
A Functional Safety OpenMP∗ for Critical
Real-Time Embedded Systems

Sara Royuela1(B), Alejandro Duran2(B), Maria A. Serrano1(B),
Eduardo Quiñones1(B), and Xavier Martorell1(B)

1 Barcelona Supercomputing Center, Barcelona, Spain
{sara.royuela,maria.serrano,eduardo.quinones,xavier.martorell}@bsc.es

2 Intel Corporation Iberia, Madrid, Spain
alejandro.duran@intel.com

Abstract. OpenMP* has recently gained attention in the embedded
domain by virtue of the augmentations implemented in the last specifica-
tion. Yet, the language has a minimal impact in the embedded real-time
domain mostly due to the lack of reliability and resiliency mechanisms.
As a result, functional safety properties cannot be guaranteed. This paper
analyses in detail the latest specification to determine whether and how
the compliant OpenMP implementations can guarantee functional safety.
Given the conclusions drawn from the analysis, the paper describes a
set of modifications to the specification, and a set of requirements for
compiler and runtime systems to qualify for safety critical environments.
Through the proposed solution, OpenMP can be used in critical real-time
embedded systems without compromising functional safety.

1 Introduction

There is a visible trend in the critical real-time embedded industry to adopt
parallel processor architectures, with the objective of providing the perfor-
mance requirements needed to support advanced functionalities, e.g. autonomous
driving and unmanned aerial vehicles. These recent advances on parallel embed-
ded architectures are driving an interesting convergence between the high-
performance and the embedded domain [1]. In this context, the use of parallel
programming models is of paramount importance. To begin with, to efficiently
exploit the performance opportunities of these architectures. Besides, to provide
programmability and portability. All crucial to meet productivity.

OpenMP* has recently gained much attention in the real-time embedded
domain owing to the augmentations of the latest specification. These address the
key issues in parallel heterogeneous embedded architectures: (a) the coupling of
a main host processor to one or more accelerators, where highly-parallel code
kernels can be offloaded for improved performance/watt; and (b) the capability of
expressing fine-grained, both structured and unstructured, and highly-dynamic
task parallelism. As a result, OpenMP is already supported by several chip and
compiler vendors targeting embedded systems such as Kalray, Texas Instruments
and ARM. A fact that relaxes portability issues.

c© Springer International Publishing AG 2017
B.R. de Supinski et al. (Eds.): IWOMP 2017, LNCS 10468, pp. 231–245, 2017.
DOI: 10.1007/978-3-319-65578-9 16

232 S. Royuela et al.

Furthermore, recent studies demonstrate that the structure and syntax of the
OpenMP tasking model resembles the Directed Acyclic Graph (DAG) scheduling
real-time model [32]. This enables the analysis of the timing properties for such
a model. However, the analysis of the OpenMP thread-centric model in terms
of timing and progress guarantees is still an open issue. Last but not least, the
use of OpenMP to enable fine-grained parallelism in critical real-time suitable
languages like Ada has already been proposed [28].

Overall, critical real-time embedded systems can benefit from the flexibility
delivered by OpenMP. Yet, the impact of the language in such a domain is very
limited. The reason is that critical real-time systems require functional safety
guarantees, imposing the system to operate correctly in response to its inputs
from both functional and timing perspectives. This paper focuses on the former.
Functional safety is verified by means of safety standards as the ISO26262 [13]
for automotive, the DO178C [5] for avionics or the IEC61508 [12] for industry.
The use of reliability and resiliency mechanisms allow guaranteeing the correct
operation of the (parallel) execution. Moreover, the complete system stack must
be guaranteed, from the processor architectural perspective to the operating
system. In this respect, OpenMP lacks the required reliability and resiliency
mechanisms at both compiler and runtime levels.

Section 2 analyses in detail the latest specification of OpenMP [2] to identify
the features that may entail a hazard regarding functional safety on critical
real-time embedded systems. Along with the analysis, Sect. 3 proposes changes
in the specification as well as a series of implementation considerations to take
into account in both compilers and runtimes. This proposal aims to eliminate
non-determinism, increase efficiency and simplify the kernel of high-integrity
applications, covering most issues that can prevent OpenMP from being used in
a safety-critical environment.

