-
tion with MPI Wait or test for its completion with MPI Test. Using these calls, it
is therefore possible to recover communications with computation, reducing the
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overall communication cost. This mechanism is similar to task usage in OpenMP.
Tasks can be delayed and the user can use synchronization (taskgroup/taskwait)
to ensure their completion.

The first scenario (IW ) is where an MPI process does an asynchronous receive
(MPI Irecv) and immediately waits (using MPI Wait) for it to be satisfied. The
second scenario (ITCW ) is where an MPI process does an MPI Irecv immedi-
ately followed by the execution of an OpenMP parallel region. One thread of
the parallel region checks for the receive to be satisfied (using MPI Test), while
the others do some minor computation followed by a wait at the end. The third
scenario (ICW ) is the same as the first except MPI Irecv is immediately fol-
lowed by 500 µs computation before waiting. In this last case, we made sure
that the overall computing had the same duration than in the second case – to
allow direct comparison.

Figure 1 shows results from measuring the time spent in MPI Wait in the
three different MPI scenarios. The communication duration is the time from
when MPI Irecv is called to when MPI Wait returns (or MPI Test returns true).
In our case, we focus on MPI Wait time in order to measure the time needed
to complete an MPI call relatively to the associated asynchronism construction.
If we consider the scenarios run on a single node where MPI is using shared
memory, it is clear that if MPI Test is not called, the MPI runtime is less efficient
for some reason. Not directly waiting is worse for small messages, due likely to

Fig. 1. Comparing our progress scenarios on the receiver side when running over both
a shared memory segment and an Infiniband network (averaged 1000 times).
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the extra 500 µs processing, and comparable for larger ones. Of course, these
results are highly dependent on the underlying network. Maybe the results are
an anomaly of running in MPI shared memory. However, if we repeated the
experiments using InfiniBand in an dual-node configuration, the same pattern
appears in Fig. 1(c).

MPI runtimes have to make a decision about how to implement waiting for
asynchronous communication. The tradeoff has to do with how much overhead
is spent in checking for communication completion, versus latency between when
the communication actually completed and when it was detected by the MPI
runtime. In other words, it is a decision about how to implement progress in the
MPI runtime. What is seen in the graphs is the result of progress latency for the
IW and ICW cases. In the case of ITCW, the MPI Test acts like an immediate
progress step. It should be able to take advantage of the overlap and that is
what is observed.

The ramifications of these experiments is that progress is needed to achieve
good performance in a heterogeneous computation context. More specifically,
testing MPI requests is important for communication progress, but it pushes the
responsibility for progress to the computational runtime (i.e., OpenMP), which
must fill up the asynchronous periods as much as possible with work to get high
performance.

How can we do this with OpenMP? Suppose we progressively insert MPI calls
inside the parallel region, this while accounting for the requirement of progressing
the MPI runtime. Our idea is to do this with our tasking patterns, iteratively
increasing the functionality they offer. The extension of the OpenMP standard
will then allow us to submit an increasingly complete DAG of execution and thus
to prioritize more effectively the tasks carrying out MPI actions. For a working
parallel example, we consider a 1D model (say a 10e6 double array) evenly split
between MPI ranks, where each rank has a core computation and ghost cells for
communication to neighbor cells. In this case, each ghost cell might consists of
4096 doubles for each side with a periodic condition on the borders.

1 whi le ( ! finished && mpi_comm_complete != MPI_COMM_NUM ) {
f o r ( i = 0 ; i < MPI_COMM_NUM ; i++ )

3 i f ( ! Atomic_load_int ( tab_flags [ i ] ) ) {
MPI_Test ( &(tab_reqs [ i ] ) , &mpiflag , ←↩

MPI_STATUS_IGNORE ) ;
5 i f ( mpiflag && ! Atomic_cas_int ( &(tab_flag [ i ] ) , 0 , 1 ←↩

) ) {
Atomic_incr_int ( mpi_comm_complete ) ;

7 compute_ghost_associated_part (i ) ;
}

9 }
finished = compute_core_part ( ) ; // yield

11 }
Listing 1.1. MPI AWARE Select (loop splitting)
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Suppose we had to using OpenMP 2.0 and we wanted to mix MPI calls in an
OpenMP parallel region. We could do something similar to what is illustrated in
Listing 1.1. In this case, the loop computing the core computations would be sep-
arated. Then border communications would be progressed using MPI Test, and
associated border computation triggered on completion. Then if communications
have not competed yet, the core calculation can be used to recover communica-
tions. In order to extend this MPI query polling in the MPI THREAD MULTIPLE
case, we have based our selection on the basis of an atomic value table. The
calculation phase ends when all the MPI communications and the associated
actions are realized (i.e., computation of the border and MPI Isend, but also
the core part). The execution path is constrained according to MPI dependen-
cies. However, two computing functions are effectively parallelized internally at
the price of a critical section choosing the next action based on communication
completion. This reduces the potential overhead of MPI communications by con-
straining OpenMP behavior. Indeed, to be able to improve granularity, the core
compute function would have to be chunked, in order to regularly progress and
check communication dependencies. This code is, in fact, doing different kinds
of tasks, encouraging us to rely on OpenMP tasks.

1

#pragma omp p a r a l l e l
3 {

#pragma omp f o r nowait
5 f o r (i = 0 ; i < CORE_PART_NUM ; i++)

#pragma omp task
7 compute_core_part (i ) ;

9 #pragma omp s i n g l e
{

11 whi le ( mpi_comm_complete != MPI_COMM_NUM )
{

13 f o r ( i = 0 ; i < MPI_COMM_NUM ; i++ )
i f ( ! Atomic_load_int ( tab_flags [ i ] ) )

15 #pragma omp task
__progress_mpi_comm ( i ) ;

17 #pragma omp ta s ky i e l d
}

19 }
}

Listing 1.2. MPI AWARE Select (standard task)

Now, consider the use of OpenMP v3. Listing 1.2 shows multiple OpenMP
tasks being created to handle a certain number of computing cores and multiple
OpenMP tasks are dedicated to the progress of MPI communications. Moreover,
thanks to the taskyield, MPI-related tasks are at most the number of MPI
requests not completed. Dedicating a actual hardware core communications pro-
gression does not necessarily induce a penalty for the user code, especially when
considering architectures with a large number of cores such as the Intel KNL
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with 68 cores (272 hyper-threads). A hyper-thread, corresponds to 0.4% of a
KNL – a totally acceptable overhead.

As we can not modify the task scheduler, MPI progress will not be multi-
threaded or prioritized. In most OpenMP implementations, an OpenMP thread
performs its own tasks before stealing from other threads. In our scenario, steal-
ing of communication tasks will only occur when a thread will have completed
its own tasks – actually yielding the desired behavior. In this configuration
without priority, only the stealing mechanism can give us a form of priority.
For instance, when running this code, the GOMP runtime did not allow the
taskyield construct. As far as Intel OpenMP is concerned, it was not provid-
ing expected performance gains. When waiting for communication we expected
to schedule computing-related tasks. These runtime limitations required us to
explore another task approach presented below in order to correctly progress
communications.

1 #pragma omp f o r nowait
f o r (i = 0 ; i < CORE_PART_NUM ; i++)

3 #pragma omp task p r i o r i t y (1 )
compute_core_part (i ) ;

5

#pragma omp s i n g l e nowait
7 {

f o r ( i = 0 ; i < MPI_COMM_NUM ; i++ ) {
9 #pragma omp task depend ( inout : req mpi . . . ) p r i o r i t y (100)

{
11 whi le ( __mpi_request_not_match ( ) )

#pragma omp ta s ky i e l d
13 }

i f ( i > MPI_COMM_SEND_NUM ) { // RECV REQUEST

15 #pragma omp task depend ( inout : req mpi . . . ) p r i o r i t y (100)
{

17 __compute_associated_border ( i )
}

19 #pragma omp task depend ( inout : req mpi . . . ) p r i o r i t y (100)
{

21 __send_ghost_associate ( i ) ;
}

23 }
}

25 }
Listing 1.3. MPI AWARE Select (standard task)

Our initial idea was to rely on priorities and dependencies to pre-post MPI
actions. To do so, valid and computable dependencies are required at compilation
time. This leads to a problem when considering communications, a given MPI
process may have a varying neighboring (mesh corners) while these dependen-
cies have to be known at compilation time (no dynamic dependencies). In our
example, MPI Requests are static variables. Aware of taskyield limitations,
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we proposed in Listing 1.3 with OpenMP 4.x in mind. This is a version based
on single, allowing us to force a thread to poll MPI Request. We can use the
taskgroup ensures that all threads participate in the execution of the sets of
tasks, including the one testing for MPI communications. Eventually, the send
task has two dependencies, ensuring that the previous send is complete before
issuing the next.

(a) No task priority

(b) With high priority on MPI task

Fig. 2. Interest of task priority with heterogeneous task

If we consider an abstract time unit with a computing task that is worth
1 unit and an MPI task worth 6, then looking at Fig. 2 observe that the choice
of scheduling can have an impact on the total execution time. We have illustrated
the execution time of four threads with 12 computational tasks and 1 MPI task
per time step. It is recognized that a greedy algorithm favoring the task taking
the most time generally allows to reach a relevant local minimum. The developer
can not make assumption about the behavior of the OpenMP support. For this
reason, OpenMP priorities are of interest to handle such heterogeneous tasks.

4 Evaluation

With the introduction of OpenMP tasks, it begs the question of how tasks would
compete with the traditional parallel loop approach. In one respect, by avoiding
successive fork-join, tasks are able to improve the overall scheduling. Returning
to our reference benchmark, in a loop-based version, Isend/Irecv are posted, the
core part is computed, communications waited on, and then borders processed.
In the task-based version, the tasks are pushed immediately when the progress
thread completes a test. Thus, only a single parallel region with a computation
split in tasks is required.
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(a) Over MPI Processes (b) Over Ghost size (64 Processes)

Fig. 3. Comparison of our bulk-synchronous (loop parallelism) and our proposed task-
based approach over both process count and message size (fixed at 64 MPI processes).

We compared these two versions on an Intel Sandy-bridge machine up to
2048 cores. Each dual-socket node gathers 16 cores on which we ran 16 OpenMP
threads. In order to generate the results presented in Fig. 3, we ran the code for
1000 timesteps, conducted 10 experiments, and averaged the execution times.
We observe that in this first case the task approach is better than the loop one
when the number of nodes is higher than 16, this despite one core is used to
progress communications. We believe this performance difference is due to the
increasing noise in MPI messages, creating irregularities in the communication
scheme. Moreover, as the number of cores increases, the overall computation
decreases (strong scaling), due likely to increase communication jitter.

To get a sense of effective MPI overlap, we increased the ghost cell size to
increase the size of communication. We observed that MPI overlaps is almost
null with the runtime that we used on the target machine (OpenMPI 1.8.8), jus-
tifying our efforts to integrate progress inside our parallel OpenMP constructs.
Figure 3(b) shows the effects as we see performance gains with greater commu-
nications sizes, demonstrating the importance of progressing MPI messages.

5 Progress and OpenMP

MPI communication progress is a key factor in hybrid parallelism. Consequently,
in order to take advantage of asynchronous messages within an MPI+OpenMP
program, communications must be explicitly progressed through MPI runtime
calls (MPI Test, MPI Probe). Not doing so shifts most of the message completion
responsibility to the actual MPI Wait operation (at least in the configurations
we measured). This can all but eliminate any benefits in overlapped communi-
cation and communication. Our proposed remedy to overcoming this problem is
to utilize task-based constructions. However, additional constructs in OpenMP
may help solving this progress issue and more generally support better runtime
stacking.
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1 void idle ( void ∗prequest ) {
i f ( __mpi_request_match ( prequest ) ) {

3 omp_trigger ( ” ghost done ” ) ;
r e turn 0 ;

5 }
re turn 1 ;

7 }

9 #pragma omp p a r a l l e l p rog r e s s ( i d l e , &reques t )
{

11 #pragma omp noprogess
{

13 MPI_Wait ( request , MPI_STATUS_IGNORE ) ;
omp_trigger ( ” ghost done ” ) ;

15 }
#pragma omp task depends ( inout : ” ghost done ”)

17 {/∗ BORDER ∗/}
#pragma omp task

19 {/∗ CENTER ∗/}
}

Listing 1.4. Proposed implementation for a progress enabled OpenMP

In general, as presented in Listing 1.4, OpenMP could gain from a notion
of progress. Indeed, one could define what processing has to be done to satisfy
task dependencies, letting the runtime invoke the progress function to trigger
dependencies. In order to realize this idea, two things are needed. First, a progress
parameter would be included for parallel regions to define which function should
be called when the runtime is idle or switching between tasks. This should be
a function as it contains code which may not be executed if not compiled with
OpenMP support; if this function returns “0” it is not called further, if it is “1”
it continues to be called as there is work remaining. In this case, the otherwise
ignored noprogress code section is executed, replacing the non-blocking progress
calls with blocking ones.

Second, we need named dependencies between tasks. This is because we want
another runtime to satisfy a dependency which cannot be known at compilation
time as an address, for example, “ghost done”. To do so, we define omp trigger
which satisfies a named dependency. Using this simple construct, we are then
able to express in a compact manner, a communication dependency with a direct
fallback to a blocking version if OpenMP is not present. This abstraction seems
reasonable based on our experiments, and we are in the process of implementing
this feature to validate it further.

6 Related Work

Scalable, heterogeneous architectures are putting increasing pressure on the pure
MPI model [5]. Hybrid parallel programming is necessary to expose multiple
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levels of parallelism, inside and between nodes. However, in order to leverage
and mix our existing models, their runtime systems must interoperate more
efficiently.

Hybridization appeared with accelerators and programming languages such
as Cuda or OpenCL [18]. Here the host node retains its own cores and memory
for program execution, but off-loads computation and data to the accelerator
device. Accelerators such as GPUs are generally energy efficient and expose a
high level of stream oriented parallelism. One issue with their use is the need
for explicit transfers to and from the device, requiring important programming
efforts to manage data. Moreover, CPU resources might be underutilized if only
used to move data. This argues for another hybrid parallelism level. Pragma-
based models such as OpenMP target [3,4], OpenACC [20], Xkaapi [11] and
StarPU [2] proposed abstractions combining GPUs and CPUs in an efficient
manner, abstracting data-movements.

For the most part, MPI has not been integrated in shared-memory compu-
tations. Rather, an MPI process is primarily seen as a container for the shared
computation, and most programs evolved from MPI to handle new parallelism
models [6]. For these practical reasons, there were fewer efforts to embed MPI in
another model (e.g., X+MPI), versus expressing parallelism inside MPI processes
(MPI+X). The advent of many-core architectures, such as the Intel MIC [9]
and the Intel KNL enforced the use of larger shared-memory contexts, requir-
ing some form of hybridization. MPI+OPenMP is nowadays accounting for a
large number of applications, nonetheless, neither MPI or OpenMP have col-
laborative behaviors. Both of them are distinct runtimes with their respective
ABI/API. However, there are several programming models aimed at providing an
unified view of heterogeneous or distributed architectures: Coarray Fortran [17],
Charm++ [13], HPF [15], Chapel [7], Fortress [1] and X10 [8]. Several of them
rage various communication models, including message passing (MPI) and (par-
titioned) global address space ((P)GAS).

A complementary approach is based on Domain Specific Languages [10] which
is aimed at abstracting parallelism expression [12] in order to “free” codes from
programming model constraints, for example by targeting multiple models [19].
There is a wide range of such specialized languages with clear advantages, how-
ever, they transpose the dependency from a model to a dedicated language with
its own constraints [14].

Our work is close to the idea developed by Marjanovic et al. [16], they pro-
posed a set of pragma to improve the processing of non-blocking MPI communi-
cations in a multithreaded context. The use of new pragmas requires a specific
compiler and results in a loss of portability. Our initial solutions based on tasks
differs in the sense that they are only based on the use of standard OpenMP
pragmas without any hypothesis of specific executive support mechanisms.

Model mixing and unified models, in general, is a very active research area
with a wide variety of approaches. In this paper, we focused on two common
building blocks, MPI and OpenMP, trying to see how MPI could be embedded
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inside OpenMP constructs in an efficient manner. In a way, this takes a reverse
approach when most efforts tend to embed OpenMP inside MPI.

7 Conclusion

In this paper, we first introduced the need for hybridization in parallel appli-
cations. Indeed, when scaling multiple nodes gathering hundreds of cores, the
MPI+X paradigm becomes compulsory to limit both memory and communi-
cation overhead. Unfortunately, most MPI+OpenMP codes rely on alternating
phases between communication and compute. This can constrain parallel perfor-
mance due to the fork-join nature of OpenMPI parallelism and the sequentiality
of MPI phases outside of a parallel region. Instead, we explored an alternative
approach relying on tasks and how they could help to maintain MPI progress
during OpenMP parallel computation. With the latest OpenMP version, multi-
ple approaches are possible to mix MPI with OpenMP.

Our hybridization ideas essentially advocate that the program become a
Directed Acyclic Graph (DAG) to be scheduled by the OpenMP runtime. The
DAG is made of tasks that combine processing from both OpenMP (computa-
tion) and MPI (communication). However, such combination is not natural in
OpenMP, particularly when considering MPI Request handles which are gener-
ated dynamically during the execution. Indeed, OpenMP does not allow tasks
dependencies to be expressed on the fly, instead, they have to be resolvable
at compilation time. Consequently, in this paper, we propose three different
approaches to mixing OpenMP tasks and MPI despite this static dependency
resolution. Each approach is described and evaluated with a simple benchmark.
The measurements show that a task-based approach was beneficial to the over-
all execution, in particular, by allowing greater computation overlap. However,
a key issue is MPI progress. Efficient hybrid execution (MPI+OpenMP) can
only be achieved if MPI calls are regularly invoked during parallel OpenMP
computation, as our task-based examples demonstrate.

8 Future Work

In general, effective runtime inter-operation and stacking for hybrid parallel
programming requires interactions to coordinate progress. It is important to
consider then the integration of this support in programming standards. For
instance, in our study of MPI+OpenMP, if the taskyield call could be defined
as an arbitrary function, it would be possible for the OpenMP runtime to notify
the MPI runtime that it may progress communications. With this progress issue
solved, dynamic (on request addresses) or label-based dependencies would be an
alternative to the jump-table we relied on in this paper. There can be side effects
when combining two runtimes that need some additional support to resolve.



User Co-scheduling for MPI+OpenMP Applications 215

References

1. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.W., Ryu, S., Steele,
G.L., Tobin-Hochstadt, S.: The Fortress language specification. Tech. report, Sun
Microsystems, Inc., version 1.0, March 2008

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3 80

3. Ayguade, E., et al.: A proposal to extend the OpenMP tasking model for het-
erogeneous architectures. In: Müller, M.S., Supinski, B.R., Chapman, B.M. (eds.)
IWOMP 2009. LNCS, vol. 5568, pp. 154–167. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-02303-3 13

4. Bertolli, C., Antao, S.F., Eichenberger, A.E., O’Brien, K., Sura, Z., Jacob, A.C.,
Chen, T., Sallenave, O.: Coordinating GPU threads for OpenMP 4.0 in LLVM.
In: Proceedings of the 2014 LLVM Compiler Infrastructure in HPC, LLVM-
HPC 2014, pp. 12–21. IEEE Press, Piscataway (2014). http://dx.doi.org/10.1109/
LLVM-HPC.2014.10

5. Besnard, J.B., Malony, A., Shende, S., Pérache, M., Carribault, P., Jaeger, J.: An
MPI halo-cell implementation for zero-copy abstraction. In: Proceedings of the
22nd European MPI Users’ Group Meeting, EuroMPI 2015, NY, USA, pp. 3:1–3:9
(2015). http://doi.acm.org/10.1145/2802658.2802669

6. Brunst, H., Mohr, B.: Performance analysis of large-scale OpenMP and hybrid
MPI/OpenMP applications with Vampir NG. In: Mueller, M.S., Chapman, B.M.,
Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005. LNCS, vol. 4315, pp.
5–14. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68555-5 1

7. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the
Chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007).
http://dx.doi.org/10.1177/1094342007078442

8. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu,
K., von Praun, C., Sarkar, V.: X10: an object-oriented approach to
non-uniform cluster computing. SIGPLAN Not. 40(10), 519–538 (2015).
http://doi.acm.org/10.1145/1103845.1094852

9. Duran, A., Klemm, M.: The intel many integrated core architecture. In: 2012
International Conference on High Performance Computing Simulation (HPCS),
pp. 365–366, July 2012

10. Fowler, M.: Domain-Specific Languages. Pearson Education, Boston (2010)
11. Gautier, T., Lima, J.V.F., Maillard, N., Raffin, B.: XKaapi: a runtime system for

data-flow task programming on heterogeneous architectures. In: 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, pp. 1299–1308,
May 2013

12. Hamidouche, K., Falcou, J., Etiemble, D.: Hybrid bulk synchronous parallelism
library for clustered SMP architectures. In: Proceedings of the Fourth International
Workshop on High-level Parallel Programming and Applications, HLPP 2010, NY,
USA, pp. 55–62 (2010). http://doi.acm.org/10.1145/1863482.1863494

13. Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object ori-
ented system based on c++. SIGPLAN Not. 28(10), 91–108 (1993).
http://doi.acm.org/10.1145/167962.165874

http://dx.doi.org/10.1007/978-3-642-03869-3_80
http://dx.doi.org/10.1007/978-3-642-02303-3_13
http://dx.doi.org/10.1007/978-3-642-02303-3_13
http://dx.doi.org/10.1109/LLVM-HPC.2014.10
http://dx.doi.org/10.1109/LLVM-HPC.2014.10
http://doi.acm.org/10.1145/2802658.2802669
http://dx.doi.org/10.1007/978-3-540-68555-5_1
http://dx.doi.org/10.1177/1094342007078442
http://doi.acm.org/10.1145/1103845.1094852
http://doi.acm.org/10.1145/1863482.1863494
http://doi.acm.org/10.1145/167962.165874


216 A. Capra et al.

14. Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B.L., Cohen, J., Devito, Z., Haque,
R., Laney, D., Luke, E., Wang, F., Richards, D., Schulz, M., Still, C.H.: Exploring
traditional and emerging parallel programming models using a proxy application.
In: 2013 IEEE 27th International Symposium on Parallel and Distributed Process-
ing, pp. 919–932, May 2013

15. Loveman, D.B.: High performance Fortran. IEEE Parallel Distrib. Technol. Syst.
Appl. 1(1), 25–42 (1993)
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Abstract. OpenMP tasking is a very effective approach for many par-
allelization problems. In order to introduce this advanced parallelism
tool to Java community, this paper presents an implementation of Java
OpenMP tasking. In addition, by emphasizing on concurrency for event-
driven programming framework, a new virtual target concept is pro-
posed. By comparing the concepts between OpenMP tasking and vir-
tual target, it shows how virtual target is more suitable for event-driven
parallelization. To analyze event-driven parallelization performance, a
performance model is presented, and it sheds light on the performance
issues in an event-driven system. The experiment shows the effectiveness
of the new proposed virtual target tasking approach, and it enables a
more flexible performance tuning with task pool control.

1 Introduction

Task parallelism has been an important part of OpenMP programming model,
since its initial release of version 3.0 [1]. OpenMP tasking enables programmers
to handle irregular and unsymmetrical parallelism problems that the traditional
worksharing constructs could not solve. The evolution of the OpenMP specifi-
cation has provided increased flexibility and expressiveness with tasks, such as
dependency handling [6] and task-generating loops [14].

Java is consistently rated as the most popular programming language [15],
yet very few Java OpenMP implementations exist [4,5,10,16]. To further depress
the Java community, it is rare to see these Java OpenMP implementations
support the powerful aforementioned OpenMP tasking constructs. It is worth-
while exploring the potential benefits that Java can gain from a more advanced
OpenMP version with tasking.

As an object-oriented language, Java is widely used for many application
developments. Many of the applications are based on the event-driven model,
ranging from mobile apps, desktop applications to web services. In general, these
types of programs have an interactive nature, where the execution of the pro-
gram is determined by the events or requests generated at runtime. To ensure
that these applications do not freeze and remain responsive, the Event Dispatch-
ing Thread (EDT) is expected to offload heavy computations to a background
thread. Such an asynchronous execution is necessary to achieve concurrency such
c© Springer International Publishing AG 2017
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that the EDT remains active to respond to other events. Some efforts of using
OpenMP for web services have been tried. The experiences show that using
traditional OpenMP directives to parallelize web service calls is possible, but it
requires non-trivial programming efforts to achieve high level performance [2,13].

In our earlier work, we proposed a virtual target model [7] as a comple-
mentary part for OpenMP tasks to facilitate event-driven parallel programming.
Here, we verify our model through our Java implementation of OpenMP, known
as Pyjama [16]. With the OpenMP-like directives, a single-threaded Java pro-
gram is easily converted to a multi-threaded version, making the application
both parallel and asynchronous in nature. By adapting the queue theory model,
we model the parallel event-driven programming problem. By doing the exper-
iments, we discover some interesting facts about the parallelization of event-
driven programs. The contributions of this paper are as follows:

1. This work, to the best of our knowledge, is one of the two Java implementa-
tions of the OpenMP tasking concept (Another implementation is the newest
version of JaMP [10]). Furthermore, a special virtual target tasking concept
is proposed and implemented for event-driven parallelization.

2. A performance model for event-driven parallelization is proposed. In this
model, factors that influence the event-driven performance are profiled. It
gives a theoretical reference and baseline for the benchmarks.

3. The experiment demonstrates the effectiveness of using the virtual target
concept for event-driven framework. It offers more usability and flexibility
compared to the traditional OpenMP tasking concept. Its design also enables
categorizing different tasks, to be submitted to different thread pools accord-
ing to their sizes or run time, which thereby minimizes the mean event han-
dling flow time.

The structure of the paper follows: Sect. 2 gives a brief overview how our Java
version of the OpenMP tasking is implemented. Section 3 introduces the con-
cept of virtual targets, distinguishing it with OpenMP tasks. Section 4 describes
the theoretical background of parallelizing event-driven programs and a mathe-
matical model is presented to quantify the performance. Section 5 presents the
experiment performed and the results obtained. Finally, in Sect. 6 we conclude.

2 OpenMP Task for Java

This section briefly introduces our implementation of OpenMP tasking in Java.

2.1 Directive Syntax

The syntax remains faithful to the C/C++ OpenMP specification, except Java
does not support #pragma so a comment-like identifier //#omp is used instead.
The current implementation conforms to OpenMP Specification 3.0. The task
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Fig. 1. The task directive for Java.

construct defines an explicit task, and it is only active when this construct block
is within a parallel region. One noticeable remark is the clause untied is not
implemented, because the Java Virtual Machine (JVM) thread scheduling is
delegated to the operating system, and from Java’s perspective a task will always
been executed by one specific thread (Fig. 1).

2.2 Implementation

The implementation is composed of two parts. First is the source-to-source com-
piler that transforms the sequential Java source code into parallel code. Sec-
ond is the runtime support, providing the underlining thread-pool management,
scheduling, and OpenMP runtime functions.

Auxiliary Class Generation. An auxiliary class (which is an inner class of the
current compilation unit) is generated to represent the specific OpenMP con-
struct block. In general, when the compiler processes the sequential code, each
task code block is refactored into an inner class, and this inner class inherits an
abstract class called OmpTask. The abstract interface call() is implemented to
include the user code. Meanwhile, all the variables which are used in the target
block are also required as field variables in the auxiliary class, and they should
be passed in and initialized by the auxiliary class constructor.

Task Block Invocation. In the generated code, the invocation of every task block
is converted to the invocation of its paired auxiliary class. First, an instance
of its auxiliary class is initialized, with proper arguments. Second, by checking
the current Internal Control Variable (ICV), the runtime detects if the current
thread is a member of the OpenMP parallel thread group. If yes, this task will be
submitted to the corresponding thread pool. Otherwise, the task block executes
sequentially.

2.3 Compared to C/C++ Version of OpenMP Task

The implementation overhead of the Java version is clearly more than that
of a C/C++ version. For example, an implementation based on light-weight
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execution units called nano-threads [12] has been proposed [1]. The nano-thread
layer is implemented with POSIX’s pthreads and this layer has a slight impact
on efficiency. In contrast, because of the nature of Java, it cannot directly involve
any system calls and all operating system level calls have to be delegated to the
JVM runtime. In the meantime, the code transformation from sequential ver-
sion to parallel version inevitably introduces new classes and their invocations
cause more overhead in the runtime. It is foreseeable that the Java version of
OpenMP tasking has a higher threshold than C/C++ to see the real benefit of
task parallelization. In another words, the purpose of using Java tasking should
mainly target coarse-grained tasks rather than fine-grained tasks.

3 Virtual Target: An Event-Driven Parallelization
Solution

OpenMP tasking does not address concurrency1. In order to offload computation
from the current executing thread, the proposed syntax in Fig. 2 is inspired by the
target directive introduced in the OpenMP 4.0 specification. The initial purpose
of the target directive is to utilize available accelerators in addition to multi-
core processors in the system. The target directive offloads the computation of
its code block to a specified accelerator, if a device clause is followed.

3.1 Directive Syntax Extensions

Virtual Target. In line with the existing target directive, this work proposed
an extension of the target syntax by introducing the concept of virtual target. A
virtual target means the computation is not offloaded to a real physical device.
Instead, it is a software-level executor capable of offloading the target block
from the thread which encounters this target directive. Conventionally, a device
target has its own memory and data environment, therefore the data mapping
and synchronization are necessary between the host and the target. That is why

Fig. 2. Extended target directive.

1 In the context of an event-driven application, “concurrency” refers to the computa-
tion being offloaded to a background thread allowing the EDT to progress.
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default (wait) nowait name–as/wait await

target virtual

Target Blockwait

target virtual nowait

Target Block

Finish

target virtual name as(t)

wait(t)

Target Block

Finish

target virtual await

Unrelated
Handler

Processing
Target Block

Finish

Fig. 3. Different asynchronous modes, by using different asynchronous-property-
clauses.

normally some auxiliary constructs or directives such as target data and target
update are used when using target directives. In contrast, a virtual target still
actually shares the same memory that the host holds, so the data context remains
the same when entering the target code block. Generally, a virtual target is a
syntax-level abstraction of a thread pool executor, such that the target block
is executed by the executor specified by the target-name. Therefore, the newly
introduced directives are compatible with existing OpenMP directives. With the
combination of different directives, programmers are able to express different
forms of parallelization and concurrency logic.

Target Block Scheduling. By default, an encountering thread may not pro-
ceed past the target code block until it is finished by either the device target or
virtual target. However, a more flexible and expressive control flow of the encoun-
tering thread can be achieved by adopting the asynchronous-property-clause.
Therefore, a target block can also be regarded as a task with an asynchronous
nature. Figure 3 lists all the asynchronous property a target code block can have
in the program. A more detailed explanation of asynchronous-property-clause
can be found in [7].

Runtime Support. A virtual target is essentially a thread pool executor, or
can be an event dispatching thread. Its lifecycle lasts throughout the program.
Conceptually, a virtual target represents a type of execution environment defin-
ing its thread affiliation (to ensure operations not thread-safe are only executed
by a specified thread), and scale (confine the number of threads of a thread pool).
This design enables programmers to flexibly submit different code snippets to
different execution environments. Table 1 describes the additional OpenMP APIs
supported by Pyjama, which are used for managing virtual targets at runtime.