2 OpenMP Hazards for Critical Real-Time Embedded
Systems

The current section discusses the OpenMP specification with the aim of:
(a) detecting those features that can be a hazard for functional safety when
used in a critical real-time embedded system, and (b) proposing solutions to
avoid the hazard at design, compile or run time, depending on the case.

2.1 Unspecified Behavior

OpenMP defines the situations that result in an unspecified behavior as: non-
conforming programs, implementation defined features and issues documented to
have an unspecified behavior. The impact of each situation to the safety-critical
domain, as well as the solutions we propose, are exposed below.

Non-conforming Programs
The OpenMP specification defines several requirements to applications that are
parallelized with OpenMP. Programs that do not follow these rules are called

A Functional Safety OpenMP∗ 233

non-conforming. According to the specification, OpenMP compliant implemen-
tations are not required to verify conformity. Despite this, safety-critical envi-
ronments compel frameworks to do this validation to certify functional safety.

OpenMP restrictions affect directives, clauses and the associated user code.
Checking some restrictions just requires the verification of OpenMP construc-
tions (e.g. which clauses and how many times a clause can be associated with
a specific directive, for example, at most one if clause can appear on the task

directive). However, checking some restrictions requires visibility of different
parts of the application (e.g. some regions cannot be nested and/or closely nested
in other regions, for example, atomic regions must not contain OpenMP con-
structs).

Compilers must implement inter-procedural analysis to have access to the
whole application. This capability has been successfully implemented in many
vendors following different approaches, such as the Intel R©C/C++ compiler IPO
[11] or the GCC LTO [9]. Nevertheless, access to the whole code is possible only
for monolithic applications. This is not very common in the critical domain,
where systems consist of multiple components developed by different teams,
and rely on third-party libraries. In these cases, additional information may
be needed. We discuss this situation and propose a solution to it in Sect. 3.
This solution is based on new directives that provide the required information.
Henceforward, we assume that the information needed to perform whole program
analysis is always accessible.

Implementation Defined Behavior
Some aspects of the implementation of an OpenMP compliant system are not
fixed in the specification. These aspects are said to have an implementation
defined behavior, and they may indeed vary between different compliant imple-
mentations. The different aspects can be grouped as follows:

1. Aspects that are naturally implementation defined, so the specification can be
used in multiple architectures: definitions for processor, device, device address
and memory model features.

2. Aspects that are implementation defined to allow flexibility: internal con-
trol variables (e.g.: nthreads-var and def-sched-var among others); selection,
amount and distribution of threads (e.g. single construct); dynamic adjust-
ment of threads; etc.

3. Aspects caused by bad information specified by the user: values out of range
passed to runtime routines or environment variables (e.g. the argument passed
to omp set num threads is not a positive integer).

Aspects in groups 1 and 2 may not lead to an execution error or prevent
the program from validating. This is not the case for aspects in group 3, where
an implementation may decide to finish the execution if a value is not in the
range it was expected to be. Besides, cases in group 2 may result in different
outcomes depending on the platform used for the execution. For example, when
the runtime or the auto kinds are used in the schedule clause, the decision of
how the iterations of a loop will be scheduled is deferred until runtime.

234 S. Royuela et al.

In the light of all that, some aspects in groups 2 and 3 are not suitable in
a safety-critical environment because they are non-deterministic and may cause
an undesired result. Situations such as the application aborting due to an unex-
pected value passed to either an environment variable or a runtime routine can
be solved by defining a default value which will not cause the application to end
(note that this value can be different across implementations without affecting
functional safety). Situations such as an auto or runtime value in the schedule
clause can be solved by taking a conservative approach at compile time (i.e. if
a deadlock may occur for any possible scheduling option, then the compiler will
act as if that scheduling always happens). Situations such as runtimes defining
different default values for ICVs like nthreads-var do not need to be addressed,
because they do not bring on any hazard regarding functional safety.

Other Unspecified Behavior

The rest of situations resulting in an undefined behavior are errors and need to
be addressed to guarantee functional safety. These situations can be classified in
three groups, depending on the moment at which they can be detected:

1. Situations that can be detected at compile time. In this case we can distin-
guish those that can be solved by the compiler (e.g. data-race conditions could
be solved by automatically protecting accesses with a critical construct or
synchronizing the accesses - Sect. 2.3 shows more details about data race man-
agement), and those that need user intervention (e.g. compilers should abort
compilation and report to the user situations such as the use of non-invariant
expressions in a linear clause).

2. Situations that can be detected at run time. In this case, safety relies on
programmers because the results deriving from these situations cannot be
handled automatically. Thus, users are compelled to handle errors such as
reduction clauses that contain accesses out of the range of an array section,
or using the omp target associate ptr routine to associate pointers that
share underlying storage (Sect. 2.5 explores error handling techniques).

3. Situations that cannot be detected. These involve the semantics of the pro-
gram, for example, a program that relies on the task execution order being
determined by a priority-value. This case is further discussed in Sect. 2.5.

2.2 Deadlocks

OpenMP offers two ways to synchronize threads: via directives (master and
synchronization constructs such as critical and barrier), and via runtime
routines (lock routines such as omp set lock and omp unset lock). Although
both mechanisms may introduce deadlocks, the latter is much more error-prone
because these routines work in pairs. Furthermore, OpenMP introduces the con-
cept of nestable locks, which differ from the regular locks in that they can be
locked repeatedly by the same task without blocking.

Synchronization directives may cause deadlocks if various critical con-
structs with the same name are nested. Synchronization directives can introduce

A Functional Safety OpenMP∗ 235

other problems as well, like enclosing a barrier construct in a condition that is
special to a thread. Since barriers must always be encountered by all threads of
a team, the previous situation will be non-conforming. Such errors can be easily
caught by a compiler implementing whole program analysis.

Locking routines may cause errors in the following situations: attempt to
access an uninitialized lock, attempt to unset a lock owned by another thread
or attempt to set a simple lock that is in the locked state and is owned by
the same task. There exist numerous techniques for deadlock detection, such
as Chord [23] and Sherlock [7], that apply to different programming models.
Most of the approaches pursue scalability without losing accuracy, thus effec-
tiveness. However, safety-critical environments require soundness. In this regard,
the only sound approach, to the best of our knowledge, for detecting deadlocks
in C/Pthreads programs is the one developed by Kroening et al. [15]. OpenMP
simple locks are comparable to Pthreads mutex, so the previous technique can
be extended to OpenMP. Nestable locks have other peculiarities and it may not
be possible to detect deadlocks at compile time. In such a case, they should not
be permitted.

The use of untied tasks may cause deadlocks that may not exist when using
tied tasks. This is because task scheduling constraints (particularly constraint
#2) prevent from certain situations involving tied tasks to cause a deadlock
by restricting the tasks that can be scheduled at a certain point. Based on
that, using tied tasks may seem more suitable for critical real-time embedded
systems. It has been, however, demonstrated that timing analysis for untied
tasks is much more accurate than for tied tasks [30]. There is thus a trade-off
between functional safety and predictability. For the sake of correctness, untied
tasks may be disabled at compile time only when the static analysis detects that
a deadlock caused by untied tasks may occur.

2.3 Race Conditions

Race conditions appear in a concurrent execution when two or more threads
simultaneously access the same resource and at least one of them is a write. This
situation is not acceptable for a safety-critical environment since the results of
the algorithm are non-deterministic. The problem of detecting data races in a
program is NP-hard [24]. On account of this, a large variety of static, dynamic
and hybrid data race detection techniques have been developed over the years.

On the one hand, dynamic tools extract information from the memory
accesses of specific executions. Despite this, there exist algorithms capable of
finding at least one race when races are present, as well as not reporting false
positives [3]. On the other hand, static tools still seek a technique with no false
negatives and minimal false positives. Current static tools have been proved to
work properly on specific subsets of OpenMP such as having a fixed number
of threads [19] or using only affine constructs [4]. A more general approach can
be used to determine the regions of code that are definitely non-concurrent [18].
Although it is not an accurate solution, it does not produce false negatives, which

236 S. Royuela et al.

is paramount in the safety-critical domain. Therefore, the previously mentioned
techniques can be combined to deliver conservative and fairly accurate results.

2.4 Cancellation

Until version 4.0, all OpenMP constructs based their execution model in the
Single Entry Single Exit (SESE) principle. This means that no thread encoun-
tering an OpenMP region can jump out of the region skipping a part of it.
This is no longer true after the incorporation of the cancellation constructs (i.e.
cancel and cancellation point), which allow exiting parallel computation at
a certain point that may not be the end of the region.