3.2 The Distinctions Between omp Task and omp Target Virtual

The virtual target concept allows programmers to easily change the thread con-
text, and submit the code blocks to a different thread pool, without knowing
any underlying implementation details. The salient advantage of using virtual
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Table 1. Runtime functions to create virtual targets in Pyjama.

Name virtual target register() virtual target create()

Parameters tname:String tname:String, n:Integer

Description The thread which invokes this function

will be registered as a virtual target

named tname

Creating a worker virtual target with

maximum of n threads, and its name is

tname

Table 2. Comparisons between omp task and omp target virtual.

Distinction omp task omp virtual target

Objective Task parallelization Concurrency

Scenario used Task decomposition and
parallelization

Event-driven offloading and
context switching

Effectiveness region Only in parallel region Everywhere

Dependency handling Data dependency Control flow dependency

Fig. 4. Two simple examples: (a) The example of using OpenMP tasks; (b) The exam-
ple of using virtual targets.

targets is its compatibility with an event-driven framework. For most event-
driven frameworks, only event handlers are exposed to the programmers, and
programmers cannot directly modify the dispatching mechanism. Under this
circumstance, using OpenMP task directives shows its disadvantage because a
task is only active when it is within a parallel region, but the programmers can-
not use the parallel directive to parallelize the dispatching framework. These
differences are summarized in Table 2.

Figure 4a and b show the simple examples of using the two directive types.
The example of using omp tasks forces the code change onto the event loop, then
asynchronization of the event handlers becomes possible. In contrast, for virtual
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targets, programmers can directly use the target virtual directive inside event
handlers to offload computations away from event handling thread. Another big
distinction of these two concepts is in OpenMP tasking, the master thread is
a part of the thread group. As a comparison, in virtual targets, the master
thread and task threads are explicitly distinguished. If the current thread is not
a member thread of the target virtual’s thread pool, the target code block will
not be executed by the current thread.

4 Performance Measurement of the Event Handling
Execution

In an event-driven system, we cannot simply measure speedup and execution
time to evaluate the performance of a parallelism and concurrency framework,
as events become available/are released at different times. Hence we need some
other measure to handle events in a system. For this reason we establish here a
performance model based on queue theory, before the experimental evaluation
in the next section.

4.1 The Flow Time of an Event Handling

The flow time tF measures the time span from the triggering of the event to
the finish of its related event handling. We assume only the EDT is able to
dispatch the events, and an event request queue is maintained by the EDT.
The notation tR measures the residual service time current event handler that is
under processing. The queuing time tQ indicates the handling function cannot
process until all previous queued handling functions are complete. Afterwards,
the service time tS is conducted for the processing of this event handling.

Considering for an event binding e → F , the event e happens. At that time,
there are potentially unprocessed event handlers in event queue, and F indicates
the set of all queued handling functions at the event triggering point. Then the
flow time of the event handling is the sum of three parts: The residual time of the
current event handling; Its queuing time and the its handling function execution
time, shown as below:

tF = tR + tQ + tS = tR +
∑

f∈F

tS(f) + tS

Processing Events in a Multi-threaded Environment. For an application in a
multi-threaded system, two approaches to reduce the flow time tF of each event
handling are possible. The first approach is enabling the system to have more
asynchronous workers to process the queued requests, then tQ is reduced. The
second approach is to parallelize the event handlers, which makes the service time
faster than the sequential execution time, decreasing the tS and in turn the tQ.
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Denote Na as the asynchronization scale, and Np as the parallelization scale.
Ideally, assume the asynchronous workers do not suffer from any performance
degradation and increasing the number of asynchronous works always gets Na

speedup, in other words the execution load of all tasks to be executed concur-
rently is ideally balanced across the Na workers. As a comparison, because of
the nature of the handling function, it is not always true to get ideal speedup
when adopting parallelization. We define parallelization efficiency function as
ε(Np) = ηNp, in which the handling function gains ε(Np) speedup when using
Np threads to parallelize this event handler. η is the parallelization efficiency
factor.

tF (F) =
tR

ε′(Np)
+

⎛

⎝
∑

f∈F

tQ(f)
εf (Np)

⎞

⎠ N−1
a +

tS(F)
ε(Np)

4.2 Modeling of the Parallel Event-Driven System

There is no widely-used performance model relating to the parallelization of
event-driven programs. As a consequence, it is not very clear how parallelization
influences the performance of event-driven executions. An interesting question
arises if the event handlers have the potential to be parallelized. Since computa-
tional resource is usually limited, to what extend to use parallelization is the best
way to boost the event-driven performance with limited maximum core number,
along with the use of asynchronous offloading.

To model the parallel event-driven system, we use the Kendall Notation to
describe the system. D.G. Kendall proposed describing queuing models using
three factors written A/S/c in 1953 [9] where A denotes the time between arrivals
to the queue, S is the size of jobs and c is the number of servers at the node. As
a default, we assume that this model has unlimited capacity of the queue, and
the queuing principle is First In First Out (FIFO).

– A: The arrival process
– S: The service time distribution
– c: The number of servers

Queue Model with Parallel Property. Now we extend the A/S/c model
with parallel execution property. Define Na as the asynchronization scale of
the multi-core machine, and Np as the parallelization scale of a multi-core
machine. The maximum threads in this system is NaNp. Then the A/S/c model
is extended as A/S/Na/Np.

Suppose the arrivals of the event requests are governed by a Poisson Dis-
tribution [8], and the sequential handling times for the handlers are Exponen-
tially Distributed. In this parallel queue system, there are Na multiple asynchro-
nous workers that can process the requests at the same time, and there are Np

parallel threads in a paralleled handling function. This model is described as
M/M/Na/Np.
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In order to better analyze the performance of this model, the factors related
to this model are listed as below:

– λ is the mean arrival rate of the requests/events.
– μ is the mean sequential service rate; if the mean sequential service time of

the handlers is Tseq, then μ = 1
Tseq

.
– Na is the asynchronization scale, which is the number of asynchronous workers

in the queue system.
– Np is the parallelization scale, which is the number of parallel threads in event

handler’s parallel region.
– W is the mean flow time spent at the queue both of waiting and being serviced.

Utilization. Define the service utility as ρ, which presents the utilization of
each processor. Then:

ρ =
λ

μNaε(Np)
(1)

The utilization measures the occupation of the processors. If this value is too
low, it means the incoming tasks do not create a high usage of the computa-
tion resources. A good use of a parallel system is keeping the utilization of the
processors under a relative high usage.

Mean Flow Time. The average flow time W is one of the key factor to evaluate
the performance of the system. The theoretical calculation of the mean flow time
of each event handling can be calculated as follows, based on the traditional
M/M/c queue model. Define ΠW to be the probability that an event request
has to wait. So ΠW is the sum of the probabilities this system contains i requests,
where i � c:

ΠW = pc + pc+1 + pc+2 + ...

=
pc

1 − ρ
=

(cρ)c

c!

(
(1 − ρ)

c−1∑

n=0

(cρ)n

n!
+

(cρ)c

c!

)−1

Then the mean waiting queue length Lq is:

Lq =
∞∑

n=0

npNa+n = ΠW · ρ

1 − ρ

According to Little’s Law [11], The average waiting time Wq is:

Wq = Lq · ρ = ΠW · 1
1 − ρ

· 1
μNaε(Np)

Then the average flow time W is [3]:

W = Wq +
1

με(Np)
= ΠW · 1

1 − ρ
· 1
μNaε(Np)

+
1

με(Np)
(2)



226 X. Fan et al.

4.3 Remarks

Relationship Between Flow Time and Processor Utility. According
to the Eq. 2, Fig. 5 shows a plot of the relationship between W and ρ in the
M/M/Na/Np model. If Na and Np are fixed value, it is easily found that the
average flow time W increases rapidly when utilization ρ is above 80%. This
leads to a dilemma that the system cannot reach both very high utilization and
high performance. If the computation requests arrival rate is known and fixed,
even though increasing Na and Np can reduce the mean request flow time W ,
it is unwise to distribute very large number of Na and Np since it causes a low
processor utilization. In practice, keeping the utilization ρ from 70% to 80% is
considered a good operational level, without degrading much performance.
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Fig. 5. The theoretical relationship between processor utilization ρ and the mean event-
handling flow time W in an event-driven system.
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Distribution of Asynchronization and Parallelization. When arrival rate
λ and sequential service rate μ are fixed and if the computational resources are
limited and the event handlers are parallelizable, increasing the parallelization
scale is a better choice to decrease the average flow time W . Figure 6 shows the
results when the total number of processors is fixed as 16, how merely increasing
Na or Np effects the average flow time (assume λ = 1, μ = 1 and parallel with
idea speedup ε(Np) = Np).

5 Experiment

This section discusses how the experiment is conducted. The system environment
consisted of a 64-core AMD Opteron Processor 6272 SMP machine with 256 GB
memory, and Java 1.8.0 101 HotSpot 64-Bit Server VM. We simulate a compu-
tational server, in which several web services are provided. Respectively, they
are Crypt, Monte Carlo, Series and Ray Tracer. Every time a client requests
a computation, they send the request data via web socket. When the server
receives a computation request, it queues its related handler function and until
the handler function is executed, then the related data is sent back to the client.
For simplicity, when an event handler is queued, it cannot be canceled from the
queue.

The sequential running times of all computational kernels are initially mea-
sured. It is assumed all requests are subjected to a Poisson Progress and with
specific arrival rates. The information of each computation is listed in Table 3.
For this experiment, the notation PxAy defined as x threads are used to par-
allelize every handler kernel (P1 means the kernel runs in the sequential way),
and y threads are used for asynchronous workers. If y is a list (y1, y2, y3, ...), it
means the total asynchronous workers are separated into groups with specific
number of workers that are distributed to different kernel handlers.

5.1 Adopt Asynchronization to Decrease Queue Time

If the handlers are not parallelized, and only asynchronization is used, adopting
asynchronization enables the system to reduce the queue times. We implement
the parallel version in two different ways. First, we use traditional OpenMP task
directive to offload event handler executions to the parallel region thread pool.

Table 3. Computational kernels and their arrival rates and sequential service rates.

Computational kernel Tseq λ μ

Crypt 260 ms 10 3.85

MonteCarlo 570 ms 4 1.75

Series 780 ms 10 1.28

RayTracer 1255 ms 4 0.80
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Fig. 7. The mean flow times (ms) of four kernels implemented by three different asyn-
chronization scale distributions.

Second, we use virtual targets to offload different handlers to different virtual
targets, and the thread pool sizes are distributed according to the handling times.

Figure 7 compares the performance of three approaches. More specifically,
they are:

P1A64: In this approach, all 64 processors are assigned as asynchronous work-
ers, but all handlers share a single 64-thread task pool. This approach can be
implemented by traditional OpenMP tasking concept. However, the performance
is not as good as expected. For three out of four kernels, The mean flow times
are drastically longer than the kernel sequential running times (The mean flow
time of every kernel takes 122%, 276%, 215%, 191% of its sequential running
time respectively), which means each handler takes very long time on queuing.

P1A(6, 12, 18, 28): This approach is implemented according to the virtual
target concept. Four virtual targets are used with different thread-pool sizes. The
total 64 asynchronous workers are distributed to four kernel handlers according
to their sizes of sequential running times. Therefore, every kernel handler gains
the proportion of 9%, 20%, 27%, 44% of the total asynchronous workers. Under
this distribution, the results show a better performance than P1A64, although
the total number of used threads does not change.

P1A(4, 3, 10, 7): In this approach, in order to ensure a high utilization, the
number of asynchronous works for each kernel handler is calculated by Na = � λ

μρ�
(according to Eq. 1 where ρ = 0.8). Therefore, a total number of 24 asynchronous
workers are distributed to four kernel handlers as A(4, 3, 10, 7). The results show
a very close performance comparing to P1A(6, 12, 18, 28) but only 24 processors
are used.

From this experiment, it can be discovered that offloading event handling
tasks based on their run times can effectively decrease the mean flow times for
handlers. Moreover, according to the performance model developed in Sect. 4, a
succinct use of processors can be achieved without degrading the performance.
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Table 4. 64-processor distribution and its mean flow time (ms), categorized by different
kernel handlers.

Distribution Crypt MonteCarlo Series RayTracer

P1A64 248 590 966 1405

P2A32 148 365 573 805

P4A16 98 335 305 729

P6A14 96 309 309 752

P8A8 89 192 193 478

P14A6 125 190 195 360

P16A4 138 193 188 312

P32A2 337 413 376 405

P64A1 1750 1731 1746 1785

5.2 Adopt Both Asynchronization and Parallelization to Decrease
Flow Time

Here, both parallelization and asynchronization are applied together. The mean
flow time of each type of event handler can be further reduced, therefore increas-
ing the throughput of the server. Table 4 reveals that the different distributions
between Na and Np can drastically influence the performance. The performance
tuning of the parallel event-driven system is subjected to many factors. The
design requires the trade off between computational budget, latency and special
requirements for particular event handlers. Comparing with the OpenMP task-
ing concept, virtual target enables programmers to have a more flexible processor
distribution among a group of handlers, and its fine-grained thread pool control
has the potential to gain a better performance.

6 Conclusion

This paper shows an implementation of task concept for Java OpenMP. In order
to parallelize an event-driven program, a new OpenMP directive and its model
are proposed. We compare the differences between the proposed virtual target
model and traditional OpenMP tasking model, and prove this proposal is more
compatible for event-driven programmings. We have discussed the concerns of
building up a parallelization event-driven system. The experiments show the
effectiveness of adopting this approach to an event handling system. Virtual
target concept shows its advantage because this model enables programmers to
tune the performance according to the properties of event handlers. The future
work involves a further study of the relationship between parallelization scale and
asynchronization scale, and exploring the solution to maximize the event-driven
performance in a parallel system.
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Abstract. OpenMP* has recently gained attention in the embedded
domain by virtue of the augmentations implemented in the last specifica-
tion. Yet, the language has a minimal impact in the embedded real-time
domain mostly due to the lack of reliability and resiliency mechanisms.
As a result, functional safety properties cannot be guaranteed. This paper
analyses in detail the latest specification to determine whether and how
the compliant OpenMP implementations can guarantee functional safety.
Given the conclusions drawn from the analysis, the paper describes a
set of modifications to the specification, and a set of requirements for
compiler and runtime systems to qualify for safety critical environments.
Through the proposed solution, OpenMP can be used in critical real-time
embedded systems without compromising functional safety.

1 Introduction

There is a visible trend in the critical real-time embedded industry to adopt
parallel processor architectures, with the objective of providing the perfor-
mance requirements needed to support advanced functionalities, e.g. autonomous
driving and unmanned aerial vehicles. These recent advances on parallel embed-
ded architectures are driving an interesting convergence between the high-
performance and the embedded domain [1]. In this context, the use of parallel
programming models is of paramount importance. To begin with, to efficiently
exploit the performance opportunities of these architectures. Besides, to provide
programmability and portability. All crucial to meet productivity.

OpenMP* has recently gained much attention in the real-time embedded
domain owing to the augmentations of the latest specification. These address the
key issues in parallel heterogeneous embedded architectures: (a) the coupling of
a main host processor to one or more accelerators, where highly-parallel code
kernels can be offloaded for improved performance/watt; and (b) the capability of
expressing fine-grained, both structured and unstructured, and highly-dynamic
task parallelism. As a result, OpenMP is already supported by several chip and
compiler vendors targeting embedded systems such as Kalray, Texas Instruments
and ARM. A fact that relaxes portability issues.

c© Springer International Publishing AG 2017
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Furthermore, recent studies demonstrate that the structure and syntax of the
OpenMP tasking model resembles the Directed Acyclic Graph (DAG) scheduling
real-time model [32]. This enables the analysis of the timing properties for such
a model. However, the analysis of the OpenMP thread-centric model in terms
of timing and progress guarantees is still an open issue. Last but not least, the
use of OpenMP to enable fine-grained parallelism in critical real-time suitable
languages like Ada has already been proposed [28].

Overall, critical real-time embedded systems can benefit from the flexibility
delivered by OpenMP. Yet, the impact of the language in such a domain is very
limited. The reason is that critical real-time systems require functional safety
guarantees, imposing the system to operate correctly in response to its inputs
from both functional and timing perspectives. This paper focuses on the former.
Functional safety is verified by means of safety standards as the ISO26262 [13]
for automotive, the DO178C [5] for avionics or the IEC61508 [12] for industry.
The use of reliability and resiliency mechanisms allow guaranteeing the correct
operation of the (parallel) execution. Moreover, the complete system stack must
be guaranteed, from the processor architectural perspective to the operating
system. In this respect, OpenMP lacks the required reliability and resiliency
mechanisms at both compiler and runtime levels.

Section 2 analyses in detail the latest specification of OpenMP [2] to identify
the features that may entail a hazard regarding functional safety on critical
real-time embedded systems. Along with the analysis, Sect. 3 proposes changes
in the specification as well as a series of implementation considerations to take
into account in both compilers and runtimes. This proposal aims to eliminate
non-determinism, increase efficiency and simplify the kernel of high-integrity
applications, covering most issues that can prevent OpenMP from being used in
a safety-critical environment.

2 OpenMP Hazards for Critical Real-Time Embedded
Systems

The current section discusses the OpenMP specification with the aim of:
(a) detecting those features that can be a hazard for functional safety when
used in a critical real-time embedded system, and (b) proposing solutions to
avoid the hazard at design, compile or run time, depending on the case.

2.1 Unspecified Behavior

OpenMP defines the situations that result in an unspecified behavior as: non-
conforming programs, implementation defined features and issues documented to
have an unspecified behavior. The impact of each situation to the safety-critical
domain, as well as the solutions we propose, are exposed below.

Non-conforming Programs
The OpenMP specification defines several requirements to applications that are
parallelized with OpenMP. Programs that do not follow these rules are called
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non-conforming. According to the specification, OpenMP compliant implemen-
tations are not required to verify conformity. Despite this, safety-critical envi-
ronments compel frameworks to do this validation to certify functional safety.

OpenMP restrictions affect directives, clauses and the associated user code.
Checking some restrictions just requires the verification of OpenMP construc-
tions (e.g. which clauses and how many times a clause can be associated with
a specific directive, for example, at most one if clause can appear on the task

directive). However, checking some restrictions requires visibility of different
parts of the application (e.g. some regions cannot be nested and/or closely nested
in other regions, for example, atomic regions must not contain OpenMP con-
structs).

Compilers must implement inter-procedural analysis to have access to the
whole application. This capability has been successfully implemented in many
vendors following different approaches, such as the Intel R©C/C++ compiler IPO
[11] or the GCC LTO [9]. Nevertheless, access to the whole code is possible only
for monolithic applications. This is not very common in the critical domain,
where systems consist of multiple components developed by different teams,
and rely on third-party libraries. In these cases, additional information may
be needed. We discuss this situation and propose a solution to it in Sect. 3.
This solution is based on new directives that provide the required information.
Henceforward, we assume that the information needed to perform whole program
analysis is always accessible.

Implementation Defined Behavior
Some aspects of the implementation of an OpenMP compliant system are not
fixed in the specification. These aspects are said to have an implementation
defined behavior, and they may indeed vary between different compliant imple-
mentations. The different aspects can be grouped as follows:

1. Aspects that are naturally implementation defined, so the specification can be
used in multiple architectures: definitions for processor, device, device address
and memory model features.

2. Aspects that are implementation defined to allow flexibility: internal con-
trol variables (e.g.: nthreads-var and def-sched-var among others); selection,
amount and distribution of threads (e.g. single construct); dynamic adjust-
ment of threads; etc.

3. Aspects caused by bad information specified by the user: values out of range
passed to runtime routines or environment variables (e.g. the argument passed
to omp set num threads is not a positive integer).

Aspects in groups 1 and 2 may not lead to an execution error or prevent
the program from validating. This is not the case for aspects in group 3, where
an implementation may decide to finish the execution if a value is not in the
range it was expected to be. Besides, cases in group 2 may result in different
outcomes depending on the platform used for the execution. For example, when
the runtime or the auto kinds are used in the schedule clause, the decision of
how the iterations of a loop will be scheduled is deferred until runtime.
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In the light of all that, some aspects in groups 2 and 3 are not suitable in
a safety-critical environment because they are non-deterministic and may cause
an undesired result. Situations such as the application aborting due to an unex-
pected value passed to either an environment variable or a runtime routine can
be solved by defining a default value which will not cause the application to end
(note that this value can be different across implementations without affecting
functional safety). Situations such as an auto or runtime value in the schedule
clause can be solved by taking a conservative approach at compile time (i.e. if
a deadlock may occur for any possible scheduling option, then the compiler will
act as if that scheduling always happens). Situations such as runtimes defining
different default values for ICVs like nthreads-var do not need to be addressed,
because they do not bring on any hazard regarding functional safety.

Other Unspecified Behavior

The rest of situations resulting in an undefined behavior are errors and need to
be addressed to guarantee functional safety. These situations can be classified in
three groups, depending on the moment at which they can be detected:

1. Situations that can be detected at compile time. In this case we can distin-
guish those that can be solved by the compiler (e.g. data-race conditions could
be solved by automatically protecting accesses with a critical construct or
synchronizing the accesses - Sect. 2.3 shows more details about data race man-
agement), and those that need user intervention (e.g. compilers should abort
compilation and report to the user situations such as the use of non-invariant
expressions in a linear clause).

2. Situations that can be detected at run time. In this case, safety relies on
programmers because the results deriving from these situations cannot be
handled automatically. Thus, users are compelled to handle errors such as
reduction clauses that contain accesses out of the range of an array section,
or using the omp target associate ptr routine to associate pointers that
share underlying storage (Sect. 2.5 explores error handling techniques).

3. Situations that cannot be detected. These involve the semantics of the pro-
gram, for example, a program that relies on the task execution order being
determined by a priority-value. This case is further discussed in Sect. 2.5.

2.2 Deadlocks

OpenMP offers two ways to synchronize threads: via directives (master and
synchronization constructs such as critical and barrier), and via runtime
routines (lock routines such as omp set lock and omp unset lock). Although
both mechanisms may introduce deadlocks, the latter is much more error-prone
because these routines work in pairs. Furthermore, OpenMP introduces the con-
cept of nestable locks, which differ from the regular locks in that they can be
locked repeatedly by the same task without blocking.

Synchronization directives may cause deadlocks if various critical con-
structs with the same name are nested. Synchronization directives can introduce
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other problems as well, like enclosing a barrier construct in a condition that is
special to a thread. Since barriers must always be encountered by all threads of
a team, the previous situation will be non-conforming. Such errors can be easily
caught by a compiler implementing whole program analysis.

Locking routines may cause errors in the following situations: attempt to
access an uninitialized lock, attempt to unset a lock owned by another thread
or attempt to set a simple lock that is in the locked state and is owned by
the same task. There exist numerous techniques for deadlock detection, such
as Chord [23] and Sherlock [7], that apply to different programming models.
Most of the approaches pursue scalability without losing accuracy, thus effec-
tiveness. However, safety-critical environments require soundness. In this regard,
the only sound approach, to the best of our knowledge, for detecting deadlocks
in C/Pthreads programs is the one developed by Kroening et al. [15]. OpenMP
simple locks are comparable to Pthreads mutex, so the previous technique can
be extended to OpenMP. Nestable locks have other peculiarities and it may not
be possible to detect deadlocks at compile time. In such a case, they should not
be permitted.

The use of untied tasks may cause deadlocks that may not exist when using
tied tasks. This is because task scheduling constraints (particularly constraint
#2) prevent from certain situations involving tied tasks to cause a deadlock
by restricting the tasks that can be scheduled at a certain point. Based on
that, using tied tasks may seem more suitable for critical real-time embedded
systems. It has been, however, demonstrated that timing analysis for untied
tasks is much more accurate than for tied tasks [30]. There is thus a trade-off
between functional safety and predictability. For the sake of correctness, untied
tasks may be disabled at compile time only when the static analysis detects that
a deadlock caused by untied tasks may occur.

2.3 Race Conditions

Race conditions appear in a concurrent execution when two or more threads
simultaneously access the same resource and at least one of them is a write. This
situation is not acceptable for a safety-critical environment since the results of
the algorithm are non-deterministic. The problem of detecting data races in a
program is NP-hard [24]. On account of this, a large variety of static, dynamic
and hybrid data race detection techniques have been developed over the years.

On the one hand, dynamic tools extract information from the memory
accesses of specific executions. Despite this, there exist algorithms capable of
finding at least one race when races are present, as well as not reporting false
positives [3]. On the other hand, static tools still seek a technique with no false
negatives and minimal false positives. Current static tools have been proved to
work properly on specific subsets of OpenMP such as having a fixed number
of threads [19] or using only affine constructs [4]. A more general approach can
be used to determine the regions of code that are definitely non-concurrent [18].
Although it is not an accurate solution, it does not produce false negatives, which
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is paramount in the safety-critical domain. Therefore, the previously mentioned
techniques can be combined to deliver conservative and fairly accurate results.

2.4 Cancellation

Until version 4.0, all OpenMP constructs based their execution model in the
Single Entry Single Exit (SESE) principle. This means that no thread encoun-
tering an OpenMP region can jump out of the region skipping a part of it.
This is no longer true after the incorporation of the cancellation constructs (i.e.
cancel and cancellation point), which allow exiting parallel computation at
a certain point that may not be the end of the region.

Unlike other models such as the Pthreads asynchronous cancellation,
OpenMP only accepts synchronous cancellations at cancellation points.
Although this eliminates resource leak risks, the technique introduces non-
determinism, which is not desirable in a safety-critical environment. Due to the
use of cancellation constructs, non-determinism appears in the following situa-
tions:

1. The order of execution between one thread that activates cancellation and
another thread that encounters a cancellation point.

2. The final value of a reduction or lastprivate variable in a canceled construct.
3. The behavior of nested regions suitable of being canceled.

If a code is well written, case 1 may only affect performance, but the code will
deliver a valid result whether cancellation occurs or not. Case 2, instead, may
lead to errors if some threads have not finished their computation. Nonetheless,
static analysis can verify that reduction and lastprivate variables are not used
within a construct that may be subject to cancellation, or that the variables are
used only when no cancellation occurs. Finally, case 3 can be solved by statically
verifying that regions subject to cancellation are not nested.

Another issue arises when locks are used in regions subject to cancellation,
because users are responsible for releasing those locks. Current deadlock detec-
tion techniques do not take into account the semantics of the cancellation con-
structs. Nonetheless, these techniques can easily be extended because the effect
of a cancellation is similar to the existence of a jump out of the region.

2.5 Other Features to Consider

Although they do not necessarily involve a hazard, there are other issues that
are worth to mention in the context of this paper. These are explained next.

Error Handling

Resiliency is a crucial feature in the safety-critical domain. However, OpenMP
does not prescribe how implementations must react to situations such as the
runtime not being able to supply the number of threads requested, or the user
passing an unexpected value to a routine. While the former is a problem caused
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by the runtime environment, the latter is an error produced by the user. Both
eventually become an unspecified behavior according to the specification, but
they can be addressed differently. On the one hand, if the error is produced by
the environment, users may want to define what recovery method needs to be
executed. On the other hand, errors produced by the user are better caught at
compile time or handled by the runtime (we discuss the latter in Sect. 2.1).

Several approaches have been proposed with the aim of adding resiliency
mechanisms to OpenMP. There are four different strategies for error handling
[33]: exceptions, error codes, call-backs and directives. Each technique can be
applied according to its features to different languages and situations. Exception
based mechanisms fit well in programs exploiting the characteristics of exception-
aware languages (e.g. C++, Ada) [8]. Error code based techniques are a good
candidate when using a language unaware of exceptions (e.g. C, Fortran). Call-
back methods have the advantage of isolating the code that is to be executed
when an exception occurs, and thus enhance readability and maintainability
[6]. Finally, the use of specific OpenMP directives has the advantage of being
simple, although they cannot cover all situations and users cannot define an exact
behavior. The latter is the only approach already adopted in the specification
with the cancellation constructs (see more details in Sect. 2.4).

A safety-critical framework supporting OpenMP will require the implemen-
tation of error-handling methodologies in order to ensure functional safety.

Nested Parallelism
OpenMP allows nesting parallel regions to get better performance in cases where
parallelism is not exploited at the same level. A distributed shared-memory
machine with an appropriate memory hierarchy is necessary to exploit the ben-
efits of this feature (the major HPC architectures).

The nature of critical real-time embedded systems is quite different, where
both memory size and processor speed are usually constrained. Furthermore, the
use of nested parallelism can be costly due to the overhead of creating multiple
parallel regions, possible issues with data locality, and the risk of oversubscrib-
ing system resources. For the sake of simplicity, and considering that current
embedded architectures will not leverage the use of nested parallelism, this fea-
ture could be deactivated by default.

Semantics of OpenMP
For an analysis tool, it is possible to address correctness based on how the
program is written. However, addressing whether the program behaves as the
user wants is another matter altogether. This said, some features of OpenMP
may be considered as hazardous because their use may derive in errors involving
the semantics of the program. We discuss some of them as follows:

– A program that relies on an specific order of execution of the tasks based on
their priorities is non-conforming.

– When and how some expressions are to be executed is not defined in OpenMP.
Some examples are: whether, in what order, or how many times any side
effects of the evaluation of the num threads or if clause expressions of a



238 S. Royuela et al.

parallel construct occur; and the order in which the values of a reduction
are combined is unspecified. Thus, an application that relies on any ordering
of the evaluation of the expressions mentioned before is non-conforming.

– The storage location specified in task dependencies must be identical or dis-
joint. Thus, runtimes are not forced to check whether two task instances have
partially overlapping storage (which eases the runtime considerably).

– The use of flushes is highly error-prone, and makes it extremely hard to
test whether the code is correct. However, the use of the flush operation is
necessary for some cases such as the implementation of the producer-consumer
pattern.

Frameworks cannot prevent users from writing senseless code. However, some
of the features mentioned before could be deactivated if the level of criticality
demands it. It is a matter of balance between functionality and safety. Thus,
if necessary, support for task priorities and flushes could be deactivated. The
case regarding side-effects could be simplified to using associative and commu-
tative operations in reductions, and expressions without side-effects in the rest
of clauses. Finally, the case regarding task dependency clauses could be solved
at runtime by resuming parallel execution when a task contains non-conforming
expressions in its dependency clauses (although this solution causes a serious
impact in the performance of the application).

3 OpenMP Support for Critical Real-Time Systems

Based on the discussion in Sect. 2, this section exposes our proposal to enable the
use of OpenMP in safety-critical environments without compromising functional
safety. The proposal can be divided in two facets: different changes to the spec-
ification, and a series of compiler and runtime implementation considerations.

3.1 Changes to the Specification

As we introduce in Sect. 2.1, whole program analysis may not be enough if the
system includes multiple components developed by different teams or make use
of third-party libraries implemented with OpenMP. In such a case, we propose
that these components or libraries augment their API with information about
the OpenMP features used in each method. As a result, compilers will be able to
detect, on the one hand, illegal nesting of directives and data accessing clauses
(i.e. data-sharing attributes, data mapping, data copying and reductions) and,
on the other hand, data-races.

To tackle illegal nesting, we propose to add a new directive called usage. This
directive is added to a function declaration and followed by a series of clauses.
The clauses determine the features of OpenMP that are used within the function
and any function in its call graph, and can cause an illegal nesting. Note that
the use of this directive is a promise that a construct might be used in a possible
path within the function. Overall, the clauses that can follow the directive usage
are one of the following:
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– Directive related: parallel, worksharing (which epitomizes single,
for/do, sections and workshare), master, barrier, critical, ordered,
cancel, distribute construct (which epitomizes distribute, distribute
simd, distribute parallel loop and distribute parallel loop SIMD),
target construct (which epitomizes target, target update, target
data, target enter data and target exit data), teams, any (which epit-
omizes any directive not included in the previous items).