Unlike other models such as the Pthreads asynchronous cancellation,
OpenMP only accepts synchronous cancellations at cancellation points.
Although this eliminates resource leak risks, the technique introduces non-
determinism, which is not desirable in a safety-critical environment. Due to the
use of cancellation constructs, non-determinism appears in the following situa-
tions:

1. The order of execution between one thread that activates cancellation and
another thread that encounters a cancellation point.

2. The final value of a reduction or lastprivate variable in a canceled construct.
3. The behavior of nested regions suitable of being canceled.

If a code is well written, case 1 may only affect performance, but the code will
deliver a valid result whether cancellation occurs or not. Case 2, instead, may
lead to errors if some threads have not finished their computation. Nonetheless,
static analysis can verify that reduction and lastprivate variables are not used
within a construct that may be subject to cancellation, or that the variables are
used only when no cancellation occurs. Finally, case 3 can be solved by statically
verifying that regions subject to cancellation are not nested.

Another issue arises when locks are used in regions subject to cancellation,
because users are responsible for releasing those locks. Current deadlock detec-
tion techniques do not take into account the semantics of the cancellation con-
structs. Nonetheless, these techniques can easily be extended because the effect
of a cancellation is similar to the existence of a jump out of the region.

2.5 Other Features to Consider

Although they do not necessarily involve a hazard, there are other issues that
are worth to mention in the context of this paper. These are explained next.

Error Handling

Resiliency is a crucial feature in the safety-critical domain. However, OpenMP
does not prescribe how implementations must react to situations such as the
runtime not being able to supply the number of threads requested, or the user
passing an unexpected value to a routine. While the former is a problem caused

A Functional Safety OpenMP∗ 237

by the runtime environment, the latter is an error produced by the user. Both
eventually become an unspecified behavior according to the specification, but
they can be addressed differently. On the one hand, if the error is produced by
the environment, users may want to define what recovery method needs to be
executed. On the other hand, errors produced by the user are better caught at
compile time or handled by the runtime (we discuss the latter in Sect. 2.1).

Several approaches have been proposed with the aim of adding resiliency
mechanisms to OpenMP. There are four different strategies for error handling
[33]: exceptions, error codes, call-backs and directives. Each technique can be
applied according to its features to different languages and situations. Exception
based mechanisms fit well in programs exploiting the characteristics of exception-
aware languages (e.g. C++, Ada) [8]. Error code based techniques are a good
candidate when using a language unaware of exceptions (e.g. C, Fortran). Call-
back methods have the advantage of isolating the code that is to be executed
when an exception occurs, and thus enhance readability and maintainability
[6]. Finally, the use of specific OpenMP directives has the advantage of being
simple, although they cannot cover all situations and users cannot define an exact
behavior. The latter is the only approach already adopted in the specification
with the cancellation constructs (see more details in Sect. 2.4).

A safety-critical framework supporting OpenMP will require the implemen-
tation of error-handling methodologies in order to ensure functional safety.

Nested Parallelism
OpenMP allows nesting parallel regions to get better performance in cases where
parallelism is not exploited at the same level. A distributed shared-memory
machine with an appropriate memory hierarchy is necessary to exploit the ben-
efits of this feature (the major HPC architectures).

The nature of critical real-time embedded systems is quite different, where
both memory size and processor speed are usually constrained. Furthermore, the
use of nested parallelism can be costly due to the overhead of creating multiple
parallel regions, possible issues with data locality, and the risk of oversubscrib-
ing system resources. For the sake of simplicity, and considering that current
embedded architectures will not leverage the use of nested parallelism, this fea-
ture could be deactivated by default.

Semantics of OpenMP
For an analysis tool, it is possible to address correctness based on how the
program is written. However, addressing whether the program behaves as the
user wants is another matter altogether. This said, some features of OpenMP
may be considered as hazardous because their use may derive in errors involving
the semantics of the program. We discuss some of them as follows:

– A program that relies on an specific order of execution of the tasks based on
their priorities is non-conforming.

– When and how some expressions are to be executed is not defined in OpenMP.
Some examples are: whether, in what order, or how many times any side
effects of the evaluation of the num threads or if clause expressions of a

238 S. Royuela et al.

parallel construct occur; and the order in which the values of a reduction
are combined is unspecified. Thus, an application that relies on any ordering
of the evaluation of the expressions mentioned before is non-conforming.

– The storage location specified in task dependencies must be identical or dis-
joint. Thus, runtimes are not forced to check whether two task instances have
partially overlapping storage (which eases the runtime considerably).

– The use of flushes is highly error-prone, and makes it extremely hard to
test whether the code is correct. However, the use of the flush operation is
necessary for some cases such as the implementation of the producer-consumer
pattern.

Frameworks cannot prevent users from writing senseless code. However, some
of the features mentioned before could be deactivated if the level of criticality
demands it. It is a matter of balance between functionality and safety. Thus,
if necessary, support for task priorities and flushes could be deactivated. The
case regarding side-effects could be simplified to using associative and commu-
tative operations in reductions, and expressions without side-effects in the rest
of clauses. Finally, the case regarding task dependency clauses could be solved
at runtime by resuming parallel execution when a task contains non-conforming
expressions in its dependency clauses (although this solution causes a serious
impact in the performance of the application).

3 OpenMP Support for Critical Real-Time Systems

Based on the discussion in Sect. 2, this section exposes our proposal to enable the
use of OpenMP in safety-critical environments without compromising functional
safety. The proposal can be divided in two facets: different changes to the spec-
ification, and a series of compiler and runtime implementation considerations.

3.1 Changes to the Specification

As we introduce in Sect. 2.1, whole program analysis may not be enough if the
system includes multiple components developed by different teams or make use
of third-party libraries implemented with OpenMP. In such a case, we propose
that these components or libraries augment their API with information about
the OpenMP features used in each method. As a result, compilers will be able to
detect, on the one hand, illegal nesting of directives and data accessing clauses
(i.e. data-sharing attributes, data mapping, data copying and reductions) and,
on the other hand, data-races.

To tackle illegal nesting, we propose to add a new directive called usage. This
directive is added to a function declaration and followed by a series of clauses.
The clauses determine the features of OpenMP that are used within the function
and any function in its call graph, and can cause an illegal nesting. Note that
the use of this directive is a promise that a construct might be used in a possible
path within the function. Overall, the clauses that can follow the directive usage
are one of the following:

A Functional Safety OpenMP∗ 239

– Directive related: parallel, worksharing (which epitomizes single,
for/do, sections and workshare), master, barrier, critical, ordered,
cancel, distribute construct (which epitomizes distribute, distribute
simd, distribute parallel loop and distribute parallel loop SIMD),
target construct (which epitomizes target, target update, target
data, target enter data and target exit data), teams, any (which epit-
omizes any directive not included in the previous items).

– Clause related: firstprivate, lastprivate, reduction, map, copyin and
copyprivate.

Based on the restrictions that apply to the nesting of regions (Sect. 2.17 of the
specification [2]) and the restrictions that apply to the mentioned data accessing
clauses, we extract the set of rules that define how the previous clauses are to
be used. These rules are the following:

– Clauses parallel, worksharing, master, barrier and ordered are required
when the corresponding construct is the outermost construct.

– Clauses critical and target construct are required if there is any occur-
rence of the corresponding construct.

– Clause teams is required if the corresponding construct is orphaned.
– Clauses cancel and cancellation point are required if the corresponding

constructs are not nested in their corresponding binding regions.
– Clause any must be specified if OpenMP is used and no previous case applies.
– Data accessing clauses are required when they apply to data that is accessible

outside the application and particular constraints apply to them:
• Clause firstprivate if used in a worksharing, distribute, task or

taskloop construct not enclosed in a parallel or teams construct.
• Clauses lastprivate and reduction if used in a worksharing not enclosed

in a parallel construct.
• Clauses copyin, copyprivate and map in any case.

To avoid data races, we propose to add a new directive called globals. This
directive, added to a function declaration, defines which data is used within the
function while it can be accessed concurrently from outside the function, thus
producing a data-race. Different clauses accompany this directive: read, write,
protected read and protected write, all accepting a list of items. While read
and protected read must be used when global data is only read, write and
protected write are required when global data is written, independently of it
being read as well. The protected versions of these clauses must be used when
the access is within an atomic or a critical construct.