– Clause related: firstprivate, lastprivate, reduction, map, copyin and
copyprivate.

Based on the restrictions that apply to the nesting of regions (Sect. 2.17 of the
specification [2]) and the restrictions that apply to the mentioned data accessing
clauses, we extract the set of rules that define how the previous clauses are to
be used. These rules are the following:

– Clauses parallel, worksharing, master, barrier and ordered are required
when the corresponding construct is the outermost construct.

– Clauses critical and target construct are required if there is any occur-
rence of the corresponding construct.

– Clause teams is required if the corresponding construct is orphaned.
– Clauses cancel and cancellation point are required if the corresponding

constructs are not nested in their corresponding binding regions.
– Clause any must be specified if OpenMP is used and no previous case applies.
– Data accessing clauses are required when they apply to data that is accessible

outside the application and particular constraints apply to them:
• Clause firstprivate if used in a worksharing, distribute, task or

taskloop construct not enclosed in a parallel or teams construct.
• Clauses lastprivate and reduction if used in a worksharing not enclosed

in a parallel construct.
• Clauses copyin, copyprivate and map in any case.

To avoid data races, we propose to add a new directive called globals. This
directive, added to a function declaration, defines which data is used within the
function while it can be accessed concurrently from outside the function, thus
producing a data-race. Different clauses accompany this directive: read, write,
protected read and protected write, all accepting a list of items. While read
and protected read must be used when global data is only read, write and
protected write are required when global data is written, independently of it
being read as well. The protected versions of these clauses must be used when
the access is within an atomic or a critical construct.

Listings 1.1 and 1.2 illustrate the use of the two mentioned directives within
the context of a system component that can be used without accessing its source
code. The former listing contains the definition of function foo, which uses one of
the most determining features for OpenMP to be used in parallel heterogeneous
embedded architectures: the target construct. This function defines an asyn-
chronous task that offloads some parallel computation to a device. The parallel
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computation within the device is synchronized using the critical construct,
and is cancelled if the cancel directive is reached. The latter listing contains the
declaration of function foo, augmented with the usage and globals directives.
Clauses target construct and critical associated to directive usage indicate
that the function executes one or more target and critical constructs. A pro-
grammer and/or compiler can avoid calling function foo from within a target
and a critical constructs, thus avoiding an illegal nesting. Note that directive
cancel is not included because it is nested in its binding region, clauses task
and parallel for are not included because no rule applies to them, and the
firstprivate data-sharing clause is not included because it does not concern
to data that is visible from outside the function. Additionally, clauses write
and protected write associated to directive globals indicate that variables
arr[0:N-1] and sum are both written, being sum written within a critical
construct. A programmer and/or compiler can determine whether these vari-
ables are in a race condition without knowing the code of the function, and
therefore synchronize the accesses to the variables appropriately.

Listing 1.1. Example of OpenMP function definition

1 void f oo ( float∗ arr , unsigned N, unsigned M,
2 float &sum , float MAXSUM)
3 {
4 #pragma omp task shared ( arr , sum) \
5 firstprivate (N, M, MAXSUM)
6 #pragma omp target map ( tofrom : a r r [ 0 :N−1])
7 #pragma omp parallel for
8 for ( int i =0; i<N; ++i ) {
9 ar r [ i ] = bar ( i ) ;

10 if ( i % M == 0) {
11 #pragma omp critical
12 sum +=arr [ i ] ;
13 }
14 if (sum > MAXSUM) {
15 #pragma omp cancel for
16 }
17 }
18 }

Listing 1.2. Function declaration for method in Listing 1.1 using the extensions for
safety-critical OpenMP

1 #pragma omp usage target construct critical \
2 map ( tofrom : a r r [ 0 :N−1])
3 #pragma omp globals write ( a r r [ 0 :N−1]) protected write (sum)
4 void f oo ( float∗ arr , unsigned N, unsigned M,
5 float &sum , float MAXSUM) ;

Listings 1.3 and 1.4 show another example of the proposed directives. In
this case, the function definition in the former listing performs the factorial
computation parallelized using the for worksharing; and the function declaration
in the latter listing shows the clauses required for the method to be used in
a functional safe environment. Clause any is specified because no rule applies
to directive for, and clause reduction is specified because the reduction is
used in a worksharing not enclosed in a parallel region. With this information
a programmer and/or compiler can check whether the variable being reduced
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is shared in the parallel regions to which any of the worksharing regions bind.
Analysis may also verify whether the factorial function is called from within
an atomic region, thus causing the program to be non-conforming. Finally, race
analysis can detect whether the variable factorial is in a race condition by means
of the clause write.

Listing 1.3. Factorial computation parallelized with OpenMP

1 void f a c t o r i a l ( int N, int &fa c t )
2 {
3 f a c t = 1 ;
4 #pragma omp for reduction (∗ : f a c t )
5 for ( int i =2; i <= N; ++i )
6 f a c t ∗= i ;
7 }

Listing 1.4. Function declaration for method in Listing 1.3 using the extensions for
safety-critical OpenMP

1 #pragma omp usage any \
2 reduction ( f a c t o r i a l )
3 #pragma omp globals write ( f a c t o r i a l )
4 void f a c t o r i a l ( int N, int &f a c t o r i a l ) ;

3.2 Implementation Considerations

Both compilers and runtime systems used within a critical real-time system must
be qualified against the corresponding functional safety standard, e.g. ISO26262
for automotive or DO178C for avionics, to preserve functional safety. The fol-
lowing paragraphs introduce which constraints apply in our case.

Compiler Contract

The development tools used for critical real-time systems need to qualify to the
same integrity level1 as the application they are helping to develop. Nonetheless,
current guidelines make the qualification of development tools very difficult [14].
As an example, the standard for Software Considerations in Airborne Systems
and Equipment Certification (DO-178C) [5] reads: “Upon successful completion
of verification of the software product, the compiler is considered acceptable for
that product”. As a result, sometimes compilers do not need to be qualified.
Nonetheless, to gain assurance, some characteristics must be incorporated, such
as being fully tested for complete coverage analysis2, and being used in the same
configuration, options, and environment as the one used to compile any other
objects related to the application.

1 The integrity level, also called criticality level, refers to the consequences of the
incorrect behavior of a system. These levels are defined in different scales such as
the Safety Integrity Level (SIL) for automotive and the Development Assurance Level
(DAL) for avionics.

2 Code coverage is a measure used to describe the amount of the source code of a
program being executed when a particular test suite runs.
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However, for an OpenMP compiler to be valid in a critical real-time envi-
ronment, it must ensure the source code is compliant with the OpenMP spec-
ification. For that reason, the compiler must implement the necessary analysis
techniques to allow whole program analysis. Additionally, the compiler must also
include specific and sound techniques for data-race and deadlock detection, as
well as the correctness analysis that allows statically detecting and fixing the
unspecified behaviors commented in Sect. 2.1.

Runtime Contract
As a result of the analysis presented in Sect. 2, we conclude that runtime libraries
used in safety-critical environments shall follow some requirements to avoid unex-
pected aborts and fix some programmer errors. The following list is an starting
point for these systems to address such undesired results:

– Runtimes should define a default value for all environment variables. This
value shall be used when the value specified in the application is out of range,
e.g. OMP NUM THREADS could be 1 by default, and OMP NESTED could be false.

– Some clauses, such as num threads and device, take a number as a parameter
that must evaluate to a positive integer. Runtimes should define the value to
be used if the expression is out of range, for example, 1.

– Other errors can be caught and fixed at runtime, e.g. different instances of the
same task or sibling tasks expressing dependency clauses on list items which
storage location is neither identical nor disjoint may be executed sequentially.

4 Related Work

Parallel heterogeneous embedded architectures certainly require the use of par-
allel programming models to provide high throughput, low latency and energy-
efficient solutions. Efforts to introduce OpenMP in such environments [20] reveal
that OpenMP runtimes can efficiently be aware of the heterogeneity and the
memory hierarchy to deliver good performance. However, all works that intend
to introduce OpenMP in the embedded domain conclude that, although the
language is very useful in such environments, some extensions with real-time
processing and power-awareness functionalities [10] are needed.

Critical real-time embedded systems, add additional, more restrictive, con-
straints to those of the embedded domain. Concretely, timing guarantees and
functional safety. Regarding the former, significant attempts to analyze the time
predictability properties of OpenMP [30], as well as deriving response time analy-
sis for both work-conserving dynamic and purely static schedulers [16,21,29],
confirm the OpenMP tasking model as a perfectly suitable parallel pattern for
safety-critical environments. In this sense, the suitability of the thread-centric
model still remains unproved. Furthermore, situations such as starvation when
a barrier construct is found shall be addressed.

With regard to functional safety, different works have tried to study, classify
and solve mistakes commonly appearing in OpenMP applications [22,31]. These
works are very useful mostly for unexperienced programmers in order to avoid
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errors. Beyond the theoretical approaches, many articles propose different tech-
niques tackling correctness in general, and OpenMP correctness in particular.
Section 2 introduces several techniques for detecting specific errors in concurrent
programs (i.e. race conditions and dead-locks). Additionally, some techniques
have been developed specifically for OpenMP to compute and verify data scop-
ing, task dependencies and locks among others [17,25–27].

Finally, there exist works towards the adoption of OpenMP in Ada [28], a
language commonly used in safety-critical and high-security domains such as
avionics and railroad systems. In Ada, concepts as safety and reliability are
crucial. However, there are still some caveats about the integration of the Ada
and OpenMP runtimes, because both will be mapped to the underlying threads
of the operating system.

5 Conclusions and Future Work

OpenMP is increasingly being considered a suitable candidate to be used in
critical real-time embedded systems considering its benefits: programmability,
portability and efficiency, among others. However, such systems impose strict
constraints to ensure functional safety in terms of functional correctness and
timing predictability. This paper has focused on the former aiming to shorten
the distance between OpenMP and the critical real-time domain.

In this scope, we prove that most features specified in OpenMP can be used
without compromising safety, as long as compilers implement a series of analyses
that can prevent errors such as dead-locks and race conditions. Indeed, analysis
must involve the entire program which can be a challenging scenario. To ease
this, we propose some new directives that allow whole program analysis even
when third-party libraries are used. The majority of the unspecified behaviors
defined in the specification can be solved at compile time either automatically by
the compiler (e.g. synchronizing variables that otherwise could be accessed after
their life-time has ended), or by the programmer (e.g., the use of non-invariant
expressions in a linear clause). Other issues can be successfully addressed at
runtime (e.g. unexpected values passed to environment variables and runtime
libraries can be solved by defining default values to be used in such cases). In
some cases, supporting the required level of criticality might incur more overhead
than a traditional OpenMP implementation (e.g., tracking task dependencies’
overlap). Last but not least, there are a series of features that can be used
erroneously if their semantics are not properly exploited (e.g. tasks priorities or
flushes). We conclude that support for these features can be deactivated if the
level of criticality requires so.

The small modifications that this paper proposes back up OpenMP’s safety.
Nonetheless, we note some lacks in the current specification, e.g. error handling
techniques to improve resiliency. Hence, despite the functional safety aspect is
deeply addressed in this paper, the same analysis concerning time predictability,
including starvation, remains as future work. In that regard, we plan to analyze
the latest specification to find out how timing analyses could be affected by the
use of OpenMP.
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Abstract. When it comes to data race detection, complete information
about synchronization, concurrency and memory accesses is needed. This
information might be gathered at various levels of abstraction. For best
results regarding accuracy this information should be collected at the
abstraction level of the parallel programming paradigm. With the lat-
est preview of the OpenMP specification, a tools interface (OMPT) was
added to OpenMP. In this paper we discuss whether the synchronization
information provided by OMPT is sufficient to apply accurate data race
analysis for OpenMP applications. We further present some implemen-
tation details and results for our data race detection tool called Archer
which derives the synchronization information from OMPT.

1 Introduction

OpenMP is the de facto standard for parallel programming on shared memory
machines. It is also becoming increasingly popular on extreme-scale systems as
it offers a portable way to harness the growing degree of parallelism available
on each node. However, porting large HPC applications to OpenMP often intro-
duces subtle errors. Of these, data races are particularly egregious, as well as
challenging to identify. Data races may remain undetected during testing, but
nevertheless manifest during production runs by often resulting in confusing
(and/or non-reproducible) executions that the programmer wastes considerable
amounts of time debugging. In extreme situations, data races may simply end up
silently corrupting user data. For all these reasons, data race detection remains
one of the central concerns in parallel programming, in particular for shared
memory programming models.

In previous papers [2,7], we presented the tool Archer [1], based on Thread-
Sanitizer (TSan) [8,9], which is able to find data races in OpenMP applications,
that are run with the LLVM/OpenMP runtime on x86 machines. The fact which
makes this tool unique from other approaches of available data race detection
tools for OpenMP applications is that we cover almost all host-side OpenMP
directives as provided in the OpenMP 4.5 specification. To make the tool portable
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-65578-9 17



250 J. Protze et al.

across OpenMP runtime implementations and hardware platforms, we want to
base the annotation of OpenMP synchronization on OMPT events.

In this paper we investigate whether the information provided by OMPT
is sufficient to derive all OpenMP synchronization semantics. We will describe
OMPT based annotations of OpenMP synchronization. The annotations are
provided as happened-before arcs, which can be understood by ThreadSanitizer,
but also by the Valgrind based data race detection tool Helgrind. This approach
is portable across OpenMP runtime implementations, as long as these implement
and provide the necessary OMPT callback function invocations.

In Sect. 2 we look at OpenMP directives with synchronization semantics from
a happened-before point of view. In Sect. 3 we describe the OMPT events, that
we use to annotate the synchronization and how we specify the happened-before
arcs. In Sect. 4 we discuss challenges we encountered on the way, implementing
the tool and discuss information missing in the OpenMP tools interface.

2 Synchronization in OpenMP

According to the OpenMP specification [3]: “... if at least one thread reads from
a memory unit and at least one thread writes without synchronization to that
same memory unit [...], then a data race occurs. If a data race occurs then the
result of the program is unspecified.”

To enable a data race detection tool to identify a data race, complete under-
standing of synchronization is needed. In this section we provide a summary of
the synchronization concepts in OpenMP, as they need to be understood by an
analysis tool, to identify synchronized memory accesses. In this paper we focus
on data races that happen between threads on a host device. Thus, we do not
consider constructs for offloading to an accelerator device.

2.1 The parallel Construct

When a thread encounters a parallel construct, the thread creates a team of
threads to execute the parallel region. Each thread of the team executes the
structured block of the parallel region within an implicit task.

Encountering the parallel construct happens before the execution of all
implicit tasks of the team.

There is an implicit barrier at the end of the parallel region, which happens
before the master thread continues execution.

2.2 The barrier Construct

The barrier in OpenMP applies for the innermost parallel team. On encountering
a barrier construct, a thread cannot continue executing the implicit task until
all threads in the team reached the barrier.

For all threads in the team, encountering the barrier construct happens before
they continue execution of the implicit task.
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2.3 The reduction Clause

The reduction clause provides a mechanism to reduce results at the end of a
work-sharing region into a single value. The clause takes a reduction identifier to
specify the reduction operation, the synchronization of the reduction is provided
by the OpenMP implementation.

If no nowait clause is used on the same construct, the reduction happens
before the end of the region. Otherwise the reduction happens before the next
barrier.

2.4 The critical Construct

The critical construct provides mutual exclusion for the critical region. The
critical construct can have a name, that provides mutual exclusion only for
critical regions with the same name. The critical region is equivalent to getting
a lock at the begin of the region and releasing the lock at the end, with different
locks for different names and an extra lock for all unnamed critical regions. Thus,
the synchronization semantics are the same as for Locking routines.

2.5 Locking Routines

OpenMP provides routines to init, destroy, acquire and release locks and nested
locks. Locks provide mutual exclusion for code between acquiring and releasing
a lock.

As a strict measure, a lock-set algorithm can be used to express the synchro-
nization of critical region and locking routines. But lock-set is in general too
strict and can lead to false positives The reason is that an application might
implement happens before semantics in the locked sections. The alternative is
to express locks with a happens before relation: Releasing a lock happens before
acquiring the same lock.

This might over-estimate the synchronization semantics of the application
and lead to omission of actual data races. This is a point, where large numbers of
repetition and concurrency helps to stochastically execute the right interleaving
of locked regions, so that the race can still be observed.

2.6 The ordered Construct

The ordered construct provides mutual exclusion for the ordered region. Addi-
tionally, the ordered construct also provides an ordering for the execution.

Thus, when observing the execution of an OpenMP program, the end of an
ordered region happens before the begin of the next iteration of the same ordered
region.
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2.7 The task Construct

When a thread encounters a task construct, the thread generates a task from the
associated structured block. The thread might execute the thread immediately,
or defer the task for later execution.

Encountering the task construct happens before the execution of the task.
The end of a task region happens before the next barrier of the team finished
synchronization. Without further clauses or constructs, there is no more syn-
chronization at the end of a task.

2.8 The taskwait Construct

The taskwait construct lets the encountering task wait for completion of all
direct child tasks that this task created before encountering the taskwait.

Finishing all child tasks happens before the taskwait regions ends and the
task can continue execution.

2.9 The taskgroup Construct

The taskgroup construct lets the encountering task wait at the end of the task
group region for completion of all child tasks this task created in the taskgroup
region and their descendants.

Finishing all child and descendant tasks happens before the taskgroup regions
ends and the task can continue execution.

2.10 The depend Clause

The depend clause provides synchronization for task as the provided in, out,
and inout dependencies define constraints for the scheduling of tasks. A depend
clause can have a list of storage locations, which describe in or out dependen-
cies. The end of a task with an in dependency on a storage location x happens
before the start of any task with an out or inout dependency on the same storage
location x. The end of a task with an out or inout dependency on a storage loca-
tion x happens before the start of any task with an in, out, or inout dependency
on the same storage location x.

To summarize, only in dependencies with the same storage location x do not
synchronize. All other dependencies with the same storage location x synchro-
nize.

2.11 Untied Tasks

Deferring a task happens before scheduling the same task again. This is especially
important for untied tasks, that can migrate from one thread to another thread
after being deferred during execution.
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2.12 The flush Construct

The flush construct makes a thread’s temporal view of memory consistent with
memory and enforces a specific ordering of memory operations. The flush con-
struct takes an optional list of variables, the flush-set. With the right combination
of loads, stores and flushes, an application programmer can achieve fine-grain
synchronization. Modeling the semantics of flushes with plain happened-before
relation introduces synchronization which possibly hides any data race. A better
approach for handling flushes is discussed by Lidbury and Donaldson [5]. They
extend ThreadSanitizer to understand and handle C++11 flush semantics.

3 OMPT Events for Synchronization

In this section we explain the synchronization events provided by the OpenMP
tools interface as it is integrated into the preview of the OpenMP specification
5.0 [4]. Since we implemented our prototype along with the LLVM/OpenMP
runtime implementation, we used the version of OMPT, that is implemented
there. The latest specification of OMPT describes events as points of interest
in the execution of a thread. Tool callback functions are implemented in a tool
and invoked by the runtime when a matching event happens. Multiple events
might trigger the same callback; the tool can differ the events by some kind and
endpoint arguments provided with the callback invocation. On tool initialization
the OpenMP runtime implementation provides information to the tool, whether
requested callback invocations are provided or not. For some groups of events
invocation is mandatory, for some it is optional.

3.1 Team Related OMPT Events

The following events mark the synchronization points for a team from the cre-
ation of the team to the end:

– parallel-begin
– implicit-task-begin
– barrier-begin
– barrier-end
– implicit-task-end
– parallel-end

On a parallel-begin event, we generate a new team information object and
start a happened-before arc for the team.

On an implicit-task-begin event, we generate a new task information object
and end the happened-before arc for the team. This synchronizes the team cre-
ation.

On a barrier-begin event, we start a happened-before arc on an address from
the team’s information object. This event is specified to happen before the actual
synchronization of the barrier.
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// omp barrier
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Fig. 1. (a) Happened-before arcs in a parallel region with explicit barrier and implied
barrier at the end. (b) If a thread returns late from the barrier code (red barrier-
end (4)), others might be already in the next barrier. In this case, we would add
wrong happened-before arcs, if all barriers use the same token for the happened-before
annotation (Color figure online)

On the barrier-end event, we end the happened-before arc on the same
address from the team’s information object. Since there is no synchronization
between the barrier end event and the next barrier begin event, it is possi-
ble as depicted in Fig. 1b, that a thread of the team reaches the next barrier
before another thread finished the previous barrier. Therefore, consecutive barri-
ers should use distinct synchronization tokens. The OpenMP specification states
that all threads in a team need to participate on each barrier, so we use two
addresses for barriers in the team information object and each implicit task
toggles between the two addresses.

The parallel region ends with an implicit-task-end event and a parallel-end
event where we free the task and team information objects. The synchronization
at the end of the region happens solely in the implied barrier at the end of the
region. This is the second barrier in Fig. 1a.

As a missing piece in OMPT we will discuss the OpenMP reduction clause
in Sect. 4.

3.2 Task Related OMPT Events

The following events mark the synchronization points for a task from the creation
of a task to the end:

– task-create
– task-dependences
– task-schedule
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– taskwait-end
– taskgroup-begin
– taskgroup-end

On a task-create event, we generate a new task information object and start a
happened-before arc for the generated task. This synchronizes the task creation
with the execution of the task. If this event is invoked before all data are copied
to the task data structures, there might be some false data race alerts. Especially
the copying of first-private data, which is then accessed by the task, might be a
problem. See Fig. 2 for an illustration of the task-related events and happened-
before synchronization.

On a task-dependences event we save all dependences information into the
task information object for later use.

On the first task-schedule event for a new task, we end the happened-before
arc from the generation of the task. Further, we iterate over all task dependences
and end happened-before arcs for all dependences. If the dependency is an in
dependency, we only end happened-before arcs from out or inout dependencies
on this storage location. If the dependency is an out or inout dependency, we

1

2

3

4

#pragma omp task

task-create

task-schedule

task-schedule

#pragma omp taskwait

taskwait-end

Fig. 2. Execution of a task happens after the task was generated from the parent; in
case the parent task does a taskwait, the taskwait finishes after the generated task
finished; end of taskgroup is similar

1

2
out:x

1

2
in:x 1

2
in:x

1

2
out:x

#pragma omp task depend(out:x)

#pragma omp task depend(in:x)

#pragma omp task depend(in:x)

#pragma omp task depend(out:x)

Fig. 3. This is the dependency graph for a set of tasks which were created with out, in,
in, and out dependency on x; the end of a task with out dependency happens before
all task-begin of tasks with a dependency on the same address. Tasks with the same in
dependency run concurrently.



256 J. Protze et al.

end happened-before arcs from all dependencies on this storage location. See
Fig. 3 for an illustration of the dependencies-related events and happened-before
synchronization. This also highlights the necessity to store the dependency infor-
mation from task creation until task completion.

If the prior task status signals completion of the previous task, we start
happened-before arcs for the completed task:

– towards a potential taskwait of the parent task
– if the task is in a taskgroup towards the end of the taskgroup
– if the task has dependencies, an arc per dependency.

On a taskwait-end event, we end the happened-before arc from all child tasks.
We use a common token for all child tasks, so this is a single operation.

On a taskgroup-begin event, we push a taskgroup information object on the
taskgroup stack of the encountering task. The stack is necessary because multiple
taskgroup regions might be closely nested within a task. All child tasks inherit
the taskgroup stack on task generation, so they know about their enclosing
taskgroup.

On a taskgroup-end event, we end the happened-before arcs of all child tasks,
targeting to the taskgroup end. Then we pop the taskgroup from the stack of
taskgroups.

3.3 Locking Related OMPT Events

The following events mark the begin and end of mutual exclusion:

– acquired-lock
– acquired-nest-lock-first
– acquired-critical
– acquired-atomic
– acquired-ordered
– released-lock
– released-nest-lock-last
– released-critical
– released-atomic
– released-ordered

The latest OMPT specification consolidates all above events into a single call-
back for acquired and released with a kind argument for the kind of synchro-
nization. For the happened-before synchronization, we only use the wait-id
argument, so the handling of events is symmetric for all kind of mutex events.

On an acquired event, we end a happened-before arc, that starts on a previous
released event.

To represent the synchronization semantics of locks in a data race analysis,
it is important to start and end the happened-before arc inside of the locked
region. Otherwise, another thread might already enter a locked region, before
the released information is available. To reduce the potential overhead of an
OMPT tool, the released event is invoked after the lock was released and there
is no releasing event in OMPT. We discuss in Sect. 4.1 how we worked around
this issue.
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3.4 OMPT Flush Event

The flush event doesn’t fit into the semantics of the previously discussed event
groups. As touched in Sect. 2.12, happened-before semantics are too strict. But
omitting the handling of flush, we experience false reports on data races in
applications that use flush for synchronization. Implementing the right semantics
for flush in our tool is subject of future work. But for now, we found that the
information provided by the flush event is not sufficient for data race analysis
as we will discuss in Sect. 4.6.

3.5 Team and Task Information Structures

We create an information object for each team and each task, which we store
in the runtime scope of this team or task using the parallel data and
task data fields provided by OMPT. In this section we detail on the nec-
essary members of these objects. Both kinds of objects contain tokens, that we
use to annotate different synchronization points.

A team object contains:

– two tokens for barriers, the tasks of the team use them alternating; we
also use one of the tokens for the fork of the team.

A task object contains:

– a token for the task, that is used for the annotation, task-create before
task-execution and task-deferring before rescheduling,

– a token for taskwait, which is used to annotate synchronization between
the end of all child tasks and the taskwait,

– a barrier index, that toggles between odd and even barrier count,
– a reference count for direct child tasks, the object is only freed when

the task and all child tasks finished execution,
– a reference to the parent task object,
– a reference to the implicit task object in the stack next to this task,
– a reference to the currently active taskgroup object,
– a copy of the list of dependencies and a dependency count.

A taskgroup object contains:

– a token for the taskgroup,
– a reference to the enclosing taskgroup.

4 Implementation Challenges and OMPT Shortcomings

In this section we discuss challenges, potential pitfalls and open issues which we
encountered implementing the synchronization annotations in an OMPT-based
tool.
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4.1 Annotation of Locking

For TSan a happened-before annotation consists of writing memory at the start
of the happened-before arc and reading the memory at the end of the arc. If the
memory access is not synchronized, expressing the happened-before arc fails,
since the read possibly happens before the write. For the annotation of locking
this means, that the annotation needs to take place, while the thread owns a
lock, that prevents the other thread from entering the locked region.

OMPT only provides the events acquiring (i.e. asking for the lock), acquired
(when the lock is acquired) and released (after the lock was released) of a lock.
OMPT does not provide a releasing event to safe the potential overhead in the
critical path of execution. As depicted in Fig. 4a we would need to describe a
happened-before arc from a releasing event to the next acquired event. And an
arc from a released event to the acquired event goes potentially backwards in
time.

As work-around for this issue we set an own mutex in each acquired event,
before we end the happened-before arc and release the mutex in the match-
ing released event after we started the happened-before arc. This approach is
depicted in Fig. 4. This way we can guarantee that we annotate the end of a
happened-before arc only after we annotated the begin of the happened-before
arc. Since the OpenMP runtime already acquired a lock, we don’t expect lock
contention. It just might be the case, that the previous locked region still holds
the mutex to finish the released event.

1 1
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3

4

2

3

4

critical-acquiring

//omp critical

critical-acquired

critical-releasing

//end of omp critical

critical-released

(a)

3

4

4

4

4

4 2

runtime unlocks wait id runtime acquired lock wait id

TsanHappensBefore(wait id)

TsanHappensAfter(wait id)}
tool unlock(wait id)} tool lock(wait id)

critical-acquired{

//end of omp critical

critical-released{

(b)

Fig. 4. (a) OMPT doesn’t provide a releasing event. Using the released event to start
the happened-before arc potentially results in a happened-before arc backwards in
time. (b) We use an additional lock in the tool, to extend the exclusive region into the
released callback. This way we can express the proper happened-before semantics.

4.2 Annotation of Task Dependencies

As discussed in Sect. 3.2, the synchronization behavior is different for in and out
dependencies. The end of a task with an in dependency happens before a task
begins with the same out dependency. The end of a task with an out dependency
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happens before a task begins with the same in or out dependency. That means,
at the task begin with an in dependency, we need to differ the happened-before
arcs that come from in or out dependencies.

So, we need two different tokens for starting the happened-before arc of in
dependencies and out dependencies. This token need to be common knowledge
of all task using the dependency and for TSan the requirement for a token is
that it needs to be a valid memory address of the process. For this reason, it
is natural to use the address of the dependency as the token to annotate the
happened-before arc. Since we need two tokens, we use the address provided as
dependency and the address next to this address, assuming that applications
will not use byte-sized variables as dependencies.

4.3 Ordered Construct with Depend Clause

For the online analysis that we apply in our data race detection tool, we rely
on the scheduling decision provided by the runtime. We simply annotate any
acquire of an ordered construct to happen after any release of the same ordered
construct. This might be an overestimation and potentially hide data races. Since
the depend clause allows the runtime to schedule multiple ordered regions at the
same time, our tool might detect races in these concurrently executed regions.
A tool which performs post-mortem analysis might not be able to observe this
runtime decision and would assume mutual exclusive execution of all ordered
regions in a loop. To improve precision of the analysis, we suggest to extend the
notion of OMPT dependences to cover also the ordered construct.

4.4 Taskwait Construct with Depend Clause

Similar as with the ordered construct, we currently overestimate the synchro-
nization effect of a taskwait construct with depend clause. In the analysis we
assume that all tasks that finished before the taskwait region ends are synchro-
nized by this taskwait region. With the additional information about the depend
clause, the analysis would be more precise.

4.5 OMPT Events of Reductions

The current specification of OMPT provides no events for a reduction. The
OpenMP specification does not require a specific point in the application execu-
tion, where the reduction needs to take place. Also an OpenMP implementation
has a lot of freedom to implement the reduction algorithm, which results in var-
ious scenarios of memory access patterns. Threads might accumulate the own
value to another thread’s reduction value, threads might fetch other thread’s
reduction value and accumulate at the own reduction value, a master thread
might collect all reduction values. The reduction might also be implemented
solely with atomic operations.
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We propose the following events for the implementation of reductions:

– release-reduction: thread will not touch reduction variable after this event
– reduction-begin: begin of reduction operations
– reduction-end: end of reduction operations

We think, that release-reduction and reduction-end can share the same call-
back function. The callback function needs to provide information about the
local copy of the reduction variable.

The LLVM/OpenMP runtime implements most reductions inside the syn-
chronization of the barrier. So as a temporary workaround, we ignore memory
accesses inside of OpenMP barriers. If a task is scheduled in the barrier, we turn
of ignoring memory accesses and turn it back on, when the barrier gets active
again. This works in most cases for this specific runtime, but we don’t expect
this to be a portable workaround.

4.6 Information on Flush-Set

The current specification of the flush event as of TR4 only provides information
on the source code of the flush (codeptr ra) and the current thread, but no
information on the provided list argument, which describes the flush-set of the
flush operation. To derive the right flush semantics for data race detection, this
information would be necessary.

We propose to extend the definition of ompt callback flush t by an
array of pointers, an array of length and a size argument:

1 typedef void (*ompt_callback_flush_t) (
2 ompt_data_t * thread_data,
3 const void * list_item,
4 size_t * list_item_length,
5 int list_length,
6 const void * codeptr_ra);

5 Implementation Results

To evaluate the overhead introduced by the TLC-aware data race analysis, we
run SPEC OMP 2012 [6,11] on a machine with Intel Xeon E5-2650 v4 CPUs
with 12 cores. We bind all threads to the same socket using OMP BIND=close
and OMP PLACES=cores. Since the tool introduces a runtime overhead of about
2–20x – in some cases up to 125x – we only use the train dataset, which is the
medium size for this SPEC benchmark.

ThreadSanitizer is optimized to run fast for race-free programs. If TSan
detects data races, handling the report introduces significant runtime overhead.
Printing the report happens under mutual exclusion to guarantee readable out-
put without interleaving from multiple threads printing at the same time. Fur-
thermore, TSan filters the output, so the report function also compares the lat-
est finding with previous reports. Because of the filtering, TSan typically prints
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reports only in the first few iterations; later races would mainly be duplicates.
For actual debugging a user would typically interrupt the execution after some
reports were printed, fix the issue and restart execution.

For better comparison we measure the overhead for the plain analysis without
generating reports. Also ThreadSanitizer suggests this mode for benchmarking.
In this mode, TSan intercepts all memory accesses, logs the memory access,
analyses the memory access for potential data races. Also synchronization infor-
mation is processed. The only difference from the normal mode is that in case of
a detected data race TSan returns like there was no race instead of processing
the report.

We use the LLVM/clang compiler 4.0 for the C/C++ codes and gfortran 6.2.0
for the Fortran codes. Both compilers provide the flag -fsanitize=thread to
activate the compile time instrumentation for ThreadSanitizer. For the OpenMP
runtime we use the LLVM/OpenMP runtime of the OpenMP tools subcommittee
that implements the TR4 interface of OMPT.

5.1 Overhead Results

In Fig. 5 we plot the slowdown of the tool, which is runtime with tool divided by
runtime without tool. We set the x-axis to 1, which is the normalized runtime of
the application, i.e., the bar represents the tool overhead. As depicted, the overall
measured slowdown is in the 2–20x range as claimed in the ThreadSanitizer
documentation (“5–15x”[10]). But there are a some exceptions. Looking into
the specific applications, this increased overhead mainly comes from fine-grain
synchronization. In Table 1 we list some statistics important for the analysis
tool. The two benchmarks where the tool shows overall high runtime overhead
are 359.botsspar and 370.mgrid331. Both applications run for less than a second.

In this short time 359.botsspar already creates a large number of tasks. The
synchronization for tasks happens from task to task. Hence, most of the time
only one OS thread is involved. Another reason for a higher overhead is the use of
untied tasks in this application. Since the tasks have no further task scheduling
point, the tasks can only execute straight to the end. The code that the compiler
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Table 1. OMPT synchronization events during the execution of SPEC OMP 2012,
size train on 12 threads

generates for the untied task leads to a total of 4 task switches per task. This
creates double the synchronization cost as for tied tasks.

370.mgrid331 creates more than 6000 parallel regions in just 0.3 s. Each par-
allel region ends with an implicit barrier, according to the data, about every third
parallel region contains an additional barrier. For the happened-before analysis
a barrier means a store to the same synchronization clock from every participat-
ing thread and a load afterwards. The writes to the synchronization clock need
to be locked, so the synchronization cost for the barrier grows linearly with the
number of threads, additionally we can expect increasing lock contention for a
bigger number of threads. With less threads, chances are higher that a thread
already finished the store when another thread arrives at the barrier. This results
in the big increase of overhead for 12 threads.

For 352.nab we see another spike for 12 threads. This application also has
a lot of barriers, which lead to the same issue as discussed for 370.mgrid331.
For both applications the strong scaling contributes to the issue; with increasing
number of threads, the work per thread decreases. This means the frequency of
barriers also increases with number of threads. These two linear effects multiply
and lead to quadratic overhead.

376.kdtree is the only application in the benchmark that uses OpenMP tasks
in a recursive algorithm. This results in 1.5 billion of task in the train size. In an
average execution with 12 threads, this application has a maximum number of
about 550 concurrent tasks, counting tasks that are created, but not finished. For
recursive algorithms with OpenMP tasks, at some point task creation gets too
expensive compared to the workload; at this point, applications can use a serial
cut-off. The remaining recursion is executed in a serialized fashion. 376.kdtree
implements the cut-off by using #pragma omp task if with a dynamic con-
dition. This means the task cannot be deferred and executes immediately. Taking
this information into account, there are only 1.5 million tasks that are not unde-
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ferred. By handling the undeferred tasks in a special way, we were able to reduce
the runtime for 376.kdtree with 12 threads and ThreadSanitizer from about 450 s
to 200 s. This reduced the overhead from 30x to 13x.

Finally, there is another spike for 350.md. This application is compute-bound
on this machine since the problem size fits into cache and hence even 12 threads
are not sufficient to exhaust the memory bandwidth. For smaller number of
threads, this leads to the low runtime overhead with the tool. The code bal-
ance changes with the additional memory accesses coming from ThreadSanitizer,
which adds about 4 times the memory foot print.

5.2 Data Race Results

Running the analysis, we were able to detect a data race in 367.imagick, which
is caused by a concurrent write to a shared variable inside of a parallel region in
magick decorate.c:492. Making this variable private for the parallel region
would resolve the data race.

Further, we could detect data races in 371.applu331. For this application
we had the problem, that it uses custom synchronization on the base of condi-
tional variables and flushes (in syncs.f90). The tool reports data races for the
accesses of the conditional variable. By annotating these parts of the code, we
were able to feed ThreadSanitizer with the synchronization information. With
this annotations in the code, ThreadSanitizer only reports actual data races:

– blts.f90:76 read after write in blts.f90:66, caused by the do nowait
and the access to v(1, i, j-1, k).

– buts.f90:77 read after write in buts.f90:243-247, caused by the
access to v(1, i, j+1, k), v(2, i, j+1, k), ...

372.smithwa is the other application that uses flushes to implement synchroniza-
tion with conditional variables. For this application we don’t see reported data
races after the annotation of the synchronization in the application. We reported
the identified data races to the SPEC group.

For some of the Fortran applications we see warnings about lock-order inver-
sion coming from libgfortran. Because the file accesses in the application only
happen in the serial part, the lock-order inversion is a benign issue. It is a known
issue with ThreadSanitizer, that it reports lock-order inversion, although only a
single thread accesses the lock.

6 Conclusions

In this paper we discussed whether OMPT provides sufficient information to
derive all synchronization semantics needed for data race detection. We based
the analysis on a happened-before based model. But we think, the observations
would also apply for a different analysis model, based on lock-set or plain analysis
of OpenMP flush semantics. We implemented a data race detection tool based
on OMPT. With OMPT based annotations, the tool passes most of the tests in
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our test suite. We pointed out three missing pieces of information in the OMPT
interface, that is information about reduction, information about depend clause
on taskwait and ordered constructs, and information on flush-set for flushes.
We provided guidance on how to apply on-the-fly analysis for OpenMP mutual
exclusion with the missing releasing event.

Further, we discussed the necessary OMPT events, to derive the synchro-
nization information for data race analysis. To enable data race analysis based
on these events, an OpenMP implementation needs to implement and provide
callback invocation for these events. The issue here is that some of these call-
back invocations are optional according to current specification. This affects
especially the events for taskwait, taskgroup, barrier and locks. If a data race
detection tool cannot rely on these events, the advantage of portability across
OpenMP implementations is gone. Therefore we suggest to make these callback
invocations mandatory in the OpenMP specification.
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Abstract. Analyzing the behavior of OpenMP programs and their
interaction with the hardware is essential for locating performance bottle-
necks and identifying performance optimization opportunities. However,
current architectures only provide a small number of dedicated registers
to quantify hardware events, which strongly limits the scope of perfor-
mance analyses. Hardware event multiplexing can help cover more events,
but incurs a significant loss of accuracy and introduces overheads that
change the behavior of program execution significantly. In this paper,
we present an implementation of our technique for building a unique,
coherent profile that contains all available hardware events from multiple
executions of the same OpenMP program, each monitoring only a subset
of the available hardware events. Reconciliation of the execution profiles
relies on a new labeling scheme for OpenMP that uniquely identifies each
dynamic unit of work across executions under dynamic scheduling across
processing units. We show that our approach yields significantly better
accuracy and lower monitoring overhead per execution than hardware
event multiplexing.

Keywords: Performance analysis · Hardware events · Performance
monitoring counters · OpenMP profiling

1 Introduction

Monitoring hardware behavior during the execution of an OpenMP program can
reveal performance bottlenecks arising from the parallel structure of the soft-
ware, characteristics of the hardware, and the complex interactions over shared
resources. This behavior can be investigated by counting the number of occur-
rences of specific hardware events during execution using Performance Moni-
toring Counters (PMCs; dedicated on-chip registers). The counts can then be
related to the individual regions of an OpenMP program during post-mortem
performance analysis to enable reasoning about the variation in performance and
hardware behavior across the program’s execution. Various tools use hardware
event monitoring to enable performance analysis of parallel programs [1,2,4,19].
However, as the number of available PMCs is generally orders of magnitude lower
than the number of hardware events, only a small fraction of available hardware
c© Springer International Publishing AG 2017
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events can be monitored simultaneously, which severely limits analyses involv-
ing multiple hardware events. Furthermore, there are architecture-specific design
constraints for PMCs that often result in incompatibilities between events. Cer-
tain sets of events can therefore not be monitored simultaneously with other
events, even if there are enough PMCs.

Hardware Event Multiplexing (HEM) is a common technique for alleviating
the limitations imposed by event incompatibility and a lack of PMC availability.
It consists of time-sharing the PMCs: subsets of hardware events are regularly
rotated to be monitored, intending that each event is monitored over a repre-
sentative sample of the execution. The Linux kernel’s perf event subsystem pro-
vides a standard implementation of HEM, although other works have attempted
to enhance HEM by improving its interpolation mechanism between sampled
counts [8–10] or optimizing its event scheduler to achieve better coverage of
events [3]. However, because HEM time-shares the events, for any particular
profiled event, there are necessarily periods of execution during which the event
is not monitored. In previous work [14], we investigated the accuracy of profile
data acquired from OpenStream [17] programs via HEM, and found that HEM
is unable to produce accurate hardware event values for dynamic fine-grained
task-parallel programs. In [14] we presented a significantly more accurate pro-
filing technique for OpenStream programs, where data acquired during multiple
executions is fused into a single, coherent execution profile. A somewhat related
concept, known as trace alignment [6,12], was studied for sequential programs,
but it hinges on identifying sequentially ordered execution phases, and is there-
fore not applicable to OpenMP’s dynamic parallel schedules. To our knowledge,
there is no other work which aims to reconcile the hardware event performance
data observed in distinct executions to produce a complete, consistent view of
hardware behavior of OpenMP programs.

In this paper, we present a multi-execution combination approach for
OpenMP programs and evaluate its accuracy in comparison to HEM. Our app-
roach targets a model-centric analysis and therefore focuses on monitoring at
the granularity of execution units (XUs), a term we use in this paper to refer to
two kinds of dynamically executed work in an OpenMP program: an executed
instance of an OpenMP task construct or an executed range of iterations from
an OpenMP for loop instance. Accurate performance monitoring data at this
granularity is important to allow for a statistical approach to performance analy-
ses, enabling the detection of performance bottlenecks arising from program and
architecture characteristics, such as in [5,11]. Furthermore, by ensuring perfor-
mance data reliability at this granularity, we enable all analyses that operate
at higher levels of abstraction, ensuring, for example, accurate measurements of
performance metrics aggregated across sets of XUs, e.g., per core, per NUMA
node or per OpenMP construct.

This paper makes the following two main contributions:

– We present a labeling scheme for OpenMP XUs, which uniquely identifies
each XU irrespective of runtime scheduling, ensuring that XUs are identifiable
across multiple dynamic executions.
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– We present an implementation of our multi-execution combination approach
for OpenMP and evaluate its accuracy against HEM. We implement three
strategies for combination: Label Graph Location, Behavior Clustering, and
present a new strategy called Chronological Type Combination.

We describe our use of the Aftermath-OpenMP [4] instrumented OpenMP
runtime to generate per-XU hardware event monitoring data in Sect. 2. An
overview of our multi-execution combination approach and implementation
strategies are detailed in Sect. 3. Section 4 presents our new OpenMP labeling
scheme. Section 5 contains our evaluation for the combination approaches and
HEM.

2 Generating OpenMP Execution Profiles

Our approach operates on the set of all XUs executed during a program and
their associated performance monitoring data. Our definition of XUs is based
on the higher-level OpenMP language constructs rather than on their generated
code and dynamic execution. This means that even if the runtime system reaches
a scheduling point and breaks down an XU into multiple chunks, possibly exe-
cuting across multiple worker threads, the XU is considered to be the sum of its
parts.

1 int main(int argc , char** argv){

2
3 #pragma omp parallel num_threads(2)

4 {

5 #pragma omp for schedule(static) // 2 XUs

6 for (int i = 0; i < 8; i++) {

7 #pragma omp task // 8 XUs

8 {...}

9 }

10
11 #pragma omp for schedule(dynamic , 2) // 4 XUs

12 for (int i = 0; i < 8; i++) {

13 ...

14 }

15
16 #pragma omp task // 2 XUs

17 {...}

18 }

19
20 return 0;

21 }

Listing 1.1. Example OpenMP program and resulting execution units.
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The example OpenMP program in Listing 1.1 creates 16 XUs as follows.
On Line 5, the static schedule of the for construct implies that each of the
two worker threads declared in the team of the parallel construct (Line 3)
receives half of the iterations, which makes up 2 XUs. Each iteration of this
same loop further creates one task on Line 7, resulting in 8 XUs. In the second
for construct, in Line 11, the dynamic schedule with a chunk size of 2 results in
4 XUs, each containing 2 iterations. Finally, the last task construct, on Line 16,
occurs within the body of the parallel region, so each of the two worker threads
will create their own instance, creating the last 2 XUs.

A set of hardware events are monitored during a profiling execution of a
program. Each executed XU u is therefore associated with a set of pairs composed
of the event and the number of occurences during the execution of u, referred
to as the event counts. In this paper, we define the function count set(u,E) to
return the set of counts associated to u for all events in the event set E, where
for simplicity E is the complete set of hardware events associated with u if the
second argument of the function is omitted. For a given execution, we refer to
the entire set of XUs together with their complete set of profiled event counts
as an execution profile, or profile for short. We finally define the type of an XU
to be a syntactic identifier for its corresponding language construct within the
code, with T being the set of all XU types defined in the program specification.

We rely on Aftermath-OpenMP [4] to trace OpenMP execution and enable
generation of execution profiles. In this paper, we note E to be the set of avail-
able hardware events on the system. As described in the introduction, hardware
event monitoring is limited by the available PMCs. Assuming for simplicity that
there are no incompatibilities and any hardware event can be monitored in any
PMC, event counts cannot be associated with all XUs in an Aftermath-OpenMP
execution profile when the number of events to be profiled exceeds the number of
available PMCs NPMC. To overcome this problem, we combine the data of XUs
profiled during multiple distinct executions into a single, coherent profile where
all XUs are associated with event counts for each event in E , thus achieving
complete execution profiles.

3 Execution Profile Combination

To generate a complete execution profile, where each XU has hardware event
values for all available hardware events, our approach is to execute a pro-
gram repeatedly and to monitor a different set of hardware events for each run,
instead of rotating hardware events over the duration of a single execution as in
HEM. The different profiles are then combined using one of the three strategies
described below. Among them, the Chronological Type Combination is new in
this paper, while the other two have been adapted to OpenMP from our previous
work [14], notably requiring the development of an XU labeling scheme.

Execution profile combination starts by generating n subsets of E , where each
subset can be monitored simultaneously on the system. The union of all subsets
must cover E , but subsets need not be exclusive and event overlaps can even be
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Fig. 1. Combination of two profiles. The highlights denote an example derived XU u4
z

that is generated from two source XUs u4
x and u6

y.

necessary depending on the combination strategy. The target program is then
executed n times with the same input and configuration but with each execution
monitoring a different event subset, to produce a set of execution profiles.

The goal of execution profile combination is to apply a combination to these
profiles in order to produce a combined profile. A combined profile consists of a
set of derived XUs that are each generated from a unique set of XUs {u1, . . . , un},
with each XU’s subscript indicating a different source execution profile. A derived
XU is therefore associated with the hardware event monitoring data from each of
the associated XUs. This ensures that it has monitored hardware event counts for
all events in E , where each associated event count was observed in an execution
during which the event was monitored throughout the entire duration. Figure 1
illustrates the approach in the case of a combination of two profiles Px and
Py, where for clarity we include a superscript identifier with each XU. The
highlighted XUs and the dotted line represent an example of a combination
step, in which the task profiles of u4

x and u6
y are combined for u4

z.
Selecting the set of XUs to combine across distinct executions of an OpenMP

program is non-trivial. OpenMP programs can exhibit highly dynamic behavior
at execution time, such that two executions of the same program with identical
input may vary significantly. Such variability is unavoidable in modern systems.
Firstly, because of the complexity of the hardware, possibly starting execution
in different states (e.g., CPU power-modes), the complex interactions between
the software and hardware (e.g., the cache hierarchy, memory prefetcher, branch
predictor), or interference from the software stack (e.g., the OS scheduler). Sec-
ondly, because the execution of OpenMP constructs (e.g., task, for) can be
scheduled dynamically to worker threads by the runtime system. Furthermore,
as the same workers may be assigned entirely different work during different exe-
cutions, particularly for OpenMP programs that specify very unbalanced work
shares through the use of single, master or section directives, this may cause
partial reordering of work between different executions. If the behavior at execu-
tion time of selected XUs significantly varied between the executions, then the
combination may produce inaccurate profiles that have hardware event counts
that are not representative of what occurs in any single program execution. To
alleviate these issues, we have devised the following combination strategies.
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Chronological Type Combination. Assuming that executions could be iden-
tical in their scheduling, system environment and behavior at execution time,
then the execution times and allocation of XUs to worker threads across distinct
executions of the program would be the same. Moreover, one would expect the
same hardware events to occur at the same relative time across each execution of
the program. Under these optimistic assumptions, a combination strategy that
selects XUs of the same type by the chronological order of their start timestamps,
called Chronological Type Combination (CTC), is a natural first choice.

Let {P1, . . . , Pn} be the unordered set of execution profiles to be combined
via CTC into a resulting combined profile PCTC. Let further {U1, . . . , Un} denote
the corresponding sets of XUs within each profile. Here we assume the basic case,
where events monitored during an execution are not also monitored during any
other execution. If the event sets of executions overlap, then the first profile
containing each event contributes the event’s counts to the combined profile,
and subsequent monitored event values are unused and therefore redundant.
The CTC combination strategy is as follows:

1 For each type τ ∈ T :
2 From each profile, get all XUs with type τ , to give Uτ = {Uτ

1 , . . . , Uτ
n}

3 Sort each U ∈ Uτ chronologically by start duration
4 While all U ∈ Uτ have remaining tasks:
5 Select the first XU from each U ∈ Uτ to give the set Uτ

selected

6 Create a new, derived XU denoted u
7 For each u′ ∈ Uτ

selected, add count set(u′) to u
8 Add u and its event counts to PCTC

9 Remove all u′ ∈ Uτ
selected from the respective sets U ∈ Uτ

Label Graph Location. The Label Graph Location (LGL) combination strat-
egy maps the XUs from multiple profiles by uniquely identifying each dynamic
instance across executions. These XUs are of the same type, have identical input
data and generate identical output data, and are created following the same
path of execution through OpenMP constructs in the code. In order to com-
bine OpenMP programs with LGL, we attach to each XU a unique identifier
called a label, that is consistent for that XU across dynamic executions. We
define a function label that associates a label to an XU, which we present for
OpenMP programs in Sect. 4. The LGL combination strategy selects those XUs
with matching labels across executions.

The LGL combination, as with CTC, operates on an unordered set of pro-
files {P1, . . . , Pn}, again assuming no overlapping events between the monitored
executions. The combined profile PLGL is generated as follows:

1 For each label ∈ L:
2 Get the set of XUs with label from each profile, to give Ulabel

3 Create a new, derived XU denoted u
4 For each u′ ∈ Ulabel, add count_set(u′) to u
5 Add u and its event counts to PLGL
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Behavior Clustering. The Behavior Clustering (BC) combination strategy
accounts for dynamic execution variation between profiles by selecting XUs of
the same type that had similar hardware behavior at execution time in each
profile. This means that XUs that are combined by BC may be different sets
of iterations of the same parallel loop, or different instances of the same task
construct, but that exhibit more similar hardware behavior (e.g., interaction
with cache) than XUs with equivalent label across executions.

BC combination operates on an ordered set of profiles 〈P1, . . . , Pn〉 with cor-
responding sets of events monitored during each execution 〈E1, . . . , En〉. The BC
process is recursive, combining two profiles in each recursion step to accretively
build up to the final combined profile. At each step, the resulting profile of the
previous combination Pprev is combined with the next profile in the ordered set
Pcur to produce the profile Pcombined, which becomes Pprev for the next step. The
first step combines P1 and P2 directly, with the final profile therefore produced
after n − 1 combinations.

BC combines two profiles by selecting the XUs that behaved similarly during
each execution, with respect to a subset of hardware events. To do this, in
contrast to CTC or LGL, BC requires overlapping events between Pprev and
Pcur, such that Eprev ∩ Ecur �= ∅. The process is defined as follows:

1 For each type τ ∈ T
2 Select XUs of type τ from Pprev, Pcur to give Uτ

prev, Uτ
cur

3 For each grid division parameter d = dmax to 1:
4 Cluster XUs of Uτ

prev, Uτ
cur on Eprev ∩ Ecur according to d

5 For each XU cluster, containing XU sets Uτ
prev,cluster, U

τ
cur,cluster:

6 Sort Uτ
prev,cluster by labels

7 Sort Uτ
cur,cluster by labels

8 Select each pair of XUs by sorted position to give (uprev, ucur):
9 Create a new, derived XU denoted u

10 Add count_set(uprev, Eprev) to u
11 Add count_set(ucur, Ecur \ Eprev) to u
12 Add u and its event counts to Pcombined

13 Remove uprev and ucur from Uτ
prev and Uτ

cur, respectively

In line 4, XUs are clustered. To do this, a grid is defined of dimension Ndim,
where each dimension corresponds to an overlapping hardware event. The value
range for each event is divided by a grid division parameter d to produce dNdim

cells, which we term clusters. The XUs from each profile are then allocated to
clusters according to their values for each of the overlapping events, where in
Line 8, XUs are selected for combination by corresponding position in the label-
ordered sets. As there may not be the same number of XUs from Pprev and
Pcur populated in each cluster, not all XUs may be combined after this cluster-
ing process. To ensure that all XUs can be combined, the clustering process is
repeated with a decremented grid division parameter, resulting in larger clusters
and a reduced constraint on the event count similarity of selected XUs. This
process continues until at least one profile is exhausted of XUs.



Accurate and Complete Hardware Profiling for OpenMP 273

In this paper, we also evaluate a slightly modified version of BC, where the
combined XU pairs within each cluster are selected at random and not according
to the label order. This was done to evaluate whether labeling is necessary for
BC, and therefore BC’s applicability to OpenMP runtimes which do not carry
out the necessary instrumentation to enable labeling of XUs.

All three combination strategies are designed to combine execution profiles
of the same program with the same inputs, differing in their handling of XU
behavior variation between profiles. The three strategies may also be applied to
non-deterministic programs with different numbers of XUs across the executions.
In this case, the CTC and BC combined profiles consist of the maximum number
of XUs that exist across all execution profiles, for each task type. The LGL
combined profile consists of XUs corresponding to the subset of labels present
in all profiles.

The LGL and BC combination strategies are described in further detail
in [14]. To work on OpenMP programs, LGL and BC require the labeling scheme
presented in the next section.

4 Labeling OpenMP Programs

Both LGL and BC rely on a labeling scheme that uniquely identifies the same
XU, as statically defined in the parallel structure of the program, across a set
of executions. The labeling is independent from any external influence, such as
the scheduling of XUs or resource allocation. The notion of identity is similar for
the identity that we defined for task-parallel languages in [14]. In such models,
each task t except the root task, representing the initial sequential execution
of the program, has a parent task tp that is defined as the task that executed
the instructions creating t. Two tasks t and t′ are considered identical iff their
respective parents are identical and iff the number of tasks created by their
respective parents tp and t′p before t and t′ is the same. The label of a task
is defined as the concatenation of the label of its parent, a delimiter and the
number of tasks created by its parent before its own creation with an artificial
label ‘0’ for the root task. Since the execution within a task is sequential, the
labels are independent of the actual order of task execution by the scheduler and
allows tasks to be identified reliably across executions.

We now extend this scheme to the XUs of OpenMP programs.

4.1 Labeling Scheme

An XU can only be created if the creating thread has previously encountered
one or more OpenMP constructs, as an OpenMP task or iteration range must be
specified within at least one parallel construct or for construct, respectively.
As OpenMP supports nested parallelism, XUs may be created during the exe-
cution of others. For the remainder of this section, we define the function par
to return the parent XU or OpenMP construct of another XU or OpenMP con-
struct. To define the labeling scheme, we make a distinction between an XU and
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an OpenMP construct. A construct is the entity in the structure of an OpenMP
program corresponding to an omp pragma that a worker can encounter during
its execution, whereas an XU is an executable instance of a task construct or
block of iterations from a for construct. For example, referring to the program
given in Listing 1.1, the OpenMP runtime creates the first iteration range XU
spanning four iterations after the thread encounters a parallel construct and a
subsequent for construct. The labeling function label applies to an XU when it
is initially created, or to an instance of a worker encountering a construct, and
we refer to either as uc. A worker encountering a task construct and creating a
task instance XU are equivalent with respect to the labeling, and are treated as
the same uc.

The labeling function is defined as follows:

label(uc) =
{
‘0’ if uc is root
label(par(uc)) ⊕ sibidx(uc) otherwise

where ⊕ denotes the concatenation of two labels with a delimiter. The function
sibidx returns a value depending on the kind of uc:

sibidx(u) =

⎧
⎨

⎩

start_iteration(uc) if uc is iteration range
next_rank(par(uc)) ⊕ addr(uc) if uc is for

next_rank_TID(uc) ⊕ addr(uc) if uc in task, parallel, section

In this rule set, start_iteration(uc) returns the index of first executed iter-
ation of the iteration set uc as the label index, and addr(uc) returns the mem-
ory address of the source location of the OpenMP construct associated to uc.
A rank is a monotonically increasing integer that is initialized to 1 and repre-
sents the rank of uc in the creation order of it and its siblings. The function
next_rank(par(uc)) therefore retrieves the next sibling index from the parent.
This means that the label indexes are dependent on an order existing between
uc and its siblings. As it is legal for a task, section or parallel construct
to be defined directly inside a parent parallel construct, the semantics of the
program define no order that they are encountered by the threads in the parallel
team. In this special case, uc’s rank within its parent parallel construct is set
to 0, and a further label index is concatenated using the TID that created the
instance of uc with respect to the number of workers in the team. This is a
forced ordering that ensures unique labels for all XUs are maintained. The func-
tion next_rank_TID carries out this special case of the labeling scheme, should
it occur:

next_rank_TID(uc) ={
‘0’ ⊕ TID + prev_calls(par(uc)) · workers(par(uc)) if par(uc) is parallel
next_rank(par(uc)) ⊕ addr(uc) otherwise

A for construct can also occur directly within a parent parallel construct.
However, the XUs created from it will be strictly ordered by their start iteration
so do not require special labeling.
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In the presented labeling scheme, single, master and critical constructs
were not included. This is because they are not necessary for the purposes of
labeling XUs that are encountered within them, as they either define which
worker should create the XU or enforce timing constraints on the creation, both
of which the labeling scheme is insensitive to.

For the experimental evaluation, we have implemented the labeling scheme
into Aftermath-OpenMP, such that profiling data from different executions can
be related to the same instances of work as defined in the program code, subject
to the aforementioned variability at execution time.

By labeling the XUs of an OpenMP program, the set of XUs and their cre-
ation relationships can be depicted as a Label Graph. Each node of this graph
represents an XU or OpenMP construct and edges represent the casual relation-
ships between their creations in the program.

4.2 Labeling Example

Figure 2 shows the label graph for the example OpenMP program in Listing 1.1
with 16 profiled XUs. The label for each of the XUs highlighted in gray can

Fig. 2. OpenMP Label Graph of example program, where gray highlights the profiled
XUs. Memory addresses are replaced by line numbers for purposes of illustration.
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be constructed by concatenating the edge indexes and OpenMP construct line
numbers, descending the graph in order from root to the XU. In this example, the
line numbers represent the memory locations given as the result of addr in the
above ruleset, and the oval-shaped entities are included only to aid clarity and
do not represent actual OpenMP constructs. The diamond-shaped edge indexes
represent forced ranking, where there is no strict ordering for these XUs with
respect to their siblings in the semantics of the OpenMP program.

In the next section, we use the labels together with our combination strategies
to evaluate the capability of our approach to produce full and accurate hardware
event monitoring data for OpenMP programs.

5 Evaluation

We evaluate our approach with the different combination strategies using Exe-
cution Profile Dissimilarity (EPD), a metric derived from the Earth Mover’s
Distance (EMD) [18]. EPD quantifies the relative accuracy of generated perfor-
mance monitoring data, where we define accuracy as its similarity with perfor-
mance monitoring data produced in reference executions. In a reference execu-
tion, all of the hardware events are monitored simultaneously, i.e., without any
form of multiplexing or combination. A lower EPD therefore represents higher
accuracy and thus better reliability when used for analysis.

In this section we first briefly outline EMD before describing its usage for
EPD as presented in earlier work [14]. Following this, we describe the experi-
mental setup and present our results.

5.1 The Earth Mover’s Distance

The EMD, as presented in [18], calculates the similarity between two histograms,
here denoted p and q. EMD conceptually calculates the minimum amount of
‘work’ required to transform the bins of p such that they are equivalent to the
bins of q, where the bins in each histogram contain an amount of earth specified
by its weight. Work between two bins i and j is defined as Wij = ωij ·dist(λi, λj)
with ωij representing the weight moved from i to j and dist representing the
ground distance between the two bins that is based on the bin locations λi and
λj respectively. EMD is then solved as the overall minimum amount of work
necessary to either deplete the weight of p or to fulfill the weight requirement of
q, and is therefore a formulation of the transportation problem, with the bins of
p representing producers and the bins of q representing consumers.

Assuming the total weight in p is equal to the total weight in q, which is
the case in this paper as described below, the EMD is equivalent to the first
Mallow’s distance and the first Wasserstein Distance in mathematics [7].

5.2 Execution Profile Dissimilarity

We now define our usage of EMD, that we term EPD. The similarity of the com-
plete set of hardware event monitoring data within a profile cannot be directly
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calculated against a single reference profile when its profiled hardware events
are not simultaneously compatible on the system. Therefore we define a refer-
ence profile for each possible pair of the hardware events. EPD is then given as
the geometric mean of its calculated EPDs against each reference profile, with
respect to each pair of hardware events.