Listings 1.1 and 1.2 illustrate the use of the two mentioned directives within
the context of a system component that can be used without accessing its source
code. The former listing contains the definition of function foo, which uses one of
the most determining features for OpenMP to be used in parallel heterogeneous
embedded architectures: the target construct. This function defines an asyn-
chronous task that offloads some parallel computation to a device. The parallel

240 S. Royuela et al.

computation within the device is synchronized using the critical construct,
and is cancelled if the cancel directive is reached. The latter listing contains the
declaration of function foo, augmented with the usage and globals directives.
Clauses target construct and critical associated to directive usage indicate
that the function executes one or more target and critical constructs. A pro-
grammer and/or compiler can avoid calling function foo from within a target
and a critical constructs, thus avoiding an illegal nesting. Note that directive
cancel is not included because it is nested in its binding region, clauses task
and parallel for are not included because no rule applies to them, and the
firstprivate data-sharing clause is not included because it does not concern
to data that is visible from outside the function. Additionally, clauses write
and protected write associated to directive globals indicate that variables
arr[0:N-1] and sum are both written, being sum written within a critical
construct. A programmer and/or compiler can determine whether these vari-
ables are in a race condition without knowing the code of the function, and
therefore synchronize the accesses to the variables appropriately.

Listing 1.1. Example of OpenMP function definition

1 void f oo (float∗ arr , unsigned N, unsigned M,
2 float &sum , float MAXSUM)
3 {
4 #pragma omp task shared (arr , sum) \
5 firstprivate (N, M, MAXSUM)
6 #pragma omp target map (tofrom : a r r [0 :N−1])
7 #pragma omp parallel for
8 for (int i =0; i<N; ++i) {
9 ar r [i] = bar (i) ;

10 if (i % M == 0) {
11 #pragma omp critical
12 sum +=arr [i] ;
13 }
14 if (sum > MAXSUM) {
15 #pragma omp cancel for
16 }
17 }
18 }

Listing 1.2. Function declaration for method in Listing 1.1 using the extensions for
safety-critical OpenMP

1 #pragma omp usage target construct critical \
2 map (tofrom : a r r [0 :N−1])
3 #pragma omp globals write (a r r [0 :N−1]) protected write (sum)
4 void f oo (float∗ arr , unsigned N, unsigned M,
5 float &sum , float MAXSUM) ;

Listings 1.3 and 1.4 show another example of the proposed directives. In
this case, the function definition in the former listing performs the factorial
computation parallelized using the for worksharing; and the function declaration
in the latter listing shows the clauses required for the method to be used in
a functional safe environment. Clause any is specified because no rule applies
to directive for, and clause reduction is specified because the reduction is
used in a worksharing not enclosed in a parallel region. With this information
a programmer and/or compiler can check whether the variable being reduced

A Functional Safety OpenMP∗ 241

is shared in the parallel regions to which any of the worksharing regions bind.
Analysis may also verify whether the factorial function is called from within
an atomic region, thus causing the program to be non-conforming. Finally, race
analysis can detect whether the variable factorial is in a race condition by means
of the clause write.

Listing 1.3. Factorial computation parallelized with OpenMP

1 void f a c t o r i a l (int N, int &fa c t)
2 {
3 f a c t = 1 ;
4 #pragma omp for reduction (∗ : f a c t)
5 for (int i =2; i <= N; ++i)
6 f a c t ∗= i ;
7 }

Listing 1.4. Function declaration for method in Listing 1.3 using the extensions for
safety-critical OpenMP

1 #pragma omp usage any \
2 reduction (f a c t o r i a l)
3 #pragma omp globals write (f a c t o r i a l)
4 void f a c t o r i a l (int N, int &f a c t o r i a l) ;

3.2 Implementation Considerations

Both compilers and runtime systems used within a critical real-time system must
be qualified against the corresponding functional safety standard, e.g. ISO26262
for automotive or DO178C for avionics, to preserve functional safety. The fol-
lowing paragraphs introduce which constraints apply in our case.

Compiler Contract

The development tools used for critical real-time systems need to qualify to the
same integrity level1 as the application they are helping to develop. Nonetheless,
current guidelines make the qualification of development tools very difficult [14].
As an example, the standard for Software Considerations in Airborne Systems
and Equipment Certification (DO-178C) [5] reads: “Upon successful completion
of verification of the software product, the compiler is considered acceptable for
that product”. As a result, sometimes compilers do not need to be qualified.
Nonetheless, to gain assurance, some characteristics must be incorporated, such
as being fully tested for complete coverage analysis2, and being used in the same
configuration, options, and environment as the one used to compile any other
objects related to the application.