We denote the pair of hardware events in a given reference profile as Eref.
The two profiles are each represented as a two-dimensional histogram where each
event e ∈ Eref forms a dimension. The histograms are created by dividing each
event’s range of values in the reference profile into n equally spaced intervals,
to produce a two-dimensional grid. Each cell of this grid is a histogram bin to
which the XUs are assigned based on their associated hardware event counts.

EPD defines a histogram bin’s weight as the proportion of XUs allocated
to the bin from the profile. The distance function dist(λi, λj) is defined as the
Euclidean distance between the two bin locations, where a bin location is speci-
fied as a two-dimensional Cartesian coordinate. The coordinate component, with
respect to the dimension for one of the hardware events e, is given by the dis-
tance along that dimension from the histogram’s origin to the mean event count
for e calculated from the XUs populated in the bin. This distance is expressed
in fractional bin-intervals, where the bin interval for an event e is equivalent to
its value range in the reference divided by n.

The EPD between the two histograms is then calculated by solving the EMD
algorithm following these definitions. The result is normalized according to the
Calibration EPD. We define the Calibration EPD as the mean dissimilarity cal-
culated between the profiles of repeated reference executions of the program,
meaning it therefore quantifies the average expected variability of the event
counts. The final EPD result between the target evaluation profile and a partic-
ular reference profile is then its mean EPD calculated against each of the repeat
reference profiles.

5.3 Experimental Methodology

We evaluate our combination approach against HEM on a 32-core machine
equipped with Intel Xeon E5-2690 processors running with Hyper-Threading
enabled and an operating frequency of 2:93 GHz, with 396 GB main memory dis-
tributed over two NUMA nodes. The machine was configured with version 3.19
of the Linux kernel, using the kernel’s default multiplexing implementation of
the perf event subsystem with the default multiplexing scheduling period of 4
ms for HEM. In our experiments, we used the FastEMD library [16].

For evaluation, the loop-based parallel benchmarks MG and CG from the
C implementation of the NPB benchmark suite [13,15], and a custom task-
parallel OpenMP C implementation of the branch-and-bound solution to the
knapsack problem were used. Two versions of MG and CG programs were pro-
filed, one using static loop scheduling and the other using dynamic scheduling.
The dynamic scheduling was configured with chunk sizes of 10 and 100 respec-
tively.
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For each benchmark, each reference execution was repeated 3 times and the
mean dissimilarity between each repeat was calculated as the Calibration EPD
for the reference event-pair. The set of profiles to be combined were executed and
the combination strategies were applied to produce a set of combined profiles.
The EPD of each combined profile against each reference pair was calculated
as the mean EPD between the profile and each repeat reference profile corre-
sponding to the pair. The final EPD value for a profile was then the geometric
mean of the EPD calculated across the full set of reference pairs. This process
was repeated 3 times, with the final EPD result for a strategy calculated as
the mean EPD of the repeat combined profile, and error calculated as standard
deviation.

5.4 Results

Figure 3 shows the resulting EPDs for the different combination schemes when
applied to the 5 combinations of benchmarks and loop schedules. HEM dis-
plays by far the highest dissimilarities compared to simultaneous profiling of
the events. This major decrease in accuracy is inherent to single-profile sam-
pling techniques like HEM: since it is impossible to monitor all hardware events
throughout the entire execution, a significant part of the data is obtained through
statistical interpolation. Depending on the number of events, the multiplexing
period and the duration of XUs, this might result in event counts for XUs inter-
polated from the values of previously executed XUs with different characteristics.
The large number of hardware events that can be monitored on modern systems
and the short durations of XUs in OpenMP programs would require a sampling
period that is significantly shorter than the default 4 ms in the experimental
setup in order to obtain samples for all events for each XU. However, a signifi-
cantly shorter multiplexing period would incur significant overhead and generate

Fig. 3. EPD results for generated hardware event profiles
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biased results. Therefore, HEM provides meaningful results only for a limited
set of analysis scenarios.

The multi-execution profile combination strategies achieve hardware event
profiles with vastly more accurate results. The EPD values for these are close
to the Calibration EPD. For most of the benchmarks, CTC clearly produces
less accurate combined profiles than the other combination strategies. The CTC
strategy assumes that the same XUs perform the same amount of work, execute
in the same order and on the same CPUs across the multiple executions of an
OpenMP program. The higher EPD results for CTC indicate that this assump-
tion is not valid for most of the benchmarks. However, the results for CTC
applied to the statically scheduled CG benchmark are close to the Calibration
EPD, meaning that, as expected, the validity of this assumption heavily depends
on the nature of the benchmark. Furthermore, as no significant event-scheduling
work is required when monitoring the executions necessary for our combination
approach, each monitored execution does not exhibit the significant monitoring
overhead produced during HEM executions with short mutiplexing periods.

Comparing the results of the LGL and BC combination strategies, there is
no clear difference in accuracy, as their resulting EPDs are similarly close to
the Calibration EPD across each of the benchmarks. The graph also shows that
labeling in BC only has little influence on the accuracy, as indicated by the sim-
ilar results for BC and BC (Unlabeled). This suggests that the additional trace
processing required to apply labels to XUs is not necessary to obtain accurate
hardware event profiles and that our combination approach may be used directly
on OpenMP runtimes that are unable to produce the necessary instrumentation
for labeling purposes.

6 Conclusion

We presented a new approach for building accurate and complete hardware pro-
files of OpenMP programs that consists of combining information gathered from
multiple executions of the same program into a unique, coherent execution pro-
file. We presented three combination strategies: Chronological Type Combina-
tion (CTC), Label Graph Location (LGL) and Behavior Clustering (BC). We
introduced CTC as a novel combination strategy technique and presented the
work required to adapt LGL and BC to OpenMP, mainly consisting in an appro-
priate labeling scheme for OpenMP execution units and constructs. Based on our
EPD metric, a variant of the Earth Mover’s Distance, we showed that our app-
roach can be used to build execution profiles that contain information about
all hardware event types available, while achieving significantly better accuracy
than Hardware Event Multiplexing.
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Abstract. The OpenMP (The OpenMP name is a registered trademark
of the OpenMP Architecture Review Board.) application programming
interface provides a simple way for programmers to write parallel pro-
grams that are portable between machines and vendors. Programmers
parallelize their programs to obtain higher performance, but, as the num-
ber of cores per processor increases, taking advantage of parallelism effi-
ciently becomes more difficult. To facilitate efficient parallelization and
avoid poor utilization of machine resources, programmers need to know
where an application is spending time and what factors hinder scalability.

In this paper, we present a Tool for Runtime Instrumentation of
OpenMP programs (TRIO) that automatically collects statistics about
an application’s use of the OpenMP runtime. TRIO provides statistics
such as the total number of times an OpenMP construct is called, the
time spent in each OpenMP construct, and the total time spent within
the OpenMP runtime. TRIO helps to identify the runtime calls where
a program spends most of the time and which constructs are called the
most at runtime.

Keywords: Runtime instrumentation · OpenMP constructs

1 Introduction

The OpenMP API is a directive-based programming model that facilitates the
implementation of shared memory parallel programs that are portable between
machines and vendors. Programmers parallelize their programs to reduce their
execution time, but they often find that the speedups of the parallel programs are
significantly lower than expected or even that there is slowdown with respect to
the sequential program. In many cases the highest performance is not obtained
when all the hardware threads and/or cores are used. This can sometimes
be explained because synchronization operations take longer as the number of
threads increases, and the benefit of running the application with extra threads
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cannot compensate for the additional synchronization overhead. Programmers
use profilers, such as TAU [1] or Intel R© VTuneTM Amplifier [2], to determine
the overheads that limit the scalability of their applications. Profilers can give
information about time spent in each function or number of cache misses, but
they often lack information about where the time is spent inside the OpenMP
runtime.

TRIO is implemented as instrumentation inside the OpenMP runtime. It col-
lects statistics from unmodified OpenMP programs as they execute. These statis-
tics provide information about the number of times a given OpenMP construct
is called and the time the application spends inside each OpenMP construct.
TRIO separates the time the application is doing useful computation (compute
time) from the time inside the runtime (non-compute time), where threads are
not performing any useful computation.

TRIO was developed to analyze whether the OpenMP runtime was a limiting
factor in the scalability of the applications and to set priorities for OpenMP run-
time development. The goal was to have a low-overhead mechanism to study the
use of the OpenMP runtime in real applications. Evaluating the OpenMP run-
time with micro-benchmarks can produce the wrong conclusions, as, since bench-
marks do little or no real computation, the runtime’s data structures remain in
cache across invocations, which is not the case when running real applications.

After TRIO was developed, we realized that the information it produces is
also useful to application programmers who need to optimize their codes. The
information provided by TRIO can help the programmer to determine how to
re-structure their code and reason about the possible performance improvements
that could be obtained if issues are addressed. For instance, using TRIO, a pro-
grammer can find the time spent in fork-join or plain barrier. If this time is
large, the programmer can use TRIO to determine whether this time is due to
work imbalance in parallel loops or to a large number of fork-join and/or plain
barriers. However, since the focus of TRIO is OpenMP constructs implemented
in the OpenMP runtime, it does not provide all the information the program-
mer needs to scale the application. For instance, in parallel programs, memory
bandwidth frequently becomes a bottleneck as the number of threads increases.
The instrumented OpenMP runtime cannot provide that information, which can
be provided by profilers, such as Intel R© VTuneTM Amplifier.

TRIO can be used on hybrid MPI+OpenMP applications. Currently, it gives
aggregated information for all the threads in a process. Providing per-thread
information is possible, but TRIO was designed to provide an overview of the
OpenMP usage, not detailed information. Thus, TRIO is a complement to pro-
filers, but not a substitute. TRIO provides high-level profiling information by
setting LD LIBRARY PATH to point to the instrumented OpenMP runtime library.

In this paper, we show the output produced by TRIO for some CORAL
benchmarks [3] and discuss how to use TRIO to pinpoint the tradeoffs of different
approaches. The paper is organized as follows. Section 2 discusses Related Work.
Section 3 describes how TRIO works. Section 4 presents Experimental Setup.
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Section 5 discusses the data provided by TRIO with some CORAL application.
Section 6 uses some examples to show the usage of TRIO. Section 7 concludes.
Finally, the Appendix shows the text file produced by TRIO.

2 Related Work

A lot of work has been done on profiling tools, such as Intel R© VTuneTM Amplifier
which provide in depth analyses to identify bottlenecks for scalability. Tools such
as MAQAO [4], TAU [1], ompP [5], Kojak [6], Scalasca [7] and Vampir [8] provide
thread-level information and can report some OpenMP specific information when
this is available. Many of these tools, like TAU, Kojak, and Scalasca, use a source-
to-source code transformation utility (Opari [9]) to parse C/C++ and Fortran
source code, locate OpenMP pragmas, and insert instrumentation via the POMP
interface [9]. TRIO, on the other hand, can be used without code recompilation
or re-linking and does not depend on any external tool or GUI to work.

There have been earlier attempts to define a tool interface for OpenMP, such
as POMP [9] and the OpenMP Runtime API (ORA) known as the Collector
API [10]. Neither of these approaches has been widely adopted.

HPC Toolkit [11] is a more complex set of tools than TRIO, that instru-
ments the binary and profiles it at runtime and that can handle hybrid MPI and
OpenMP applications.

It is undoubtedly the case that the information collected by TRIO could also
be derived from the more detailed information collected by other, more general,
profilers. However the very generality of such tools makes it hard to provide
the limited, but focused, information that we are looking for easily and at low
overhead.

Since TRIO is implemented inside the OpenMP runtime, it is very easy
to use. There is no need to install any profiler or device drivers that enable
access to performance monitor counters. All that is required is to ensure that
the appropriate version of the OpenMP runtime is used. Thus, no privileges or
interaction with owners/managers of the systems on which the code is run is
needed. TRIO’s low overhead and ease of use mean that it is an appropriate tool
for initial performance assessments of the use of the OpenMP runtime in real
applications.

The TRIO code is available in the LLVM OpenMP runtime1, and can be
enabled by compiling the runtime with the -DLIBOMP STATS=on flag to cmake.

2.1 Comparison Between TRIO and OMPT

Since OpenMP 4.0, the tools sub-committee of the OpenMP language committee
has been working to create a portable interface between performance tools and
OpenMP implementations, known as OMPT [12]. An initial version of OMPT
was presented as a “technical report” (TR2) to OpenMP 4.5, and a revised

1 http://openmp.llvm.org.

http://openmp.llvm.org
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version of those interfaces is included in OpenMP TR4 which is the working
draft for the OpenMP 5.0 standard. Here we explain the differences between
OMPT and TRIO.

OMPT is a standard set of interface definitions that allow an external tool to
interact with the OpenMP implementation at places where events happen in the
conceptual execution of the user’s OpenMP code. It is a general framework that,
on its own, does not generate any information at all. To use it a performance
tool’s data collector must be loaded into the application process’ address space
(normally by using LD PRELOAD) that then interacts with the OMPT interfaces
in the OpenMP runtime library which will then make callbacks into the data
collector at the points which were requested. The details of what data is collected
and how it is processed or saved are left to the data collection library, and,
ultimately, the profiling tool which is used. OMPT is therefore extremely general
and intended to support multiple profiling tools.

TRIO has much lower ambition. It is not intended as a general interface
standard to support multiple other profilers, nor is it trying to provide detailed
analysis of user code. Instead, it is designed easily to provide detailed information
about the behavior of the OpenMP runtime code itself, and information for
the runtime authors about which runtime interfaces are being used. It is not
intended to be portable between different runtimes, or to support general tools.
It outputs text files which can be read directly, or post-processed with simple
Python scripts.

Since OMPT instrumentation points are specified in terms of the abstract
execution model, they are not appropriate for the simple timing of operations
inside the OpenMP runtime. For instance, OMPT allows a callback to be made
into the data collection library when a thread enters or leaves a worksharing con-
struct such as an omp for/do loop. However, there are no OMPT calls that wrap
the entry and exit from the runtime functions which are used to perform loop
scheduling operations. TRIO, on the other hand, counts and times these opera-
tions explicitly. Similar constraints apply to other areas which we are interested
in examining.

When used with a sampling based profiler, the OMPT interfaces can provide
information about the internals of an OpenMP runtime. However, for simplicity,
TRIO does not use sampling (which potentially requires the installation of a
device driver) but simply records timestamps at specific places in the OpenMP
runtime and assigns the measured elapsed time to different operations.

3 Methods

To assess the time that an application spends inside the OpenMP runtime we use
multiple mechanisms. Firstly, we use the EPCC OpenMP microbenchmarks [13]
to measure the overheads of each individual OpenMP construct (Sect. 3.1). Sec-
ondly, to count the number of times an application calls a given OpenMP con-
struct and the time each thread spends inside the OpenMP runtime, we instru-
mented the OpenMP runtime (Sect. 3.2).
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3.1 OpenMP Construct Overheads Using Benchmarks

To estimate the wall-clock time an application spends inside the runtime we
need to know the number of times a given OpenMP construct is called and the
overhead of the construct for a given number of threads. We used the EPCC
OpenMP microbenchmarks (v3.1) to measure the overhead of various OpenMP
constructs. In addition we extended EPCC to measure the overheads of #pragma
omp for nowait, which eliminates the barrier at the end of the for loop, thus
measuring only the overhead of the for construct. To compute the overhead of
creating a task, we wrote our own benchmark. We did this to measure just the
overhead of task creation, as the numbers reported by EPCC also include the
cost of a fork-join barrier in a parallel region.

3.2 Instrumented OpenMP Runtime

We used our instrumented OpenMP library to collect information about the
CORAL applications (this instrumented library has been open sourced and is
now part of LLVM [14]). The instrumentation provides counters and timers.
The counters count the number of times a given OpenMP construct is called.
The timers collect information about the amount of time the OpenMP runtime
spends in each construct. The timers are classified as either compute time or non-
compute time. The compute times represent the time that the application spends
doing useful computation, such as time inside a parallel or master region. The
non-compute time represents time spent inside the runtime (such as in scheduling
an omp for construct) or otherwise not doing useful work (such as idle time in
worker threads while the master is executing serial code or time spent inside a
fork-join or plain barrier). The complete list of compute and non-compute timers
is shown in Table 1.

For the instrumentation we used a set of timers to partition the application’s
clock ticks into a series of separate events. To do this, whenever an event switch
occurs, e.g., a thread enters a parallel region, the thread stops its current timer
by recording the current time-stamp counter (obtained via the RDTSC instruc-
tion). Then it starts the next event’s timer by again recording the current time-
stamp counter. After a timer is stopped, that timer’s statistics are updated. In
between event switches, there are small gaps of time not counted in any explicit
timer which count as timer overhead. When the timer overhead is a relatively
large percentage of the application’s execution time, this indicates that numer-
ous OpenMP event switches occur and the application is spending too much
time inside the OpenMP runtime library. The counters increment whenever a
particular event occurs e.g. a parallel region is encountered. They allow the user
to see the number of event occurrences during the lifetime of the application.

Overheads in Terms of Resource Units. The instrumented OpenMP run-
time measures overhead in terms of resource units, not wall time. (A resource
unit represents resources which could have been used, so is measured in CPU
seconds, however it is not the same as CPU time measured by the kernel, since
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Table 1. OpenMP counters and timers in the instrumented OpenMP runtime

Timers Counters

Compute time Non compute time

OMP parallel
OMP serial
OMP master
OMP single
OMP critical
OMP task plain bar
OMP task immediate
OMP task taskwait
OMP task taskgroup
OMP task join bar
OMP task taskyield

OMP plain barrier
OMP fork join barrier
FOR static scheduling
FOR dynamic scheduling
OMP critical wait
OMP idle

OMP PARALLEL
OMP NESTED PARALLEL
OMP FOR static
OMP FOR dynamic
OMP DISTRIBUTE
OMP BARRIER
OMP CRITICAL
OMP SINGLE
OMP MASTER
OMP TEAMS
OMP set lock
OMP test lock
REDUCE wait
REDUCE nowait
OMP TASKYIELD
TASK executed
TASK cancelled
TASK stolen

we count time even if a thread has been put to sleep in the kernel and is not
executing). Thus if the application is running with 10 threads, when the mas-
ter thread is running serially between parallel regions, the sequential time in
the master thread will be reported as OMP serial. However, the idle time of
the other 9 threads is reported in OMP idle, which reports the sum of the idle
time in each thread. Thus, when the application runs with a large number of
threads, a small percentage of serial time can result in a significant amount of
idle time. For the synchronization constructs in Table 1, such as plain barrier
or fork join barrier, the instrumented OpenMP runtime allows us to mea-
sure the amount of time that an application spends in a barrier in terms of
resource units, that is, the sum of the times that each thread spends waiting
at a barrier. The problem with this metric is that it measures both the time
it takes to execute the barrier itself and the imbalance of the barrier. Thus,
we have tried to split the time spent executing the barrier from the time the
threads are idle due to imbalance. We can do that because we know the number
of times a given OpenMP construct is called. In addition, we know the over-
head of a given construct (from the EPCC benchmark). Thus, we can assume
that the overhead due to the execution of a given construct in the program is
#OpenMP construct * overhead construct. Hence, we can compute the real
imbalance as below. Notice that the overhead of a construct usually depends on
the number of threads executing the application, so we need to use the appro-
priate value.
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Real Imbalance =
cycles spent in a construct

freq processor
− (#construct× overhead #threads)

Walltime Overheads of the OpenMP Runtime. We modeled the wallclock
overhead of the OpenMP runtime in addition to the run time of the application.
To perform this analysis, we need to compute the time the application spends
inside the OpenMP runtime. This can be done by multiplying the number of
times an application calls a given construct by the time it takes to execute that
construct. Since the total count reported is a sum of calls per thread, we divide
it by the number of threads. The overhead of each OpenMP construct can be
estimated based on the data collected from the EPCC benchmarks. These times
represent the minimum possible time for each construct because all data required
for those constructs in EPCC will be in cache, as the benchmark does no other
intervening work that might remove that data from cache.

As mentioned in the introduction, the experimental results collected with
microbenchmarks do not represent faithfully the usage pattern of the construct
in the real application, but we have used them to provide an estimate of the
walltime the application spends inside the runtime or the imbalance of the appli-
cation.

4 Experimental Setup

We performed experiments on an Intel R© Xeon PhiTM CPU 7210 (formerly
known as “Knights Landing”, and referred to here as KNL). Our KNL has
64 cores, 4 threads/core and a frequency of 1.30 GHz. It has 96 GB of RAM
(DDR4 2400 MHz, 6 * 16 GB DIMMS), 32 KB of L1 data and instruction cache
and 1 MB of L2 cache. The L2 cache is shared by two cores, which comprise
a single tile. The KNL also has 16 GB (8 * 2 GB) of MCDRAM. The KNL is
configured to be in flat memory mode and quadrant cluster mode. Flat memory
mode presents us with the options to use only DDR, both MCDRAM and DDR,
or only MCDRAM. The application can be run with our instrumented OpenMP
runtime.

We ran experiments for several of the CORAL benchmarks (HACC, Nekbone,
QMCPACK, QBOX, CAMSE, UMT and AMG) with varying combinations of
MPI ranks and OpenMP threads to find the best performing configuration for
a single node run. The runs for overhead analysis were done with the maximum
number of OpenMP threads and small data sets, to limit data parallelism and
stress the OpenMP runtime. For space reasons we show only selected results.

5 Results

In this Section we show the data collected by TRIO (Sect. 5.1) and the Walltime
Overheads of the OpenMP runtime (Sect. 5.2).
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5.1 Data from Instrumented OpenMP

In this Section, we report the experimental data. Figure 1 shows the results for
HACC. We use radar plots to show the counters for the OpenMP constructs
that the application uses. To be able to compare counters across applications,
the counters are normalized with respect to the execution time, giving a rate at
which the counted event is occurring. Thus, for a given construct, the plots show
the log(OMPCount×10e9

TotalT ime ). However, when the quotient becomes smaller than 1,
the log becomes a negative value. Thus, for values smaller than 1, we use a linear
representation and do not compute the logarithm; for values larger than 1, we
compute the logarithm. To visualize this in a single plot, the linear values are
represented with a red line, while the logarithmic values are represented with
a blue line. This normalization enables us to compare these radar charts across
applications.

Fig. 1. Timers and counters for HACC. Geometry = 2 × 2 × 2, NP= 128, 8 MPI Rank
and 8 OpenMP threads

Pie plots are used to represent the OpenMP timers. First, the total time of the
application is decomposed in compute and non-compute time. Then, the compute
and non-compute times are further decomposed in separate pie plots. Remem-
ber that these times are measured in terms of resource units, not wall times, as
explained in Sect. 3.2. In Fig. 1, the pie-charts show the distribution of total time
in terms of compute and non-compute time. With a configuration of 8 MPI Ranks
and 8 OpenMP threads we see 44% compute time and 56% non-compute time. The
major share of non-compute here is due to OMP idle which appears as a result of
the 8% OMP serial time in the compute region, which means that 7 threads have
no work to do, so they are idle. Therefore 7 × 8% ≈ 56% of the resources are idle
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Table 2. HACC real imbalance. Geometry = 2 × 2 × 2, NP= 128, 8 MPI ranks and 8
OpenMP threads, Runtime = 29.51 s

Construct Application imbalance (%) Runtime overhead (%)

OMP fork join barrier 0.05 0.64

for this period, which is close to 55% time reported by TRIO. The counters are
represented using radar charts. For this application, the non-zero values were high
and the linear representation was not needed. Table 2 splits the barrier time into
imbalance and barrier overhead using the method explained in Sect. 3.2. Imbal-
ance is a property of the application, but barrier time might be improved with
a better barrier implementation or improved hardware. Overall we see that the
main problem with this application is that a significant portion of time is spent
in a serial region and as the number of cores increases, this causes a lot of ineffi-
ciency. Notice that the overhead of TRIO is very low. In fact, in our experiments,
we barely see any difference between the runtimes of the application running with
TRIO versus the runtimes of the application running with the un-instrumented
OpenMP library.

The radar and pie plots used here are not part of TRIO itself. TRIO generates
a text file (shown in the Appendix at the end) that contains all the information
needed to assess the impact of the OpenMP runtime on the application running
times. We have written separate Python scripts that process the information in
that text file to obtain these plots.

5.2 Walltime Overheads of the OpenMP Runtime

In this Section, we analyze the wallclock overhead of the OpenMP runtime. For
that, we have used the overheads of the different OpenMP constructs on KNL
for the different number of threads using the EPCC benchmarks, as shown in
Table 3. Since our KNL machine has 64 cores, for number of threads ≤ 64, we
placed one Thread per Core (1T/C). For larger number of threads, we placed
more than one thread per core (2-4T/C). As explained in Sect. 3.1, the over-
heads of task creation and for nowait (in the last two columns in Table 3),
were measured using our own benchmarks. As the table shows, these overheads
increase with the number of threads. The increase rate is different for each con-
struct, but in all the cases it is significantly less than linear.

Table 5 shows the walltime overheads of the OpenMP runtime for the dif-
ferent CORAL applications. We performed this study with 1 MPI rank and
256 OpenMP threads running on KNL (notice that this point is rarely the one
that delivers the best speedups; actually, for some applications it gives signif-
icant slowdowns, but this ensures the maximum OpenMP overhead). For each
application, the walltime is shown in Table 4. Table 5 also shows the number of
times a construct is called and the overhead of each construct for 256 threads.
Based on these times, the table shows the percentage of time each applica-
tion spends in the OpenMP runtime; this is ≤1% of the time in most cases.
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Table 3. OpenMP construct overheads for different number of threads. Experimental
data were collected using the EPCC benchmark on KNL. (T/C = threads/core)

OpenMP

threads

Overhead times (µs)

BARRIER FOR PARALLEL PARALLEL

FOR

REDUCTION SINGLE CRITICAL Task-

creation

FOR-

nowait

1 (1T/C) 0.08 0.20 0.81 0.93 1.00 0.19 0.24 0.44 0.13

2 (1T/C) 0.46 0.63 1.51 1.75 1.73 0.53 0.23 0.77 0.16

4 (1T/C) 0.93 1.13 2.12 2.34 2.34 1.12 0.57 0.77 0.16

8 (1T/C) 1.72 1.90 3.00 2.96 3.12 2.03 0.60 0.77 0.16

16 (1T/C) 2.21 2.42 3.29 3.52 6.83 2.70 0.64 0.78 0.16

32 (1T/C) 3.12 3.29 4.38 4.61 8.71 3.89 0.79 0.8 0.16

64 (1T/C) 4.33 5.23 6.03 6.29 11.66 5.91 0.90 0.8 0.17

128 (2T/C) 5.74 6.25 8.38 8.71 15.68 6.78 1.01 1.57 0.24

192 (3T/C) 7.21 7.74 10.49 11.09 20.26 7.94 1.21 2.60 0.33

256 (4T/C) 8.77 9.96 12.45 13.60 24.73 9.45 1.52 4.38 0.40

Table 4. Runtime of application with 1 MPI rank and 256 OpenMP threads (KNL)

Application MPI ranks OpenMP threads Input size Time (s)

Nekbone 1 256 NELM:4096 10.46

QMCPACK 1 256 DMCSAMPLES= 1280 1881.7

HACC 1 256 NG = 64 36.83

QBOX 1 256 mgo.N64.i 116.6

UMT 1 256 numzones(5, 5, 5) 33.27

AMG 8 32 -r 36 36 36 12.05

Table 5. Overheads due to OpenMP constructs w.r.t. wall clock time (KNL)

OpenMP Counters/thread EPCC Overhead(%)
Constructs Nekbone QMCPACK HACC UMT QBOX AMG Overheads (µs) Nekbone QMCPACK HACC UMT QBOX AMG

OMP PARALLEL 2 - 30830 1210 974480 9520 12.45 0.00 - 1.04 0.05 10.41 0.98

OMP FOR STATIC 0 7344 30781 1206 972109 9514 0.39 0.00 0.00 0.03 0.00 0.33 0.03

OMP BARRIER 3606 - - - - - 8.77 0.30 - - - - -

OMP CRITICAL 0 35 - - - - 1.52 0.00 0.00 - - - -

OMP SINGLE 1 - - - - - 25.96 0.00 - - - - -

OMP MASTER 5 - - - - - - 0.00 - - - - -

REDUCE nowait - 80 - - - 3167 24.73 - 0.00 - - - 0.65

For HACC, the application spends 1% of time inside #pragma omp parallel,
but this application has 30830 calls to #pragma omp parallel, for a walltime
of 36 s (an average of about 850 fork-join operations per second, or one every
1.2 ms). Nekbone spends 0.3% of time inside the OpenMP barrier, but this appli-
cation executes 3606 barrier in walltime of 10 s (one every 2.8 ms). AMG spends
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around 1.66% of time inside the OpenMP runtime due to fork-join constructs
and reduce constructs when running with 8 MPI ranks and 32 threads.

QBOX is the only application that spends a non-negligible amount of time
(10.74%) inside the OpenMP runtime. This is due to the large number of fork-
join constructs when running with a single MPI rank and 256 threads, when it
executes an average of 8400 fork-join constructs per second (one every 119µs).
In fact, it seems there is a linear relationship between the frequency of fork-
join constructs and the overhead of the OpenMP runtime. In HACC, with a
frequency of about 850 fork-join constructs per second, we have 1% overhead,
whereas for QBOX, with a frequency 10 times greater (8400 fork-join constructs
per second), we have 10% overhead. Remember that these are worst case scenario
numbers, because a fork-join construct for 256 threads has a cost of 13.60 µs
while for 64 threads it has a cost of 6.29 µs and the application is not scaling,
so we are paying a higher overhead in the runtime, while the application is
not running faster with the added threads. We notice that for QBOX the best
configuration is 16 MPI ranks and 4 threads per rank with walltime of 11.15 s
and 1.70% overhead due to fork-join constructs. In this case, there are a total of
89860 #pragma omp parallel calls i.e., 8060 calls per second. Even though the
frequency of call is approximately the same, the cost of fork-join construct is 6
times greater for 256 threads than for 4 threads (2.34 µs versus 13.6 µs).

To assess the overheads of TRIO we ran the CLOMP benchmark, only for
static scheduling, 10 times with and without TRIO. It was observed that at
times, runs using TRIO completed faster than non-TRIO runs. CLOMP was
run as ./clomp 64 -1 512000 400 32 1 100 and reported runtime of about
30–31 s for all the runs. The difference between the fastest and slowest runs with
the two configurations varied from −4.71% to 4.66%. This can be attributed
to the variability in runtime across executions of the same configuration. For
example, the difference between the best and worst runtimes of the 10 executions
of CLOMP without TRIO show a difference of 4.49%. The raw TRIO output
for a single run is included in the Appendix.

6 Examples of How to Use TRIO

In this Section, we discuss some examples of how to use TRIO. In the first
example we discuss how TRIO can be used to analyze the time spent inside the
OpenMP runtime. For example, if an application calls #pragma omp parallel
for inside an outer serial loop, the application will incur the overhead of the
fork-join once for each outer iteration. Sometimes this can be avoided by placing
#pragma omp parallel outside the loop so that the fork-join only happens once.
Here we show such a scenario in QMCPACK.

We have evaluated three different versions of the QMCPACK microbench-
mark, “baseline”, “nested” and “parallel-for”, as shown in Figs. 2(a), (b) and (c),
respectively. “Baseline” represents the best implementation. This version divides
the OpenMP threads into application teams2, the number of application teams
2 These are application teams and crews and do not refer to OpenMP constructs.
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Fig. 2. QMCPACK pseudo-code. For simplicity, L%crews == 0.

depends on the number of crews, i.e. for 256 threads with 4 crews, there are 64
teams. The work of an individual team is divided among its 4 crew members.
This code exploits parallelism in a similar way to that obtained by nesting, but
without using nesting, and it is the programmer who takes care of data map-
ping. The dimension of the work is NxMxL. We use var++ to represent a big code
section for synchronization and reduction among the crews in a team.

Both “nested” and “parallel-for” exploit nested OpenMP parallelism. The
major difference is the placement of nested parallel. In the “nested” version
the nested parallel is placed outside a series of for loops and the main ker-
nel calls #pragma omp for for parallelism. This approach makes threads per-
form redundant, replicated, computation but reduces the number of fork-joins.
The “parallel for” version calls the level 2 parallelism from within a series of
for loops. This leads to multiple fork-joins, hence greatly increasing the running
times.

Figure 3 show the counters and execution times for the three different code
versions in Fig. 2 running on KNL. The configurations compared are for the same
amount of work. The splines for input were set to 2k, the tile size was chosen to
be 64, and experiments were run for 100 iterations.

The implementation of the “parallel-for” code has about 1M more fork and
join barriers due to the placement of the nested parallel region. As a result,
the “parallel-for” code is significantly slower than the “nested” version (3750 s
versus 1554 s). In the “nested” version threads perform some redundant work
and use a plain barrier and master constructs, but this version significantly
reduces the number of fork-join constructs This example shows how to reduce
OpenMP overheads by considering the overheads of different runtime constructs
and removing costly ones. Notice that the difference in execution times between
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Fig. 3. Counters for baseline, nested and parallel-for QMCPACK versions

“baseline” and “nested” is small (1483 vs. 1554 s). A similar problem to the
one in “parallel-for” version is observed in the QBOX(1M fork-joins) and AMG
codes.

TRIO also helps to identify cases where frequent calls do not represent an
issue with small number of threads, but as the number of threads increases, the
construct overhead becomes a significant contributor to total non-compute time.
One such example is seen with the QBOX benchmark code, as shown in Table 5.

7 Conclusion

In this paper, we have discussed TRIO, a simple and easy to use tool that collects
information about an application’s use of the OpenMP runtime. TRIO is useful
for an initial performance evaluation, specially in complex codes, where OpenMP
directives are nested inside MPI, but not to fine tune applications. TRIO is also
useful to optimize the OpenMP runtime itself. TRIO does not require any change
in the application (not even relinking), has negligible overhead, and does not need
a GUI. Counters and timers in TRIO provide feedback to the user about the
OpenMP runtime overheads. According to our observations, well written codes
should normally spend a small amount of time inside the OpenMP runtime.
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Appendix

The TRIO output included here in Fig. 4 is from the CLOMP run mentioned
in Sect. 3.2. In the interest of space, we have included only the non-zero fields.
The scripts use the “Total” column to process the results. Even though the
fork and join barrier times are measured separately, we sum them up for
plots. The raw output provides a clearer relationship between OMP idle and
OMP serial, i.e. Total OMP idle can be computed using Total OMP serial as,
((num threads) − 1) × Total OMP serial.

Fig. 4. Raw output from TRIO

Intel and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
Software and workloads used in performance tests may have been optimized for perfor-

mance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated pur-
chases, including the performance of that product when combined with other products. For
more information go to http://www.intel.com/performance.
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Abstract. Intel’s Knights Landing processor (KNL) is the latest prod-
uct in the Xeon Phi product line. As a self-hosted system it is the first
commercially available many-core architecture which can run unmodified
applications. This makes KNL a very interesting option for HPC centers
which have to support many different applications including community
and ISV codes, where code changes are hard or impossible. Of course
running any application and running any application efficiently is not
the same, so it remains to investigate how efficient KNL is in executing
unmodified codes from x86 servers.

In this work we will investigate the Knights Landing architecture with
a focus on its ability to run OpenMP applications efficiently. Kernel
benchmarks are used to investigate basic characteristics like memory
latency and bandwidth. Furthermore, application-like benchmarks like
the NAS parallel benchmarks or SPEC OpenMP benchmarks are used
as well as real applications from RWTH Aachen University. The perfor-
mance is compared to a 2-socket Broadwell system. We consider this a
fair comparison as both architectures are state-of-the-art today and both
roughly cost the same amount of money and consume the same amount
of energy.

1 Introduction

The latest generation of the Intel Xeon Phi family, the Knights Landing (KNL), is
delivered as a stand-alone server. Compared to the predecessor, Knights Corner,
and other accelerators, this eliminates the need to use a host server and transfer
data over a relatively slow PCIe bus. From a total-cost-of-ownership (TCO)
perspective this is very attractive, since the host server is also a significant cost
factor in accelerator based clusters and using host and accelerator simultaneously
in an application has proven to be extremely difficult.

Many operators of high-performance computing centers with a large and
diverse user community hesitate to use accelerators as the main working horse,
because they require code changes from all users. For such centers the KNL archi-
tecture offers an attractive alternative as it offers theoretical peak performance
comparable to accelerator based systems without the need for code changes.
However, the fact that code written for host systems can be executed on a KNL
system does not necessarily mean that the application performs as desired.
c© Springer International Publishing AG 2017
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In this work we want to answer the question if the Intel KNL architecture
is able to replace a two socket host system for shared memory applications.
Therefore, we compare a two-socket Intel Broadwell based system with KNL.
The purchase price we got for both systems differs by 3%, furthermore the energy
consumption is nearly identical (215 W for KNL and 2x 105 W for Broadwell).
As the purchase price and operation costs of both systems are nearly identical,
the system performance determines the most attractive architecture. As many
developers of community codes or ISVs as well as in-house application developers
do not optimize their code for every new architecture, we want to investigate
the performance without manual architecture specific optimization in this work
(Only recompilation for KNL is done). We focus on applications parallelized with
OpenMP in this paper as the most widely used paradigm for shared-memory
parallelization in HPC.

The paper is structured as follows: We present related work in Sect. 2 and
describe the platforms used in Sect. 3. Then kernel benchmark results to inves-
tigate machine characteristics are presented in Sect. 4, before we present results
for more application like benchmarks (i.e. NAS parallel benchmarks and SPEC
OMP benchmarks) in Sect. 5. Finally, we present results for real application
codes developed at RWTH Aachen in Sect. 6 and conclude in Sect. 7.

2 Related Work

Previous studies show that throughput-oriented processors like GPUs are one
way to fulfill the requirement for more and more compute capabilities. This is
not only valid for dense linear algebra kernels [17], but also for memory-bound
kernels like sparse matrix vector multiplication [2] (depending on the matrix
storage format). The Intel Xeon Phi coprocessor Knights Corner (KNC) has also
proven to deliver high throughput performance under some circumstances [5]. In
order to benefit from the compute capabilities of GPUs or KNC, programming
offload kernels either direct through CUDA [12] or OpenCL [8] or through higher-
level directive based abstractions like OpenMP [13] is required. In contrast, the
Intel Xeon Phi processor Knights Landing investigated throughout this work
is not operated as a PCIe accelerator card which makes this offloading step
unnecessary. The KNL is a throughput-optimized host processor rather than
an accelerator. The KNL platform is brand new as well as Intel’s published
optimization guidelines [15]. Intel also provided several performance results for
KNL, but an independent performance evaluation of the architecture was not
present at the time of writing this article.

Benchmarks to investigate the performance of different aspects of an archi-
tecture have been developed in many different studies. Standard benchmarks
to investigate the memory performance of a system are the Stream benchmark
[9] and the LMBench benchmark suite [10]. For OpenMP programs the EPCC
microbenchmarks [3,4] can be used to measure the overhead of OpenMP con-
structs. Furthermore, benchmark suites exist which can be used to compare the
performance of architectures and OpenMP implementations for application-like
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kernels, e.g. the SPEC OMP benchmark suite [11] or the NAS parallel bench-
marks [1]. For OpenMP programs using the new tasking paradigm the Barcelona
OpenMP Task Suite (BOTS) [6] can be used. All of these benchmarks come with
published performance results on different architectures, but only a very few
results for KNL are present so far. Furthermore, this article focuses on different
characteristics of the machine and compares it to a state-of-the-art 2-socket host
system. The insights gained hereby cannot be obtained by a single benchmark
suite as the goal is to give an overall evaluation for OpenMP programs instead
of focusing on a single aspect. We performed a similar study for the predeces-
sor architecture KNC [16], where we compared the KNC to a SandyBridge host
system which was the current Xeon host at that time.

3 Architecture Comparison

In this section we compare the architectural differences between both investi-
gated systems, the Intel Knights Landing and the 2-socket Broadwell server.

3.1 Intel Knights Landing

The core used in KNL is based on the Silvermont microarchitecture with changes
for HPC. The probably most important change is the addition of two 512-bit
wide vector units to each core. Two cores together with a shared L2 cache of
1 MB and a Tag Directory (TD) form a tile which is the building block of this
architecture. Up to 36 tiles are placed on a chip connected cache-coherently
through a 2D-mesh topology, as sketched in Fig. 1(a). 16 GB of MCDRAM
which is high-bandwidth memory is also located on-package. Furthermore, up to
384 GB of DDR4 memory can be attached to the KNL.

Fig. 1. Comparison of both test systems
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The version of KNL investigated throughout this work is an Intel Xeon Phi
Processor 7210 with 64 cores, a base frequency of 1.30 GHz and 96 GB of DDR4
memory.

The Knights Landing has different modes of operation which can be config-
ured through BIOS options. Two of them which are investigated further in this
work are:

Memory Modes: The high-bandwidth memory (HBM), i.e. the MCDRAM, can
be operated in three different modes.

Cache Mode: If booted in cache mode, the HBM is used as a 16 GB cache.
The memory is not visible to the user and used data is automatically cached into
HBM. This mode is the most convenient usage mode, as no changes to software
or environment are needed.

Flat Mode: The HBM is visible to Linux and the user as a NUMA node in the
system without any core associated to it. As a result all cores allocate memory
in DRAM first, according to the first-touch policy applied by Linux. The user
explicitly has to make use of the HBM by allocating on the corresponding NUMA
node using Linux mechanisms for NUMA aware memory placement, e.g. libnuma
API calls or the command line tool numactl.

Hybrid Mode: The hybrid mode is a combination of both other modes. A part
of the memory is used as cache and the other part is provided to the user as a
separate NUMA node. Possible splittings are 8 GB/8 GB or 4 GB/12 GB.

Cluster Modes: Different cluster modes allow to control the memory usage of
the cores further. The three most important modes are:

All-to-all: In this mode, all cores use all memory addresses without any prefer-
ence. So there is no mapping between tile, tag directory and memory location.

Quadrant: As depicted in Fig. 1(a) the chip can be virtually divided in four
quadrants. In this mode, addresses are hashed to a tag directory (TD) in the
same quadrant of the chip as the memory. This results in short distances between
TD and memory reducing the overall traffic on the 2D-mesh interconnect. The
core accessing the memory can still be in any quadrant of the KNL.

Sub-NUMA-clustering: When sub-NUMA-clustering (SNC-4) is used, each
quadrant is used as an individual NUMA node. When the application is pro-
grammed in a NUMA aware manner this allows to have the accessing core, the
tag directory and the memory located in the same quadrant in many cases,
reducing the traffic over the 2D-mesh interconnect even further.

3.2 Broadwell System

The Broadwell based server used in this comparison is a 2-socket system
equipped with Intel Xeon E5-2650v4 processors clocked at 2.20 GHz. As illus-
trated from a high-level perspective in Fig. 1(b), each chip contains 12 cores
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where each core has a private L1 and L2 cache and all cores on a chip share a
30 MB L3 cache. Each socket is connected to 64 GB of main memory and the
two sockets are coupled cache-coherently through the Quick-Path Interconnect
(QPI). This leads to a Non Uniform Memory Access (NUMA) architecture with
24 cores and 128 GB of memory.

4 Kernel Benchmarks

This section contains results of basic kernel benchmarks on the KNL and Broad-
well test systems. Kernel tests are used to investigate single machine character-
istics. Understanding the behavior of kernels is therefore a prerequisite to under-
stand the performance of complex application codes. All tests throughout this
work were compiled using the Intel Compiler v.16.0.

4.1 Memory Performance

First, the performance of the memory subsystem is investigated. Many applica-
tions in HPC are bound by memory accesses and since the KNL is the first x86
architecture with HBM on-chip, these tests give a first indication of the system
performance.

Latency: A benchmark to measure the latency to access memory with a ran-
dom access pattern was used. The benchmark is similar to the pointer-chasing
benchmark in the LMbench benchmark suite [10], but it uses a pre-computed
random offset for every access to prevent prefetching. The benchmark runs single
threaded and with an increasing memory footprint.

Figure 2 shows the memory access latency per data element on Broadwell
and for different scenarios on KNL. KNL-ram and KNL-hbm are measured with
the HBM in flat mode, where numactl is used to let the benchmark use the
DDR (KNL-ram) or HBM (KNL-hbm). For KNL-cache measurements the HBM
was running in cache mode.

For a small memory footprint typical cache behavior can be observed on both
systems. The latency increases with every cache level and levels out after the

Fig. 2. Memory latency for different memory footprints on the KNL and Broadwell
system
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capacity of the last level cache is reached, 1 MB L2 on the KNL and 30 MB L3
on the Broadwell system. On the Broadwell system the latency to main memory,
observed for all larger memory footprints is then about 17 ns and on the KNL
a performance between 30 and 35 ns is reached for both, DDR and HBM. For
latency bound applications there seems to be no difference in the performance
of the on-chip and off-chip memory. If the KNL is running in cache mode, the
latency is the same as long as the memory footprint does not exceed the capacity
of the HBM (i.e. 16 GB). For larger arrays the latency increases as the KNL first
needs to check in the cache (HBM) before the data is loaded from DDR. The
frequency of the KNL is lower than the frequency of the Broadwell system, a
memory load takes about 37 cycles on Broadwell and 38 cycles on the KNL, so
the difference in performance is negligible.

Bandwidth: Bandwidth is another important characteristic of an architecture,
as more HPC applications are bound by bandwidth constraints and not latency
constraints. We used the STREAM benchmark [9] to investigate the memory
bandwidth. STREAM performs simple vector operations on large vectors and
calculates the bandwidth. Results presented in Fig. 3 are for the Triad operation
and for different memory footprints. The benchmark was run with 256 threads
on the KNL and 24 threads on the Broadwell system. OpenMP affinity support
was used to achieve a close thread binding.

Fig. 3. Memory bandwidth reached on the Broadwell and KNL system measured with
STREAM for different memory footprints

In Fig. 3(a) the maximum memory bandwidth achieved is shown for the
Broadwell system and the KNL system running in Quadrant clustering mode.
Quadrant mode is the default mode. Figure 3(b) shows the same with the KNL
running in SNC-4 mode. On the Broadwell system it can be observed that for
smaller memory sizes a performance of up to 150 GB/s is reached within the
L3 cache, but for larger arrays the bandwidth levels out at about 120 GB/s.
Accessing the DDR memory the KNL shows a similar behavior with overall lower
performance, the bandwidth levels out at about 65 GB/s. The HBM achieves a
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better performance and reaches between 150 and 200 GB/s for larger memory
footprints in quadrant and up-to 400 GB/s in SNC4 mode.

We assume the reason for the worse performance in Quadrant mode is a lot
of traffic on the 2D-mesh interconnect and as a result a lot of contention. For
memory bound applications it seems to be a good set-up to run the KNL in
SNC-4 mode.

Fig. 4. Bandwidth reached for an increasing number of threads on the Broadwell and
the KNL system

The speedup of memory bound application is often limited by the scal-
ing of the memory bandwidth with the number of threads. Figure 4 shows
the achieved bandwidth for an increasing number of threads on both systems.
A close OpenMP thread placement is used. On the Broadwell system the typ-
ical behavior of a 2-socket Xeon based machine is observed, the memory band-
width of one socket is saturated with roughly half of the cores of a socket and a
boost in performance can be observed once the second socket is also used. This
is because the second socket has its own memory channels which increase the
overall bandwidth reached. On the KNL the bandwidth of the DDR memory
can be saturated with only 8 threads whereas the bandwidth increases for the
HBM up to 64 threads. This indicates, that the scaling of bandwidth bound
applications depends a lot on the ability to use the HBM.

4.2 Synchronization Overhead

Another important performance aspect of OpenMP programs is the overhead
introduced by OpenMP constructs. In general the overhead rises with the number
of threads and since the KNL requires to use a lot of threads to utilize the
whole system, the OpenMP runtime overhead will be more important on such
a system. On the other hand, the system resides on a single chip in contrast to
the 2-socket Broadwell system, and thus the physical distances between cores is
shorter which might lower the synchronization overhead. We present performance
results obtained with the OpenMP EPCC microbenchmarks (see [3,4]).

Table 1 shows the overhead of synchronization constructs and for task cre-
ation measured on both target systems. The overhead of a parallel for con-
struct with a static scheduling, a barrier construct and of a reduction operation
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Table 1. Overhead in microseconds of OpenMP constructs measured with the EPCC
microbenchmarks on KNL and Broadwell

KNL Broadwell

#thr Parallel

for

Barrier Reduction Parallel

tasks

Master

tasks

#thr Parallel

for

Barrier ReductionParallel

tasks

Master

tasks

1 0.80 0.08 1.33 0.32 0.32 1 0.14 0.01 0.15 0.05 0.05

4 5.93 1.54 5.93 1.28 3.39 4 0.74 0.40 0.89 0.08 2.56

8 6.75 2.35 6.84 2.37 7.91 8 1.02 0.70 2.00 0.37 7.92

32 8.74 4.05 14.13 3.24 66.80 12 1.26 0.80 2.28 0.39 14.30

64 9.32 4.66 15.74 5.91 157.03 24 2.49 1.51 4.60 3.56 79.03

256 26.77 8.17 22.52 34.01 815.58 48 3.27 2.10 6.63 11.14 146.88

is shown. For task creation the overhead to create tasks with all threads in par-
allel (parallel task) and when only the master thread creates tasks (master
tasks) is presented. Note that in the latter case all threads will start executing
tasks out of the master’s task queue which involves locking.

For all constructs it can be observed, that the overhead is higher on the KNL
system compared to Broadwell. Creating a team of threads and distributing a
loop takes 26.77 µs compared to 3.27 µs on the Broadwell system. Of course on
the KNL many more threads need to be created or picked out of the thread pool,
but since the architecture requires such a large amount of threads to utilize all
cores efficiently this needs to be taken into account. The barrier, reduction and
both task creation operations are still slower on the KNL, but only by a factor
of about 4 to 5. This might still be a problem for scaling of an application, but
in most cases reduction operations and barriers are not used that frequently.

Kernel tests in this chapter have shown, that there are no large differences
in the memory latency on both systems relative to the clock rate of the system.
On the KNL also no difference between both types of memory (DDR and HBM)
could be observed regarding latency. The bandwidth however differed a lot, while
the DDR on KNL delivered roughly half the bandwidth of the Broadwell system
(65 GB/s vs. 120 GB/s), the HBM was able to deliver 400 GB/s if the SNC-4
mode was used. For memory bound applications using the HBM seems to be
key to reaching good performance on the KNL. Synchronization in OpenMP
constructs was slower in all cases on the KNL but only by a factor of 4–5.
This can be a performance blocker for applications frequently synchronizing or
creating many small tasks but for many applications this performance should be
acceptable.

5 Benchmarks

The kernel benchmarks presented so far help understand single machine charac-
teristics like the reached memory bandwidth. The performance of real applica-
tions of course is influenced by many of these characteristics. Therefore, in this
section performance results are presented for application-like benchmarks.
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5.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks [1] are a set of benchmarks designed by NASA
Ames to evaluate the performance of parallel supercomputers. We ran the
OpenMP parallel reference implementation of version 3.3 and used the input
size C for all tests.

Table 2 presents performance results on both investigated architectures.
Again the numactl tool was used to run in DDR (KNL-ram) or HBM (KNL-
hbm). All tests were done with different numbers of threads and only the best
result is shown.

Looking at the serial performance it can be observed that the performance
difference is marginal on the KNL between DDR and HBM. The runtime on
Broadwell in comparison is lower for all tests in the serial case. As the clockrate
of the KNL core is about 60% of the Broadwell core this is not surprising.

The performance running in DRAM is worse than for HBM as expected. The
benefit of using the HBM varies from 12% improvement for CG up to 396% for
FT. Overall, the speedup reached on the KNL is between 32 and 145, where
most of the tests reach a speedup of 50 or higher.

KNL outperforms the Broadwell system for all but two benchmarks (BT
and UA). Here the performance drop is 3% and 5% whereas the gain for other
benchmarks is 94% in average with 258% being the top value.

Overall, if an application can run in the HBM the NPBs show that KNL is
advantageous compared to the Broadwell system.

Table 2. Runtime in seconds measured for the NAS Parallel Benchmarks on the KNL
and Broadwell system. Best is the best result from tests with 64/128/192/256 threads
on KNL and 8/12/24/48 threads on Broadwell. Relative for Broadwell means the rel-
ative runtime compared to KNL

KNL-ram KNL-hbm Broadwell

1 thr Best Speedup 1 thr Best Speedup 1 thr Best Speedup Relative

BT 2497.7 66.7 37.4 2553.3 46.18 55.3 682.5 44.6 15.3 −3%

CG 584.1 12.8 45.5 721.1 11.48 62.8 341.5 16.7 20.4 +46%

EP 179.9 3.0 59.8 180.2 1.25 144.2 81.0 4.5 18.1 +258%

FT 300.4 45.9 6.6 302.1 9.25 32.7 201.1 11.6 17.3 +25%

IS 27.1 0.6 49.2 27.4 0.47 58.2 13.8 0.9 16.2 +81%

LU 2044.1 48.8 41.9 2097.9 32.84 63.9 537.0 35.9 15.0 +9%

MG 66.8 7.6 8.8 67.2 1.7 39.6 44.4 4.2 10.5 +148%

SP 1774.9 139.5 12.7 1848.8 34.43 53.7 462.7 67.2 6.9 +95%

UA 3955.0 91.4 43.3 4058.0 64.43 63.0 660.2 61.1 10.8 −5%
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5.2 SPEC OMP2012

SPEC OMP2012 [11] is the latest version of the SPEC benchmark suite for
OpenMP and the version we used for the comparison in this work.

Fig. 5. Performance points obtained for SPEC OMP benchmarks on both target sys-
tems

The performance results reached are shown in Fig. 5. SPEC reports points for
each benchmark, where a higher value represents better performance. On both
systems we ran with different numbers of threads and on KNL in the DRAM,
HBM and also in the cache mode.

The most points reached on both target platforms are presented in Fig. 5. The
picture here is not as clear as with NPB, on more than half of the benchmarks the
Broadwell system achieves more points than KNL. However, when an application
profits from the KNL the performance gain is larger (e.g. 2.5x improvement for
swim) than the penalty for other applications. In total on KNL 125 points are
reached and 105 on Broadwell.

6 Applications

Finally, real application codes are used to compare the KNL and the Broadwell
system. The applications used here are:

– NestedCP: NestedCP [7] was developed at the Virtual Reality Group of the
RWTH Aachen University and is used to extract critical points in unsteady
flow field datasets.

– TrajSearch: TrajSearch is a code to investigate turbulences which occur
during combustion. It is a post-processing code for dissipation element analy-
sis developed by Peters and Wang [14] from the Institute for Combustion
Technology at the RWTH Aachen University.

Figure 6 shows the performance results obtained on both systems for both
applications. The bar charts show runtime and the line charts the corresponding
speedup. The scaling on KNL is good (speedup close to 100) in both cases, but
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Fig. 6. Runtime (bars) and speedup (lines) of the investigated applications on the KNL
and Broadwell system

the serial performance is worse compared to the Broadwell system. For NestedCP
KNL is faster than the Broadwell system, even if the HBM is not used. When
the HBM is used the best result is reached which is 173% faster. For TrajSearch
the Broadwell system is about 10% faster than KNL with no difference if the
DDR or HBM is used.

7 Conclusion

We compared the performance of OpenMP programs on the KNL architecture to a
2-socket Broadwell system. With kernel benchmarks the memory performance was
investigated where we found that the latency for DRAM and HBM on the KNL is
nearly the same and also close to the latency on the Broadwell system with respect
to clock cycles of the machine. The Bandwidth of the HBM was much higher than
the DRAM on KNL (65 vs. 400 GB/s) if the KNL was virtually devised into 4
NUMA quadrants by using the sub-NUMA-clustering (SNC-4) BIOS option. In
the default configuration which was the Quadrant mode roughly half the perfor-
mance was reached. Tests with the EPCC microbenchmarks revealed that syn-
chronization in OpenMP and task creation in OpenMP are more expensive on
the KNL system but only by a factor of up to 5 for synchronization and 8 for the
creation of teams. Reasons might be the 2D-mesh interconnect or the fact that
the runtime is not yet optimized well enough for KNL.

With the NAS parallel benchmarks and SPEC we have seen, that it is key
to use the HBM to have a chance to reach comparable performance on the KNL
in many cases. When the HBM was used, the KNL outperformed the Broadwell
system in 7 out of 9 tests with NPB. When the Broadwell system was faster it was
by up to 5% whereas the KNL was 258% faster in other cases. With SPEC OMP
the KNL reached overall more points than the Broadwell, but the difference was
smaller than for the NPBs. Although with the two tested applications KNL was
faster (+173%) for one and slower (−10%) for the other test.
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In summary, if the HBM can be used on the KNL, the system outperformed
the Broadwell in most cases. When the KNL was faster it was often by a much
higher percentage than in cases where the Broadwell system was faster. This
shows that in average there is more to win for same applications than the penalty
to pay for applications which do not fit too well on the KNL architecture. Overall,
this makes the KNL the winner in our comparison if the HBM can be used by
the applications.

Future work is to investigate different kinds of applications, in particular
MPI parallel applications are the next logical class to investigate. As the KNL
architecture will be available with on chip Omni-path interconnect, the scaling
across nodes is very interesting.
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Abstract. Emerging novel architectures for shared memory parallel
computing are incorporating increasingly creative innovations to deliver
higher memory performance. A notable exemplar of this phenomenon is
the Multi-Channel DRAM (MCDRAM) that is included in the Intel�

XeonPhiTM processors. In this paper, we examine techniques to use
OpenMP to exploit the high bandwidth of MCDRAM by staging data.
In particular, we implement double buffering using OpenMP sections
and tasks to explicitly manage movement of data into MCDRAM. We
compare our double-buffered approach to a non-buffered implementation
and to Intel’s cache mode, in which the system manages the MCDRAM
as a transparent cache. We also demonstrate the sensitivity of perfor-
mance to parameters such as dataset size and the distribution of threads
between compute and copy operations.

1 Introduction

Modern high-performance scientific applications typically place a significant bur-
den on the memory subsystem of compute nodes. Many algorithms routinely used
in modern codes date back to a period where floating-point operations were the
most expensive part of calculation, and as such, many algorithms are optimized
to reduce computation sometimes at the cost of increased memory bandwidth.
As processor designs from leading industry vendors have become more aggres-
sively tuned with respect to the availability of floating-point arithmetic units,
codes which make frequent use of memory-resident data structures have failed to
achieve expected performance gains. Leading high-performance computing cen-
ters have therefore pushed processor designs to incorporate higher bandwidth
memories in order to address the lack of balance between compute and mem-
ory subsystem performance. However, in the case of general-purpose graphics

(“The rights of this work are transferred to the extent transferable according to title
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processing units (GP-GPUs) and, more recently, the Intel� XeonPhiTM proces-
sor, only a limited amount of high-bandwidth memory (HBM) has been made
available due to cost and engineering constraints. The limited capacity of the
available HBM has pushed supercomputer designs to utilize two memories – one
composed of a small but very fast on-package memory technology, and the other,
a slower, capacity memory based around traditional DDR3 or 4. By splitting the
available on-node memory into two domains, or multiple ‘levels’ of memory, the
node designs have become increasingly complex with respect to the placement
and movement of individual data structures.

The application developer is therefore faced with a challenge – where best to
place data structures for performance. For sufficiently large data structures (e.g.
large arrays), even the entire HBM may not have the capacity to hold the entire
allocation. In these scenarios one must therefore either accept slower perfor-
mance, or, alternatively, look for a method to split data structures into individ-
ual pieces and buffer these into/out of the faster memory resource. Completing
such designs has been historically, and remains, a significant programming chal-
lenge. In this paper we explore the potential design of such an approach using
OpenMP directives. The design vehicle is a simple benchmark which requires a
reduction to be performed over a large array that is sized to exceed the high
bandwidth memory resources and, instead, must be buffered into them. Our
study explores several potential programming designs and the performance that
each can achieve on a state-of-the-art Intel Xeon Phi 7250 processor.

The remainder of this paper is organized as follows: Sect. 2 explains the moti-
vation for this work. Section 3 describes the implementation of our reduction
benchmark and the use of OpenMP directives for double buffering. Section 4
provides benchmarked performance results from the Intel Xeon Phi 7250 proces-
sor. We discuss related work in Sect. 5 and conclude in Sect. 6 with some thoughts
on managing complex memory hierarchies.

2 Motivation

The second generation Intel Xeon Phi architecture is a multi-core architec-
ture with up to 72 cores. Each core appears as four logical CPUs through
hyper-threading. The cores are capable of issuing two instructions per cycle
out-of-order, including vector and memory instructions. Instruction sets up to
and including AVX2 supported by the Intel Xeon Phi processors are com-
patible with those supported by Intel� XeonPhi� processors. The Intel Xeon
Phi architecture implements a 512-bit SIMD instruction set known as AVX-
512. Each SIMD register may contain eight double-precision (DP) or six-
teen single-precision (SP) floating-point values as well as a variety of integer
data sizes. The AVX-512 instruction set also supports low-overhead unaligned
loads, fused-multiply and add, vector masking, shuffle and permutation instruc-
tions, advanced vector gather and scatter, histogram support, and hardware-
accelerated transcendentals.

To provide the cores with enough data to feed the computing capabilities,
cores are connected through a 2D mesh and to an integrated on-package Multi-
Channel DRAM (MCDRAM) memory of up to 16 GiB, which can deliver up to
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Fig. 1. Available multi-channel DRAM configuration modes.

Table 1. Benchmarked bandwidths of reduction operation on Intel Xeon Phi 7250.

Memory mode Reduction bandwidth (GB/s)

DDR4-only 77.20

MCDRAM(flat)/DDR4 interleaved on 1:1 ratio 105.64

Cache-only 145.06 GB/s

MCDRAM(flat)-only 149.75 GB/s

490 GB/s of bandwidth [1]. The main DDR4 memory on the same platform
can deliver about 90 GB/s [1]. This memory can be configured at boot time
in one of three different modes shown in Fig. 1: flat, cache, or hybrid. In flat
mode, the integrated memory is visible to the programmer in the same memory
space as regular system memory but as different NUMA domains (which allows
programmers to select which kind of memory to allocate). In cache mode, the
MCDRAM cannot be accessed directly by the programmer, but it acts as addi-
tional level of cache in between the L2 caches and the DDR memory. This cache
is a direct-mapped cache and is inclusive of the L2 caches. Access hits in the
cache will be served directly by the MCDRAM, while misses are redirected to
the DDR controllers which serve the data back to both the MCDRAM cache
and the L2 that made the request. The hybrid mode allows one to configure a
portion of MCDRAM as flat Mode and another in cache mode each with the
same characteristics just described.

For this work, we have used a Intel Xeon Phi processor 7250 with 68 cores
running at 1.4 GHz, 16 GiB of MCDRAM and 96 GiB of DDR4 memory config-
ured in quadrant mode.

We used a simple reduction kernel, which accumulates all the values from a
large array into a single value. The kernel has no blocking or buffering and it
allows to obtain bandwidth values, shown it Table 1 that bound our expectations
when working from the different memories and memory modes of the Intel Xeon
Phi processor assuming that no code modifications are done. Using arrays that
fit in the MCDRAM we can expect a good performance. But the Interleaved
experiment, where data is allocated in a 1:1 ratio between the two memories,
shows that using both MCDRAM and DDR4 for larger arrays will significantly
impact performance. As the size of the array increases and, therefore, the amount
of DDR used increases the performance will asymptomatically approach the
bandwidth that can be obtained from the DDR4 memory.
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Eventually, we hope to have computer architectures which permit all data
structures to be located entirely in MCDRAM-like memory but constraints on
cost, power and reliability may make this particularly challenging. In the event
that high-bandwidth memories remain smaller than we would like, we might
fall back to Cache mode which achieves performance close to that of Flat mode
provided that there is sufficient room to hold all the allocated data.

Based on these observation in this paper we seek to answer two questions:

– How well does Cache mode perform compared to explicit use of MCDRAM?
– Can double buffering techniques, commonly used in other architectures,

be successfully applied to alleviate the impact of transfers from DDR to
MCDRAM? If so, has OpenMP* the appropriate language elements to imple-
ment these techniques?

For complex scientific workflows, memories such as MCDRAM are appeal-
ing because the very nature of the codes being developed typically demands
large meshes over which physical simulations are performed. If caches become
unavailable due to increasing hardware complexity or energy costs associated
with their management then the relevance of the second question increases as
application programmers will have to adopt such techniques, or, alternatively,
to accept slower performance (as shown here by the DDR-only bandwidths).

3 Implementations

OpenMP offers a variety of constructs to express parallel programming patterns.
In this section, we show example programs written to accomplish the task of
double buffering data to exploit the MCDRAM of an Intel Xeon Phi processor.

We begin with some simple code that performs calculations over blocks of
an array. The particular calculation is to multiply each element’s value by its
position in the block a number of times, as shown in Listing 1.1. This code
constitutes a microbenchmark with parameterization of the size of the array, the
block size, and the number of times the calculation is repeated.

Listing 1.1. Code to perform simple calculations over blocks of an array.

double dblArray = (double∗)
mal loc ( s izeof (double ) ∗ to ta lDoub le s ) ;

/∗ I n i t i a l i z a t i o n ∗/
#pragma omp paral le l for
for ( s i z e t i = 0 ; i <
to ta lDoub le s ; ++i ) {

dblArray [ i ] = (double ) i ;
}

/∗ Blocked sums ∗/ for ( s i z e t b lck = 0 ; b lck < nBlcks ; ++blck ) {
for ( s i z e t repeat = 0 ; repeat < nRepeats ; ++repeat ) {

#pragma omp paral le l for reduction (+:sum)
for ( s i z e t i = 0 ; i < b l ckS i z e ; ++i ) {

sum += ((double ) i ) ∗ dblArray [ ( b lck ∗ b l ckS i z e ) + i ] ;
}
const double sum scaled = sum /

( ( (double ) nRepeats ) ∗ ( (double ) b l ckS i z e ) ) ;
p r i n t f ( ”Block

}
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To take advantage of MCDRAM, we could use cache mode and have the
system move data into the MCDRAM automatically. However, suppose that
instead we would like to control the use of MCDRAM and that each block
is small enough to fit into the MCDRAM. Since OpenMP does not currently
support the use of multi-level memory such as MCDRAM in the specification,
assume the availability of a third-party library, e.g., memkind [3], to allocate
and to transfer data into MCDRAM. A modified version of our example in
Listing 1.2 shows how the blocks can be moved into MCDRAM one-by-one. For
brevity, allocation and initialization of the array of doubles in DDR is omitted
in this listing.

Listing 1.2. Version of previous example code with blocks copied into MCDRAM.

double f a s tArray = (double∗)
mcdram malloc ( s izeof (double ) ∗ to ta lDoub le s ) ;

for ( s i z e t b lck = 0 ; b lck < nBlcks ; ++blck ) {

/∗ Copy current b lock ∗/
#pragma omp paral le l for
for ( s i z e t i = 0 ; i < b l ckS i z e ; ++i ) {

f a s tArray [ i ] = dblArray [ ( b lck ∗ b l ckS i z e ) + i ] ;
}

/∗ Blocked sum for current b lock ∗/
for ( s i z e t repeat = 0 ; repeat < nRepeats ; ++repeat ) {

#pragma omp paral le l for reduction (+:sum)
for ( s i z e t i = 0 ; i < b l ckS i z e ; ++i ) {

sum += ((double ) i ) ∗ f a s tArray [ i ] ;
}

}
const double sum scaled = sum /

( ( (double ) nRepeats ) ∗ ( (double ) b l ckS i z e ) ) ;
p r i n t f ( ”Block

}

To further optimize the program, it may be desirable to stage data into
the MCDRAM using the double buffering technique. This approach involves
calculating on the current block and transferring the next block concurrently.
Two possible OpenMP features to leverage for this purpose are sections and
tasks. First consider an implementation using sections, as shown in Listing 1.3.

This implementation allocates twice the amount of MCDRAM space to
accommodate two data buffers, and a flag variable manages the use of the buffers.
Only the first block is copied initially, into one of the buffers (half of the allo-
cated MCDRAM array). The implementation then uses nested parallel regions
within the loop over the blocks. The top-level parallel region creates two sec-
tions. Within the first section, data for the next block is copied into one buffer
using an adjustable number of threads. Concurrently, the other section performs
calculations on the current block (residing in the other buffer), also using an
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Listing 1.3. Code using OpenMP sections to perform double buffering.

double f a s tArray = (double∗)
mcdram malloc ( s izeof (double ) ∗ to ta lDoub le s ∗ 2 ) ;

int whichBuf = 0 ; omp set nested ( 1 ) ;

/∗ Copy f i r s t b lock ∗/
#pragma omp paral le l for num threads (nCopy)
for ( s i z e t i = 0 ; i < b l ckS i z e ; ++i ) {

f a s tArray [ i ] = dblArray [ i ] ;
}

for ( s i z e t b lck = 0 ; b lck < nBlcks ; ++blck ) {
#pragma omp paral le l num threads (2 )
#pragma omp sections
{

#pragma omp section
{

/∗ Copy next b lock ∗/
s i z e t nextBlck = blck + 1 ;
#pragma omp paral le l for num threads (nCopy)
for ( s i z e t i = 0 ; i < b l ckS i z e ; ++i ) {

f a s tArray [ ( ( ! whichBuf ) ∗ scratchDoubles ) + i ] =
dblArray [ ( nextBlck ∗ b l ckS i z e ) + i ] ;
}

}

#pragma omp section
{

/∗ Blocked sum for current b lock ∗/
for ( s i z e t repeat = 0 ; repeat < nRepeats ; ++repeat ) {

#pragma omp paral le l for reduction (+:sum) \
num threads (nCompute )

for ( s i z e t i = 0 ; i < b l ckS i z e ; ++i ) {
sum += ((double ) i ) ∗

f a s tArray [ ( whichBuf ∗ b l ckS i z e ) + i ] ;
}

}
const double sum scaled = sum /

( ( (double ) nRepeats ) ∗ ( (double ) b l ckS i z e ) ) ;
p r i n t f ( ”Block %l l u : sum = %f \n” , blck , sum scaled ) ;

}

}

whichBuf = ! whichBuf ;
}

adjustable number of threads. The flag is toggled at the end of each iteration.
The implementation using OpenMP tasks is similar to the sections implementa-
tion, so we present it in abbreviated form in Listing 1.4. As before, the copy and
blocked sum operations use an adjustable number of threads for each operation.
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Listing 1.4. Code using OpenMP tasks to perform double buffering.

int whichBuf = 0 ; omp set nested ( 1 ) ;

/∗ Copy f i r s t b lock ∗/
#pragma omp paral le l for num threads (nCopy)
for ( s i z e t i = 0 ; i < b l ckS i z e ; ++i ) {

f a s tArray [ i ] = dblArray [ i ] ;
}

for ( s i z e t b lck = 0 ; b lck < nBlcks ; ++blck ) {
#pragma omp paral le l num threads (2 )
#pragma omp s i n g l e
{

#pragma omp task
{

/∗ Copy next b lock ∗/
}

#pragma omp task
{

/∗ Blocked sum for current b lock ∗/
}

}

whichBuf = ! whichBuf ;
}

Other implementations of double buffering into MCDRAM are possible, e.g.,
with OpenMP task dependences or with the nowait clause on the first loop and
careful scheduling of the second loop. The two methods presented above seem
to be the most straightforward and expose the needed parallelism, and we leave
the others for future work.

4 Evaluation

In this section we present comparisons and scaling results from the implementa-
tions described above. For the reader’s reference we use the following versions:

– Sections: Uses OpenMP sections-based double buffering where some sub-
set of threads is used to perform copy operations into fast memory and the
remainder of the active threads perform reduction work;

– Tasks: Uses OpenMP task-based execution to perform a copy in of memory
to fast memory prior to a work task being dispatched to perform a reduction;

– Cache: Performs the reduction without copy buffering but relies on hardware-
based cache mechanisms to use MCDRAM;

– No Overlap: Performs a copy in operation using a parallel-region, followed
by a separate parallel region performing the reduction;

– DDR: Performs each reduction without any copy buffering but uses only the
DDR4 memory of the system.

All experiments ran on a cluster of Intel Xeon Phi 7250 processors and we
used the Intel� 17.0.2 C/C++ compiler with code compiled for OpenMP and
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Fig. 2. Repeated reductions over 48GB by each implementation. Speedup is shown
relative to the DDR-only version.

Table 2. Execution time in seconds for repeated reductions using DDR only. Baseline
for speedup results shown in Fig. 2.

Number of repeats 1 2 5 10 20

Mean execution time 0.654 1.36 3.27 6.59 13.1

Standard deviation 0.0125 0.104 0.0357 0.124 0.167

the AVX512 instruction set along with -O3 optimization. We report 5 trials per
configuration on each of 7 Xeon Phi nodes, for a total of 35 individual trials per
configuration. Where speedup data is shown in bar charts, each bar represents
the mean speedup for that configuration relative to the DDR-only configuration
and the error bars represent speedup standard deviation relative to the standard
deviation of the DDR-only configuration. Tables showing the raw execution times
and standard deviations for the DDR-only configuration are presented along with
the corresponding speedup graphs.

For the tasks and sections implementations, we let the OpenMP runtime
select the thread placement, while for the other implementations we specify
OMP PLACES=threads and OMP PROC BIND=close, which we find to be the
best performing affinity settings. A block size of 4 GB is used for the versions
in which data is explicitly copied into MCDRAM. A total of 272 threads are
used for each execution, and unless otherwise specified 16 of the 272 are used
for copying data in the tasks and sections implementations.
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4.1 Implementation Performance Varied by Data Reuse

In Fig. 2 we benchmark each implementation of our reduction kernel, showing
speedup relative to the DDR-only execution times in Table 2. Repeatedly apply-
ing the reduction once the data is copied into the fast memory to emulates the
effect of more compute and therefore greater data reuse. This has the effect of
reducing the overhead associated with the buffering copies. When the reduc-
tion is performed only once, DDR and cache are the strongest performers as
expected: Note the speedups less than one in the first cluster of the graph. Each
operand is used only once but is moved multiple times when data buffering is
used. At even a small number of repeats (but larger than 1), the DDR4-only
implementation becomes the most expensive method since data is repeatedly
accessed from the slower memory. The implementations with buffering as well as
the hardware-based caching executions now perform better than the DDR4 only
runs. With increasing numbers of repeats, the performance of the implementa-
tions begins to spread, with the methods that can provide buffer-copying and
reduction-execution overlap (the OpenMP Sections and Tasks implementations)
outperforming hardware-based caching. The nonoverlapping implementation still
outperforms DDR4-only as data is located in the MCDRAM, but the inability
to overlap thread execution limits performance due to poorer simultaneous use
of the available memory subsystem.

The observations of this study are that at even modest amounts of data reuse,
data staging into the high bandwidth memory can be advantageous. Although
hardware-based caching performs extremely well (as might be expected when
data reuse is present), future hardware designs may elect to dispense with this
feature to reduce implementation complexity; reduce higher energy costs associ-
ated with running caches, or, may provide greater performance disparity between
cache mode and the raw high-bandwidth memory performance when used as a
flat address space. These results show a software-based staging mechanism can
provide similar performance gains without requiring hardware support.

4.2 Performance Variation by Size of Copying Thread Pool

In the previous section we demonstrated that the Sections and Tasks-based
implementation of the staged-reduction operations can provide performance
close to, or equivalent to, hardware-based caching schemes when the data reuse
is greater than 1 for the data being staged into the faster memory resource. In
Fig. 3 we show the effect on performance of varying the size of the copier pool,
noting that for each thread we provide to perform copying, we are removing
threads from our worker pool which utilize the staged data to perform reduction
operations. The figure shows that for 10 repetitions, the best performance can
be achieved by using 16 threads, which correlates with anecdotal results of the
number of threads needed to saturate the DDR4 memory resources. Intuitively,
performance of a data intensive kernel is still heavily governed by the slowest
memory resource on the processor. By using a data staging pipeline, we are able
to perform operations over a data set which is larger than the MCDRAM, use



320 S.L. Olivier et al.

Fig. 3. Execution time for 10 repeats over the 48GB array when varying the number
of threads in the data copy pool. Scatter plot of 35 data points for each configuration.

a subset of threads to perform copying into the high bandwidth memory, while
another set of threads perform the actual computations. In the presence of at
least one additional reuse of the copied data, the higher bandwidth memory
resource provides greater performance meaning our computations are no longer
bottlenecked on the slower DDR4 directly but are instead bottlenecked on the
performance of the data copying threads. Since we can now overlap the copying
in and the reduction computations performance is improved. Maximizing the use
of the DDR4 bandwidth makes the ideal point at which to set the size of the
data copying thread pool since no additional performance can be gained, and
may, instead, reduce the performance of the computation thread pool as more
of these threads are required to saturate the high-bandwidth memory resources.
We expect that there will be different performance curves (similar to Fig. 3)
depending on the expense of the computation being performed, with extremely
expensive computations driving toward a smaller thread copy pool, and cheaper
computations driving closer to the 16 thread count range as shown here.

4.3 Performance Variation by Total Problem Size

The size of the overall dataset of the computation can be an important factor.
Figure 4 presents the performance of the different implementations with 10 rep-
etitions for total array sizes of 8 GB, 16 GB, 32 GB, and 48 GB, whereas the pre-
vious results were only for a 48 GB array. Speedup in the graph is relative to the
DDR-only execution times in Table 3. DDR is slowest in all cases. Cache mode
performs particularly well for 8 GB and 16 GB problems, which is unsurprising
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Fig. 4. Speedup for 10 repeats by each implementation relative to the DDR-only ver-
sion, varying array size.

Table 3. Execution time in seconds for repeated reductions using DDR only, varying
array size. Baseline for speedup results shown in Fig. 4.

Total array size (GB) 8 16 32 48

Execution time 1.35 2.44 4.36 6.59

Deviation 0.0146 0.0249 0.0586 0.124

given the 16 GB MCDRAM capacity (though less than that amount is typically
available for use). Explicitly moving data into MCDRAM without overlapping
computation and data movement does deliver some speedup over DDR, but not
as much as cache mode or the overlapping methods. The overlapping methods
demonstrate more benefit as the problem size increases, and they outperform
the cache mode slightly at 32 GB and more so at 48 GB.

5 Related Work

Although the OpenMP API specification as of this writing (Version 4.5 [7])
does not provide directives or run time routines for explicit use of multi-level
memory systems like the MCDRAM and DDR combination on the Intel Xeon
Phi processors, such support has been proposed in a technical report from the
OpenMP affinity subcommittee [8] and a previous paper [11]. Although we use
the memkind library [3] in the work we have presented in this paper, our tech-
niques should be able to leverage such future OpenMP features.



322 S.L. Olivier et al.

The concept of double buffering is well established, having been used for
many years, e.g., in computer graphics to construct the next scene while dis-
playing the current scene. The technique has been widely applied to devices
with DMA capabilities, such as the IBM Cell processor [4,9,10] and general pur-
pose processing on graphics processing units (GPGPU) [2,13]. It has also been
used to manage data movement between a host processor and a first genera-
tion Xeon Phi coprocessor, e.g., with Intel� Threading Building Blocks [5]. Liu
et al. proposed extending OpenMP with explicit support for double buffering
on System-on-chip architectures [6]. Key differences between these earlier sys-
tems and the second generation Intel Xeon Phi processor used here are that it
is self-hosted and that both DDR and MCDRAM are directly accessible by the
cores [12].

6 Conclusions and Future Work

Where once on-node memory was a single, flat, uniform performance address
space, today it is becoming less uniform and in some cases, features multiple
levels of memory with different performance characteristics. Some application
developers will simply scale out their applications until the working sets on
each node fit into high bandwidth memory resources. Other developers, who
have larger data sets or data sets which cannot scale as easily, will seek alter-
native solutions to manage their complex data sets. Contemporary hardware
features hardware-based cache mechanisms to support such activities, at the
cost of greater hardware complexity and energy consumption. Future designs
may not have this luxury if the energy budget or implementation complexities
required for Exascale-class computing are to be achieved.

We motivate the study of data staging or buffering for complex memory hier-
archies with a simple reduction benchmark operating over data sets that exceed
the capacity of the fastest memory resource. A single-level OpenMP parallel for
provides a simple implementation without any ability to overlap copying and
computation. OpenMP sections and tasks can be used to perform data copy-
ing and computation on independent pools of threads. The independence of the
threads allows us to scale the size of these pools up and down as required to effec-
tively consume the slower memory resources of the compute node. By permit-
ting overlapping of the copying and computation, performance can be improved
to approximately the same levels that a hardware-based cache mechanism can
provide assuming moderate data reuse of the operands being staged from slow
memory. In the absence of hardware caching in future systems, or the provision
of faster self-management of the copy operations, this software design provides
a relatively easy addition of data staging for OpenMP-based applications.

Moreover, the provision of data staging/buffering capabilities seems to be
an area of interest for the growing OpenMP community, particularly given the
recent adoption of offload directives to high performance compute devices and
the availability of multi-level memories on systems such as the Intel Xeon Phi
processors. This raises the question of whether a simpler set of directives or
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mechanisms are needed or whether the approaches shown in this paper are suffi-
cient for developers’ needs. Although our benchmark study is simple, by design,
it acts as a demonstrator for the potential use of OpenMP to address such
concerns as well as the potential performance available from OpenMP-based
implementations.
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Abstract. OpenMP∗ 4.0 introduced initial support for heterogeneous
devices. OpenMP 4.5 improved programmability and added capabilities
for asynchronous device kernel offload and data transfer management.
However, the programmers are still burdened to optimize data transfer
for improved performance and to deal with the limited amount of memory
on the target device. This work presents a pipelining concept to efficiently
overlap communication and computation using the OpenMP 4.5 target

directives. Our evaluation of two key HPC kernels shows performance
improvements of up to 24% and the ability to process data larger than
device memory.

1 Introduction

Accelerators and coprocessors of different kinds continue to impact the HPC
landscape: From the current Top500 list, a total of 97 systems are equipped with
GPU devices from NVIDIA and AMD or the Intel R© Xeon PhiTM coprocessor.

OpenMP∗ other strives to ease the burden for the programmer by providing a
rich set of compiler directives complemented by API routines to control runtime
behavior. OpenMP 4.0 introduced support for heterogeneous programming with
the target construct family. It allows to transfer the control flow from a host
thread to a thread on the target device and also provides means to direct the data
flow between host and device. Being vendor-neutral, a target device in OpenMP
may be a GPU, a coprocessor, or other heterogeneous devices like a DSP engine
or an FPGA. OpenMP 4.5 addresses some shortcomings and added support for
asynchronous offloading from the host to devices.

Nevertheless, achieving good application performance on heterogeneous clus-
ters still puts a burden on the programmer, who, for instance, has to lay out data
structures and compute kernels in appropriate ways. Today’s predominant con-
figuration is a host that is equipped with DDR memory and (multiple) devices
equipped with memory of much smaller capacity yet much higher memory band-
width. Effective slicing and management of the working set that is present on
c© Springer International Publishing AG 2017
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the device is crucial for achieving high application performance. Well-explored
optimization techniques include the extension of device regions to enable data
to reside on the device memory for reuse.

In this work, we emphasize on the technique of overlapping communication and
computation to overcome bandwidth and latency bottlenecks in transfers between
host and devices, for instance with the PCIe bus. We describe the realization of
a pipeline concept based on features recently introduced with OpenMP 4.5 and
present a performance evaluation with two devices per host. Applying our pattern
may not only ease the implementation of complex applications exploiting accelera-
tor devices, we will also show that it can improve performance via the overlapping
and better use of the memory and bus capabilities. It can also enable the use of
devices for problems that are larger than the device memory.

2 Related Work

The concept of overlapping communication and computation for parallel appli-
cations is widely spread. It is considered a key technique to obtain performance
for architectures that rely on some form of message passing to transfer data to
the computational units of the executing system. To best of our knowledge, we
present a corresponding pipelining pattern to overlap communication with the
offload target with computation for the first time. Another study [11] applies the
concept to an Intel Xeon Phi coprocessor using the MPI programming model.

Several studies have shown that performance can be significantly increased
by overlapping communication and computation (e.g., [3,8]). LibNBC by Hoefler
et al. [8] is a portable library that provides support for non-blocking collective
operations. It laid the foundation for similar concepts that have been introduced
in the Message Passing Interface (MPI) version 3.0. Furthermore, their work refer-
ences to further studies dealing with the overlapping of communication and com-
putation in general. Extensions of MPI, such as the work of Aji et al. [1], address
the problem of accessing GPU memory during MPI communication. In contrast
to our work, these studies focus on applying non-blocking MPI primitives.

Beltran et al. [2] start multiple threads on each accelerator and achieve an
overlap by efficiently scheduling them. Liu et al. [9] present double buffering for
matrix multiplications and implement it with extensions to OpenMP. In contrast,
we will use standard-compliant features from OpenMP 4.5 which will result in
a reusable pattern across different accelerators and, thus, more portable code.

Miki et al. [10] propose language extensions for OpenACC∗ other that overlap
communication and computation for stencil-type kernels. Cui et al. [6] propose
pipelining directives to extend OpenMP. Our work uses the existing directives of
OpenMP 4.5 instead and does not restrict the pattern to stencil computations
that require the presence and exchange of halo cells. It is generally applica-
ble to any type of applications that allows for splitting computations into sub-
computation to overlap communication and computation.

Some OpenACC compilers employ double-buffering strategies to speed-up the
data transfer itself [4]. Itworksbypre-allocatingbuffers before starting a transfer to
the target device and thus physical allocation of buffers and the corresponding data
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transfers can be overlapped. Chen et al. [5] discuss different buffering schemes for
DMAand their latencies.However, theydonot investigate the overall improvement
in runtime when overlapping DMA transfers and computation. Our approach is
orthogonal to this, as we employ OpenMP pragmas to pipeline data transfers and
computation at the application level. If an OpenMP implementation would offer
such an underlying mechanism to improve low-level communication, our approach
could transparently make use of it and automatically apply the low-level double
buffering to further speed-up communication with the offload device.

3 OpenMP for Accelerators and Coprocessors

OpenMP’s accelerator model is based on structured blocks with target directives
to tag them for offload execution. A target region may be executed by OpenMP
threads on a different device in a distinct data environment. By using map clauses
a programmer can express which (non-scalar) variables have to be made available
on a device. In OpenMP terms, this is called mapped from the host to the device,
because the host may or may not share the memory with the device. In the case
of devices with separate memory this typically involves copy operations. The map
clause accepts, among others, the motion attributes to, from, and tofrom deter-
mining the point in time and the direction of copy operations.

The usage of target data regions allows to reduce data transfer in the case of
multiple consecutive target regions using the same variables, as the data environ-
ment on a device is persistent for the whole duration of the target data region.

It is important to know that the map clause creates a fixed association between
the host and the target device. In consequence, a re-mapping of a memory region
on a device with an address on the host is not possible, if it was mapped before.
In order to make the device data environment consistent between two target
regions encountered in the same target data region, the target update con-
struct can be used. The specified motion clause determines if the values from
the host or from the target device have to be updated.

Optimizing the data transfers was hard to realize in OpenMP 4.0. With all
data transfers defined as being synchronous, it was impossible to overlap the
computation and communication. OpenMP 4.5 defined the target region to
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be an implicit task, meaning it is executed as if it was surrounded by a task
construct. The execution of a target task may be deferred if the nowait clause
is added to the target construct to make the execution of the target code and
the corresponding data transfers asynchronous.

In order to have an asynchronous data transfer without executing user code
on the device, the stand-alone directive target enter data can be used to
map data to a device. Correspondingly, the target exit data will unmap the
specified variables from the device data environment and might copy back the
values from the target device to the host. Both of these directives also generate
a target task which might be deferred.

Finally, the depend clause can be added to all device directives to associate
dependencies with the generated target task. It supports the same dependency
types in, out, or inout introduced with the OpenMP tasking model. For the
use case of asynchronous data transfer and kernel execution, this feature allows
to defer the execution of a target region until the required data is transferred
to or from a device and thus bring the data transfers and compute regions into
a specific order as shown in Listing 1.1. After the target enter data directive
1© has executed, the dependency 2© is resolved and the computation 3© can
start. As the mapping is already present on the device, this will not result in
additional data transfer. The dependency 4© is satisfied when the kernel has
finished and the target exit data operation 5© finally executes.

4 Pipelining Concept for Overlapping Communication

Depending on the available hardware, the mapping and/or the data transfer to
or from a target device might be relatively slow compared to the available mem-
ory bandwidth on the host or the target device. Thus, the communication time
of an application using a large amount of data might become a significant over-
head factor and limit scalability and performance. To reduce this communication
overhead we present a pipelining concept.

The main idea of the pipelining concept is to divide a single operation into
smaller sub tasks. By interleaving these smaller sub tasks we can increase the
throughput of a system, because different kinds of sub tasks can use different
parts of the available hardware resources at the same time. In our case, a sub
task belongs to one of the two kinds: computation or communication.
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Fig. 1. Pipelining concept for overlapping computation and communication.
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Figure 1 exemplifies the concept. The white boxes represent the computation
and the gray boxes depict transfers. The example assumes that the computation
can be split into two parts. The data required for each computation is transferred
to a device and the result is transferred back to the host afterwards.

On the left hand side of Fig. 1, communication and computation are not
overlapped, but are executed in order. On the right hand side, each of the two
sub tasks are put into the pipeline stages. Thus, the computation on a target
device does not have to wait until the complete data block is transferred to the
device. As can be seen, this leads to an improved utilization of both the host
and the offload device.

We refer to the first transfer to at the beginning as wind-up phase and to the
last transfer from as the wind-down phase. In both of these phases, no computa-
tion can happen as the pipeline has to be filled with data transfers or the system
has to wait until all in-flight data transfers have been completed. It can be seen
that the time to solution using the pipelining concept decreases significantly in
this case.

4.1 Performance Projection of Pipelining Pattern

To estimate the potential gain of overlapping communication and computation
using the pipelining pattern, we conduct a very simple, yet effective performance
projection. We will also use this simple performance model in Sect. 5 to assess
the measured performance.

The total runtime texec of an offloaded kernel consists of

texec = tcomp + tcomm, (1)

where tcomp is the time for the computation on the device and tcomm the com-
munication time to transfer control and data. The latter can be predicted for a
given amount of data d by

tcomm =
d

B
+ toverhead. (2)

This assumes that d is sufficiently large so that the transfer of d saturates the
maximum bandwidth B available. toverhead is the time that the runtime needs for
preparational tasks. Depending on the data size d or the runtime implementation
this overhead time may be significant for the overall communication time tcomm,
as will be discussed below. In some cases, toverhead may also depend on data
size d.

Based on these characteristics, the maximum optimization omax is given as

omax =
min(tcomp, tcomm)

texec
. (3)

Thus, pipelining transfers and computation works best in cases where the com-
munication and computation time are equally balanced. The optimization poten-
tial approximates to a performance increase of up to omax = 0.5, not taking the
wind-up and wind-down phases into account.
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Typically, the available memory of target devices like the Intel Xeon Phi
coprocessor or GPUs is significantly smaller than the memory on the host. With
the pipelining concept, a device kernel can use more memory than available on
the device by transferring the necessary data chunk-wise and free any memory
chunk as soon as the partial result was transferred back to the host. This forms
a second promising application scenario for the concept in addition to the first
one, namely the speedup.

4.2 Implementation with OpenMP

The map clause in OpenMP creates fixed associations between device and host.
It is not possible to map a specific memory region from the host to a buffer on
the device which was previously associated with a different address on the host.

There are multiple possibilities to overcome this limitation: First one could
copy the needed data to a temporary buffer which is then transferred to the
device using a target update. As a second option, we can allocate a single
buffer for the whole array in a target data region. In a target update, we
can then specify the corresponding start index to transfer the needed part of
the array. Lastly, we can create a new buffer for each block of the array that
has to be transferred. Here, OpenMP 4.5 offers the above mentioned stand-alone
directives for mapping: target enter data and target exit data.

While the first solution would surely work, it doesn’t promise to give the best
performance due to the extra copy on the host. The second alternative fails to
allocate the buffer if it exceeds the device memory. Creating a new buffer for
each block solves this problem as memory can be freed on target exit data
after the computation has finished. This allows to process more memory than
available on the device at one moment.

Figure 2 shows the dependencies that have to be specified when working with
the stand-alone directives. The first of these dependencies are based on the data
usage: First, a specific block of data has to be allocated and transferred to the
device. Second, the computation on the device can be done. Finally, the used
data can be freed again.

Moreover, it has to be ensured that there are at most two buffers allocated
at the same time. Hence, we need an explicit dependency between, for example,
exit #0 and enter #2. If this connection was omitted, there would be no limi-
tation on how many enter tasks can start. This would be problematic because
all enter tasks could run before exit #0 frees the first part of the data, possibly
exceeding the device memory. There are also dependencies between each enter
and each compute. That is to avoid oversubscription which would negatively
impact performance.

Listing 1.2 shows the code snippet with the OpenMP directives and their
required dependencies. Each block of data is allocated on and transferred to the
device with a target enter data. The computation is afterwards done in a
target construct. After the computation has finished, target exit data will
free the data on the device.

We specify the dependencies for data usage with the corresponding array
section also given in the map clause. For mutual exclusion of the enter and
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Fig. 2. Graph of the dependencies between target tasks. Continuous lines visualize
dependencies based on the data usage, while dashed and dotted ones stand for the
mutual exclusion of enter and compute tasks, respectively.

compute tasks one can use two int variables. These dummy variables are used
to make the OpenMP implementation aware of the dependencies, but are not
used in the code apart from their presence in the depend clause.

For simplicity, the code snippet only shows the default case in the mid-
dle of the loop iteration space, but not the wind-up and wind-down phase. In
the first iteration of the loop with block = 0, we do not depend on the pre-
vious block having exited by omitting the dependence on A[(block - 1) *
LEN:LEN]. Additionally, when the end of the iteration space is reached, there is
no next block to transfer and therefore no enter task.

Listing 1.2. Declaring task dependencies with OpenMP for pipelining concept of mul-
tiple blocks with length LEN each. Special cases for target enter data are omitted
for better readability.

1 double A[BLOCKS * LEN];
2 int enter , compute;
3
4 #pragma omp target enter data nowait map(to: A[0:LEN]) \
5 depend(out: enter) depend(out: A[0:LEN])
6 for (int block = 0; block < BLOCKS; block ++) {
7 #pragma omp target enter data nowait depend(inout: enter) \
8 map(to: A[( block + 1) * LEN:LEN]) \
9 depend(out: A[( block + 1) * LEN:LEN]) \

10 depend(in: A[( block - 1) * LEN:LEN])
11 #pragma omp target nowait depend(inout: compute) \
12 map(to: A[block * LEN:LEN]) \
13 depend(inout: A[block * LEN:LEN])
14 {
15 // do computation here
16 }
17 #pragma omp target exit data nowait map(release: A[block*LEN:LEN])

\
18 depend(inout: A[block * LEN:LEN])
19 }
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Instead of creating a new buffer for each memory transfer, it would also be pos-
sible to use the device memory routines introduced with OpenMP 4.5. However,
these routines are not available for Fortran and are only defined for C and C++.
In addition, they do not support task dependencies and would thus have to be
wrapped in regular OpenMP tasks to model proper synchronization between
the different stages of the pipeline. They also require a developer to manage the
buffers explicitly and free them manually. Thus, the usage of the stand-alone
directives is more convenient and more productive compared to the usage of the
device memory routines. For these reasons, we concentrate on the investigation
of the directives in the following.

4.3 Applying the Concept for Multiple Target Devices

A natural desire is to extend the above approach to also cover multiple devices
and to extend the pipelining concept such that it can overlap communication and
computation across these devices. The target constructs support the device
clause to specify the device a target construct shall use at runtime. Thus, a
simple mechanism to start multiple concurrent target regions, e.g., by iterating
over all available devices is sufficient. Managing the corresponding device data
environment works in a similar way by using the stand-alone directives or target
update as discussed above. To ensure that all of operations have finished, the
taskwait construct is suitable.

Based on this scheme, we can apply our concept and specify dependencies
between tasks as described above. That way, we can for example allow unrelated
tasks to execute in parallel and overlap computation with a data transfer or
exchange that is only needed in the next step of the algorithm.

5 Evaluation

To show the applicability of our approach, we evaluated the concept with the
dgemm kernel. Therefore, we used the implementation given in the Intel R© Math
Kernel Library which delivers a good performance on Intel architectures. For
the evaluation of the presented pipelining concept for multiple target devices,
we use a sparse Conjugate Gradients (CG) [7] method as a representative real-
world compute kernel.

All presented kernels were measured on a 2-socket Intel R© Xeon R© E5-2650
system (codename “SandyBridge”), which is clocked at 2.00 GHz and has 16
physical cores in sum. The system includes two Intel Xeon Phi 5110p coprocessors
with 8 GB of main memory and 60 cores (clocked at 1.053 GHz) each, connected
via PCIe Gen2 with 16 lanes. In our setup, we measured approximately 6.7 GB/s
with target update constructs between device and host. For all kernels, we
used version 17.0 of the Intel compiler that already implements all required
OpenMP 4.5 features. We present the minimum runtime of 10 repetitions as
this will indicate the best performance that the system can deliver.



A Pattern for Overlapping Communication and Computation 333

5.1 Matrix-Matrix-Multiplication

This section will show how the pipelining concept can be used to compute a
problem whose memory requirements exceed the device memory. For this, we
use a matrix-matrix-multiplication A · B = C, where A,B,C ∈ R

n×n. The size
of each matrix is 245762 double elements, which requires 3 · 4.83 GB ≈ 14.5 GB
in total. We transpose the second matrix so that we can use rows instead of
columns for the sub tasks of the multiplication. This results in contiguous storage
in memory which is a requirement for the map clause.

Since the size of the matrices exceeds the available memory on the device,
A and C need to be split into N and B into M parts that can be transferred
separately. For the calculation of A · BT = C, the rows of A can be reused for
multiple blocks of B and the result is stored in the corresponding parts of C.
To minimize data movement the parts of A and C are transferred in target
data regions. Furthermore, we apply the pipelining concept to B to hide the
latency. In theory, we should also be able to apply the pipelining concept to A
and C. Unfortunately, this is currently not possible due to some issues in the
Intel compiler.

To minimize the data transfers, M has to be as small as possible because
matrix B has to be transferred multiple times. For our test, case we chose M =
N = 4 (i.e., four blocks for each matrix), which has shown to perform best. In
theory choosing N = 2 fits into the device memory and thus should be beneficial
in term of performance. However, this results in stability issues on the device.
B could be split into more parts but that does not result in a lower runtime.

In total, the maximum memory usage will be 4·4.83 GB
4 = 4.83 GB on the

device, because we need to store two parts of B simultaneously. For the transfer,
we expect (2 + 4) · 4.83GB as B has to be transferred 4 times. In addition,
measurements show that the coprocessor needs approximately 1.35 s to allocate
each matrix. Based on (2), this sums up to

tcomm =
(2 + 4) · 4.83GB

6.7GB/s
+ (2 + 4) · 1.35 s ≈ 4.33 s + 8.1 s = 12.43 s.

With the measured runtime of texec = 68.38 s on the device, this leaves

tcomp = 68.38 s − 12.43 s = 55.95 s

for the computation.
Based on (3), we should hence be able to obtain a maximum optimization of

omax =
min(55.95 s, 4.33 s + 8.1 s)

68.38 s
≈ 18.2%.

However, as we can currently only apply our concept to B and not yet to A and
C we are not able to save more than 4 · (0.72 s + 1.35 s) = 8.28 s which would
mean an optimization of

omax =
8.28 s
68.38 s

≈ 12.1%.
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Table 1. Minimum runtime on host and device of 10 repetitions with dgemm.

Device Time

Host device 125.83 s

Target device 68.38 s

w/pipelining concept 61.54 s

Table 1 lists the minimum runtimes on the host and target device. It can
be seen that the matrix-matrix-multiplication on the target device (68.38 s) is
significantly faster than the host (125.83 s) despite having to transfer the data.
Using the pipelining concept yields another improvement of approximately 10%
resulting in a runtime of 61.54 s. This is slightly below the estimation, because
the model does not account for additional overhead introduced by the pipelining.
However, it shows the applicability of the approach.

5.2 Conjugate Gradients Method on Multiple Target Devices

For the evaluation of the pipelining concept on multiple target devices, we imple-
mented a Conjugate Gradients (CG) method. This compute kernel represents a
popular and widely used iterative algorithm to approximate the solution for a
sparse linear equation system. The computation is dominated by a sparse matrix-
vector multiplication (SpMV). In general, the data transfer time for the execution
of such a method is low compared to the compute time on a target device, because
of the iterative nature of the CG algorithm. However, the amount of memory of
a target device is typically small compared to the amount of memory of the host.
In order to overcome the size limitation, our implementation of the CG solver can
use multiple Intel Xeon Phi coprocessors by distributing the data.

We use a symmetric matrix with a regular sparsity pattern of five non-zero
elements per row (except for the first and last few rows). Similar patterns emerge
from PDEs with regular discretization. Thus, the decomposition does not require
any complex partition algorithms for an adequate load balancing on the target
devices. The matrix contains 80 million rows (about 400 million non-zero ele-
ments), which results in a memory footprint of about 4.8 GB in a compressed
row storage (CRS) format. In addition to the right-hand side vector, the solution
vector and temporary vectors (640 MB each) are required by the algorithm. This
memory footprint exceeds the memory capacity of a single Xeon Phi coprocessor
as used in our setup.

To decompose the data for two devices, we divide the matrix and each vector
into two partitions. For all vector-vector operations, local results can be computed.
Thus, for the complete solving process no additional data of the matrix needs to
be exchanged between the two devices. However, the (partial) matrix-vector mul-
tiplication requires the complete intermediate result on each device for each single
iteration in order to compute the corresponding (partial) output. Therefore, we
need to exchange half a vector from each device in every solving step.
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Fig. 3. Partitioning of the matrix, marking parts that are multiplied with local parts
of the input vector and blocks that need data from the other device.

Nevertheless, the partial local computation of the SpMV result can be started
directly, because the corresponding half of the vector is already present on the
device. This enables us the apply our pipelining concept to overlap the trans-
fer of the intermediate result from the other device with the computation that
only needs the local part of the vector. After the transfer has completed, the
computation can then be finalized with the data received from the other device.

To keep the computation efficient, we already partition the matrix in CRS
format on the host: We create four sub-matrices and put each value into the
corresponding block as shown in Fig. 3. Thus, it is not necessary to determine
which part can be computed with the local part of the right-hand side vector in
each iteration.

For the evaluation, we use two different versions of our CG solver: one baseline
version that does not overlap the computation and communication, and one
improved version that does. In the baseline version, each iteration spends roughly
250 ms for the matrix-vector multiplication which includes exchanging the input
vector between the two devices. It first transfers the two parts to the host and
then back to the other target device. This can be done concurrently for both
devices and hence we assume a communication time t′comm for each iteration
based on (2):

t′comm = 2 ·
640
2 MB

6.7GB/s
≈ 96ms.

The remaining time is spent for the computation which amounts to

t′comp = 250ms − 96ms = 154ms.

Based on these expected timings and (3), the upper bound for the optimization
is determined by

omax =
min(154ms, 96ms)

250ms
≈ 38.4%.

In summary, the presented pipelining concept reduces the computation time of
the dominating matrix-vector multiplication by roughly 32%, from 254 s to 173 s.
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As in the previous section, the improvement is again lower than the estimated
maximum without additionally introduced overhead. Since our concept is only
applicable on this most time-consuming kernel, the overall improvement for the
total application is lower (about 24%).

6 Conclusion

We have shown how communication and computation can be overlapped when
using OpenMP 4.5 target directives for a contemporary coprocessor. Besides
simplifying programmability, the use of pipelining schemes can improve applica-
tion performance by effectively hiding communication latencies between the host
and the offload devices. It also provides an effective means to offload kernels that
require more memory than is available on the device. Our pipelining scheme is
portable and increases programmer productivity.

We have evaluated our implementation with two important kernels in HPC,
matrix-matrix multiplication, and a sparse Conjugate Gradients solver. Our
benchmarks show that overlapping communication and computation effectively
reduces the runtime of these kernels by up to 24% for the CG solver. This
achievement corresponds to a simple back-of-an-envelope performance model we
have presented. The speed-up encourages a deeper evaluation of the profitability
of our pattern with different codes.

As future work we plan to investigate the feasibility and profitability of the
pattern on current GPUs with, for instance, the OpenACC programming model.
We will also perform a performance comparison of the high-level OpenMP or
OpenACC implementation with direct low-level implementations like the Intel
Coprocessor Offload Infrastructure (COI) or NVIDIA CUDA. This will also
include the evaluation how the presented CG will profit from faster intercon-
nects such as NVLink introduced with NVIDIA Pascal.
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Abstract. Early experiences with OpenMP 4.0, as well as other
directive-based offload models, have shown that deep copy is a key chal-
lenge to porting complex applications to offload directives. Without a
flexible deep-copy mechanism, pointer-based data structures are at best
difficult to manage, particularly when shared memory between the host
and device cannot be assumed. Despite the importance of the issue, and
the considerable effort expended by vendors, standards bodies and users,
no solution has emerged as the clear choice. We propose an approach
that combines a restricted compiler-assisted (sometimes called “true”)
deep copy with a mechanism for users to register their own custom map-
ping implementations that we call packers. This combination offers the
flexibility to address complex cases when necessary while keeping the
complexity out of the directives, a balance that serves all cases.

Keywords: Deep copy · Complex data · OpenMP

1 Introduction

Handling hierarchical, and in particular dynamically allocated, data structures
has proven to be a significant challenge for offload-based programming models,
and directive-based models like OpenMP in particular. Deep copy, the ability
to copy not just the surface structure of a hierarchical object but its indirectly
referenced children as well, can be difficult even in relatively straightforward
host-only code, but becomes seemingly intractable when combined with disjoint
memory spaces and device management. The ubiquity of such structures in the
form of everything from linked lists to, trees, graphs, and even conceptually sim-
ple structures like std::vector<T> exacerbates the situation. This complexity
has made deep copy one of the most frequently requested enhancements to the
OpenMP device constructs.
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In order to solve this problem, OpenMP must address several particular data
mapping challenges:

Composable deep copy Implementing deep copy for a structure s1 that con-
tains a pointer to s2, which already has an implementation, should not require
a reimplementation of the work done on s2, including when s1 and s2 share
the same source-level definition (i.e., recursive deep copy).

Updates must be safe In order to keep data coherent, the mechanism must
support updates; some proposals insufficiently address this requirement due
to potential overwriting of host pointers by device pointers.

Performance must be reasonable Deeply copying a nested structure is inher-
ently expensive but an automated mechanism should incur little overhead
beyond a manual implementation.

Several proposals and research projects have considered deep copy. Almost all
have one of two forms: manual deep copy or compiler-assisted “true” deep copy.
In general, the manual options are more verbose and require much more user
effort, and result in harder-to-maintain code. In particular, manual deep copy
requires the explicit listing of each component to be mapped onto the device at
each point where its mapped, effectively requiring code replication.

Compiler-assisted deep copy, in the form of directives that encode the struc-
ture and mapping requirements of a type, cleanly separates the concerns of map-
ping a particular type from its use, allowing a simple map of a variable to invoke
the required logic. Such approaches produce cleaner code where a user maps a
value, but tend to become extremely complex for data-structures that contain
multiple pointers to parts of the same memory or if the dynamically allocated
structure contains cycles, as in the case of a circular linked-list or graph.

Both kinds of deep-copy support have advantages and disadvantages, but the
complexity and abundant corner-cases in the compiler-assisted approach have so
far kept standards focused on implementing only manual deep copy semantics.
In particular OpenMP 4.5, with refinements in OpenMP TR4, introduced a
top-down attachment mechanism to allow for manual deep copy.

Our proposal extends OpenMP’s deep copy facilities with constructs that
provide the main benefit of compiler-assisted deep copy, a simple compiler-
assisted mechanism to map a value in a user’s compute code for easy cases
with user-defined custom mappers for the harder cases. By allowing users to
handle their own data marshalling and reconstruction, as well as to write their
own conditional and computational code to determine how to perform those
operations, we avoid many of the pitfalls of previous directive-based compiler-
assisted approaches. A solution based entirely on custom implementations from
users even for simple cases would be unduly verbose, so we provide an option for
strictly top-down hierarchical data structures to leverage the existing manual
deep copy functionality to write custom mappers that a compiler expands.

In the rest of this paper, we first present related work in Sect. 2. Our proposed
design for a deep-copy extension to OpenMP is presented next in Sect. 3. Finally
we discuss the properties of our proposed design in Sect. 4.
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2 Related Work

A major challenge for HPC developers is to manage code and data on multiple
architectures. OpenMP began to address this challenge with version 4.0, and
continues to improve its support in version 4.5 [6]. One of the most common
complaints with these versions is the lack of good deep copy support [3]. While
composable deep copy solutions have previously been proposed [1], the OpenMP
standard does not include one. The most recent technical reports on OpenMP
(TR4 [7] and TR5 [8]) provide mechanisms for a restricted form of top-down
hierarchical deep copy and a proposed interface for multi-level memory. However,
neither really supports arbitrarily complex deep copy.

OpenACC’s current standard [5] also only supports deep copy through man-
ual means. Some proposals would allow data re-shaping on transfer (without deep
copy capabilities [2]) and to enable deep copy through compiler support [4].

3 Design

Existing proposals to standardize deep-copy discussed in Sect. 2 have largely
focused on one of two approaches: type annotations that facilitate compiler
generation of mapping code that composes pointer-based structures, or man-
ual attachment that gives the user flexibility but must be replicated throughout
the source code. We aim to provide an interface that: allows for composition of
mapping functionality; separates concerns between computation and mapping
logic; and provides the same flexibility as manual mapping.

We need an interface that is flexible enough to encompass arbitrary data
structures and yet is easy to use for simple ones. Figure 1 lists the new directives,
clauses and modifications that we claim meet this requirement. We discuss this
proposal in greater detail in the ensuing sections.

3.1 Mappers

The declare mapper construct defines how to map a given type. Complex data
structures, or custom behavior, require the use of packers, which we discuss in
Sect. 3.2, but the declare mapper construct, without custom packers, can handle
simple nested structures with pointers or references and dependent as long as a
sub maps() clause is specified. A set of sub-maps on a mapper with the name foo
serves as a template for how the compiler should expand map(foo: v), similarly
to previously proposed annotation-based deep-copy mechanisms. Figure 2 defines
a mapper for the myvec t and for mypoints t, which contains both pointers to
and an immediate value of type myvec t.

The example illustrates some key features. While the first mapper explic-
itly lists the variable being mapped in the sub maps clause, the mapper
for mypoints t does not. Thus, users can leverage the existing behavior of
OpenMP’s partial mapping to map a mypoints t without having to pull
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1 // Mapper
2 #pragma omp declare mapper \
3 type(<type>) \
4 [default] /* if specified, this mapper will be used implicitly */ \
5 [name(<name>)] /* if unspecified, name == type */ \
6 [submap([<map-type allowed>:]<list-items>...)] \
7 [no_<packer stage>]\
8 [can_skip]

9 // OpenMP provided value for submap
10 T * omp_item; // Pointer to T, where T is of type <type>

11 // [Un]Packers
12 #pragma omp declare map_{packer,unpacker}_{to,from}(<mapper_name>) \
13 expr(<packing/unpacking expression>) \
14 [size(<size expression>)] \
15 [in_place] /* reuse the staging buffer, to == from */ \

16 #pragma omp declare map_{submap,subrelease}(<mapper_name>) \
17 expr(<sub-map mapper/releaser expression>) \

18 // OpenMP provided values for expressions
19 T * omp_from; // Pointer to T, where T is <type> address of:
20 // packer_to: the list-item provided to map
21 // unpacker_to: the input buffer on the device
22 // packer_from: the buffer used in the target region
23 // unpacker_from: the staging buffer on the host
24 T * omp_to; // The buffer data is packed, or unpacked, into
25 // packer_{to,from}, unpacker_to: a buffer of
26 ezis_xamezis//
27 // unpacker_from: a pointer to the original list item
28 size_t omp_from_size; // The size in bytes of the buffer in omp_from
29 size_t omp_to_size; // The size in bytes of the buffer in omp_to

30 // Address management
31 #pragma omp target data use_device_addr(<mapped object>)

32 // Extension to map()
33 #pragma omp target... map([<mapper_name>][,<map-type-modifier>...:]...)

Fig. 1. Our proposed extension.

in unnamed, and unnecessary, fields. Also, such mappers compose with one-
another. The list-item on Line 20 of the example references the mapper for the
myvec t type, expanding the list-item into its component parts, exactly as in
the existing map clause.

Unless the sub maps clause specifies an allowed map-type, its list-items
inherit the map-type of the map clause that uses its definition, defaulting to
tofrom. For example, an update(to: v) expands all sub-maps with allowed
map-types of to or tofrom and updates the device with data from the host
as appropriate. While that behavior is generally desired, sometimes some fields
should not be updated. The scratch field of mypoints t is an example. Since it
always just holds temporary data, we limit the behavior in which it participates
to only the alloc map-type, which also includes release and delete behaviors.

While specifying members in sub maps covers many real-world use-cases, it
suffers from several limitations. This mechanism can only map members that are
visible; private fields of classes or structures in C++ for example cannot be listed.
Types used by sub-maps are static types, just as with any map clause, so the
dynamic type of an object is not considered and values may be sliced as a result.
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1 typedef struct myvec {
2 size_t len;
3 double *data;
4 } myvec_t;

5 #pragma omp declare mapper \
6 type(myvec_t) \
7 default \
8 sub_maps(*omp_item, omp_item[0].data[0:omp_item->len])

9 typedef struct mypoints {
10 struct myvec * x;
11 struct myvec * y;
12 struct myvec * z;
13 struct myvec scratch;
14 double useless_data[500000];
15 } mypoints_t;

16 #pragma omp declare mapper \
17 type(mypoints_t) \
18 default \
19 sub_maps( /* self only partially mapped, useless_data can be ignored */ \
20 omp_item[0].x, omp_item[0].x[0:1], /* map and attach x */ \
21 omp_item[0].y, omp_item[0].y[0:1], /* map and attach y */ \
22 omp_item[0].z, omp_item[0].z[0:1], /* map and attach z */ )\
23 sub_maps(alloc:omp_item[0].scratch) /* never update scratch */

24 // Usage in code
25 mypoints_t *p = make_array_of_mypoints(N);
26 #pragma omp target map(p[0:N])
27 //...
28 // Translates to the following, replicated for all i from 0-N:
29 #pragma omp target map(p[i], \
30 p[i].x[0:1], p[i].x->data[0:p[i].x->len] \
31 p[i].y[0:1], p[i].y->data[0:p[i].y->len] \
32 p[i].z[0:1], p[i].z->data[0:p[i].z->len])\
33 map(alloc: p[i].scratch)

Fig. 2. An example of a straightforward mapper with a single child mapper.

Finally, cycles in the data structures being mapped will not be detected, which pre-
cludes its use for any kind of cyclic graph or circular list structures. Rather than
make the mapper more complex, we introduce packers to address these issues and
more.

3.2 Packers

Mappers defined only in terms of their sub-maps work entirely within the map-
ping semantics defined by OpenMP 4.5. They use partial mapping of structures
and pointer attachment, and they expand to separate the mapping of a structure
from its use, but they do not fundamentally change the mental model of how
mapping works. Packers, on the other hand, change that model.

We model our deep-copy extensions as a serialization/deserialization pipeline,
that Fig. 3 represents. OpenMP 4.5 mapping behavior runs along the left-hand
side of this figure with an optional bitwise copy from the input buffer to the
input data and from the output data to the output buffer. We logically expand
the pipeline to include a input phase that packs data on the host and unpacke
it on the device and an output phase that reverses the actions. Thus, we can
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Fig. 3. The conceptual mapping pipeline

perform transformations on the data on each inbound or outbound transfer. The
opportunity to transform the data supports the conversion of deep, or otherwise
complex, data-structures into a format that can be safely bitwise copied and
recreated from the simplified format after the copy is complete.

Packers define provide custom implementations of stages in the pipeline
for use in the mapper construct. Each stage can be specified separately: the
map submap, map packer to, map unpacker from, and map subrelease run on
the host device and map unpacker to and map packer from execute on the tar-
get device. A mapper that specifies any packer stage must provide all stages or
explicitly list the no <stage> clause on the mapper construct (this requirement
does not apply to the submap and subrelease stages). Where the no <stage>
clause explicitly skips a stage, a bitwise copy logically replaces it, although an
implementation may be able to skip one or more these copies.

Each packer takes the name of the associated mapper clause as well as a
required expr clause that implements the appropriate behavior. They may also
optionally take: a size clause, which takes an expression that should evalu-
ate to the maximum size required for output from that stage or defaults to
sizeof(type); and an in place clause, which causes the runtime to skip cre-
ation of a staging buffer into which pack the data is packed, and instead uses
the input buffer for the packing, or unpacking, space.
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1 struct list {
2 struct list *next, *previous;
3 size_t data_count;
4 plain_data_t data;
5 } list_t;

6 size_t pack_list(list_t *from, list_t *to) {
7 int n_nodes = 1; // include handle node
8 list_t *cur = from->next; //handle does not store data
9 for (list_t *cur = from->next; cur != from && cur != NULL; cur = cur->next) {

10 to[n_nodes] = *cur;
11 n_nodes++;
12 }
13 to[0].data_count = n_nodes;
14 return n_nodes * sizeof(list_t); // Return the space actually used
15 }

16 void unpack_list_from(list_t *from, list_t *to) {
17 int n_nodes = from->data_count; // include handle node
18 list_t *cur = to->next; //handle does not store data
19 while (cur != from && cur != NULL) {
20 cur->data = from[n_nodes].data;
21 cur->data_count = from[n_nodes].data_count;
22 n_nodes++;
23 cur = cur->next;
24 }
25 }
26 #pragma omp declare mapper type(list_t) no_packer_from
27 #pragma omp declare map_packer_to(list_t) \
28 size(count_nodes(omp_from) * sizeof(list_t)) \
29 expr(pack_list(omp_from, omp_to))
30 #pragma omp declare map_unpacker_to(list_t) expr(fix_list_pointers(omp_from)) in_place
31 #pragma omp declare map_unpacker_from(list_t) expr(unpack_list_from(omp_from))

32 // Usage
33 #pragma omp target map(l)
34 { plain_data_t d = l->next->next->data;
35 //...
36 }

Fig. 4. A mapper for a doubly-linked list with custom packers and unpackers.

The example in Fig. 4 shows a mapper for a circular doubly-linked list. This
list stores a count and a bitwise copyable structure in each node as data, and uses
a node with no data as a handle that identifies the head and tail nodes. Unlike
our mapper example in Fig. 2, the mapper for list t does not use any sub-maps.
Instead we simply declare that a packer from stage is not needed. Since neither
a submap nor a subrelease are specified neither is required. The first stage, the
packer to, calls a function to count the nodes in the list to determine the size.
Alternatively, if a maximum size is known, a constant could be supplied and
the return value of the packer expression will be interpreted as the number of
bytes that it used. In our example, the packer copies the contents of each list
node into a position in an array of nodes, then stores the number of nodes in
the first element. The unpacker on the way into the device is declared in place
so it uses the staging buffer on the device as both its input and its output. Its
expression calls a declare target routine that iterates through the array and
fixes the next and previous pointers of each element so that the linked-list is
well-formed, but leaves the nodes grouped into a contiguous array through the
target region. Since the data is already in a packed form, it can be copied back
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with a bitwise copy, then data is copied from each node in the packed array into
the potentially non-contiguous original nodes.

While the code that implements the linked-list mapper in terms of packers
and unpackers is not short, it provides a clean interface for users to map a
linked-list by its handle. The same packing and unpacking code can map to or
from a target device and in update constructs, just like the sub-maps in simple
mappers. However, support for these phases can require extra work in some
cases. The pack to and unpack from can use unstructured update directives as
part of their implementation, particularly for child data, termed sub-maps, that
need independent reference counts. This facility supports larger code bases but
its use does not provide the OpenMP runtime sufficient information to manage
the allocation and release of these sub-maps without user action. Thus, the
map submap and map subrelease constructs take expressions to increment or
decrement the reference counts of associated sub-maps respectively.

Finally, we propose the use device addr for data-mapping constructs. While
mappers based on sub-maps compose naturally with other mappers, including a
sub-map in a packer-based mapper is more complex. However, this functionality
is necessary. Since each mapper manages a single reference-counted device-side
view of the data, any data for which the lifetimes of pieces of the structure may be
different must be mapped in pieces. Thus the use device addr clause supplies
the address of the corresponding storage on the device for a given host pointer,
such that a custom packer can include it in the buffer to be bitwise copied to
the device. This clause also offers greater flexibility when interoperating with
native interfaces that may require a device address rather than the host handle
to device data provided by use device ptr.

4 Discussion

Our extension uses user-defined functions to manage data mapping. Alterna-
tively users could combine unstructured data mapping consructs with their own
functions. This approach would require fewer, if any, changes to the OpenMP
specification. However, our approach has several advantages. First, as with any
directives, the compiler can ignore our new constructs and clauses. Second, are
approach facilitates compiler optimization of data copies. Third, OpenMP’s map-
ping model checks if variables are present on a device to avoid unnecessary map-
ping operations. Incorporating packing into this mapping model easiy avoids
packing and unpacking overhead in these cases. The equivalent checks in user
code can be impractical if not impossible. The remainder of this section discusses
how our extensions addresses the challenges listed in Sect. 1.

4.1 Composability

Exclusively compiler-assisted deep-copy mechanisms must provide composability
by design. As a result, they often do not support complex cases such as circu-
lar data structures. Our solution includes support for manually implemented
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mappers, which complicate composability. Any mapper implemented entirely
with sub-maps automatically uses mappers specified for clause list-items. Thus,
like other compiler-assisted mechanism, it supports composability even if those
mappers are implemented with explicit custom packers.

Packers can compose in two distinct ways. First, a mapper that uses packers
can specify sub-maps, in which case those maps are available before the pack-
to stage is executed on the host, and any transfers and unmaps are completed
after the unpack-from stage. These sub-maps can be referenced in the packed
data structure by embedding the result of the use device addr clause. Second,
the pack-to phase can include target enter data constructs to map children,
with matching target exit data constructs in the unpacker-from stage if the
sub maps clause is specified. We require the extra clause because the expression
of the pack-to phase may hide the amount of space that the map must allocate,
an issue that also complicates updates as we discuss next.

4.2 Updates

Updates through mechanisms like target update and map(always:...) pose
difficulties for deep-copy proposals. Pointer-based data-structures on many
devices must use device-specific values for pointer fields. If an update of the
structure blindly copies pointers, the device (host) pointers overwrite the host
(device) values. As of OpenMP TR4, attached pointers are not brought back
to the host and the compiler ensures the error does not occur. While, user-
implemented packers may overwrite host pointers with device pointers in the
unpacker-from stage, Fig. 4 shows that a correct user implementation can avoid
the error or even translate device pointers to the correct host addresses.

Our extension introduces a new issue with updates. Packers that use
sub maps for composition must behave differently when space is allocated from
when data is only transferred. Thus, we require the runtime to support a boolean
omp update variable that indicates the map only transfers data. Thus, packing
stages can perform the correct action depending on its value. While this mech-
anism increases mapper complexity, it supports correct behavior for updates.

4.3 Performance

The performance implications of our extension are complex. If sub-mappers are
used, performance is equivalent to a manual deep copy using attachment seman-
tics. The OpenMP target implementation in clang currently supports pointer
attachment by synchronously copying data and then the pointer to the trans-
fer buffer. When the atttached pointer is part of a larger aggregate buffer, our
extension can improve performance with an unpacker-to that assigns all of the
pointers in one device kernel instead of using individual transfers for each one.
On the downside, if all six stages of the pipeline for a packer-based mapper are
implemented and copy the data in each stage and the data is copied both to
and from the device, four copies are performed as well as the usual two bitwise
copies. However, the additional allocations and data movement can be limited to
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required stages while batch transfers can reduce total data movement cost. Fur-
ther refinement of the interface may yield additional optimizations. For example,
the expansion of an array of mypoints t structures in Fig. 2 is correct but can-
not batch the various buffers into a single larger allocation without breaking the
requirements of the API. We will explore opportunities for array-based packers
and similar optimizations as part of a performance evaluation across various
use-cases as part of future work.

5 Conclusions

We have presented a deep-copy extension for OpenMP that combines com-
piler assistance and user-defined behavior. The user-defined component (pack-
ers) exposes a four-stage pipeline to allow the user to customize the behavior
on host and target in each direction. This conceptual pipeline supports mapping
parallelism as well as data-specific optimizations. Our extension addresses sev-
eral traditionally challenging issues without requiring the directives to support a
complete language. In future work, we will explore this extension in the context
of larger applications, and investigate the possibility of bulk-packing operations
for arrays of data structures rather than single instances at a time.
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