1 The integrity level, also called criticality level, refers to the consequences of the
incorrect behavior of a system. These levels are defined in different scales such as
the Safety Integrity Level (SIL) for automotive and the Development Assurance Level
(DAL) for avionics.

2 Code coverage is a measure used to describe the amount of the source code of a
program being executed when a particular test suite runs.

242 S. Royuela et al.

However, for an OpenMP compiler to be valid in a critical real-time envi-
ronment, it must ensure the source code is compliant with the OpenMP spec-
ification. For that reason, the compiler must implement the necessary analysis
techniques to allow whole program analysis. Additionally, the compiler must also
include specific and sound techniques for data-race and deadlock detection, as
well as the correctness analysis that allows statically detecting and fixing the
unspecified behaviors commented in Sect. 2.1.

Runtime Contract
As a result of the analysis presented in Sect. 2, we conclude that runtime libraries
used in safety-critical environments shall follow some requirements to avoid unex-
pected aborts and fix some programmer errors. The following list is an starting
point for these systems to address such undesired results:

– Runtimes should define a default value for all environment variables. This
value shall be used when the value specified in the application is out of range,
e.g. OMP NUM THREADS could be 1 by default, and OMP NESTED could be false.

– Some clauses, such as num threads and device, take a number as a parameter
that must evaluate to a positive integer. Runtimes should define the value to
be used if the expression is out of range, for example, 1.

– Other errors can be caught and fixed at runtime, e.g. different instances of the
same task or sibling tasks expressing dependency clauses on list items which
storage location is neither identical nor disjoint may be executed sequentially.

4 Related Work

Parallel heterogeneous embedded architectures certainly require the use of par-
allel programming models to provide high throughput, low latency and energy-
efficient solutions. Efforts to introduce OpenMP in such environments [20] reveal
that OpenMP runtimes can efficiently be aware of the heterogeneity and the
memory hierarchy to deliver good performance. However, all works that intend
to introduce OpenMP in the embedded domain conclude that, although the
language is very useful in such environments, some extensions with real-time
processing and power-awareness functionalities [10] are needed.

Critical real-time embedded systems, add additional, more restrictive, con-
straints to those of the embedded domain. Concretely, timing guarantees and
functional safety. Regarding the former, significant attempts to analyze the time
predictability properties of OpenMP [30], as well as deriving response time analy-
sis for both work-conserving dynamic and purely static schedulers [16,21,29],
confirm the OpenMP tasking model as a perfectly suitable parallel pattern for
safety-critical environments. In this sense, the suitability of the thread-centric
model still remains unproved. Furthermore, situations such as starvation when
a barrier construct is found shall be addressed.

With regard to functional safety, different works have tried to study, classify
and solve mistakes commonly appearing in OpenMP applications [22,31]. These
works are very useful mostly for unexperienced programmers in order to avoid

A Functional Safety OpenMP∗ 243

errors. Beyond the theoretical approaches, many articles propose different tech-
niques tackling correctness in general, and OpenMP correctness in particular.
Section 2 introduces several techniques for detecting specific errors in concurrent
programs (i.e. race conditions and dead-locks). Additionally, some techniques
have been developed specifically for OpenMP to compute and verify data scop-
ing, task dependencies and locks among others [17,25–27].

Finally, there exist works towards the adoption of OpenMP in Ada [28], a
language commonly used in safety-critical and high-security domains such as
avionics and railroad systems. In Ada, concepts as safety and reliability are
crucial. However, there are still some caveats about the integration of the Ada
and OpenMP runtimes, because both will be mapped to the underlying threads
of the operating system.

5 Conclusions and Future Work

OpenMP is increasingly being considered a suitable candidate to be used in
critical real-time embedded systems considering its benefits: programmability,
portability and efficiency, among others. However, such systems impose strict
constraints to ensure functional safety in terms of functional correctness and
timing predictability. This paper has focused on the former aiming to shorten
the distance between OpenMP and the critical real-time domain.

In this scope, we prove that most features specified in OpenMP can be used
without compromising safety, as long as compilers implement a series of analyses
that can prevent errors such as dead-locks and race conditions. Indeed, analysis
must involve the entire program which can be a challenging scenario. To ease
this, we propose some new directives that allow whole program analysis even
when third-party libraries are used. The majority of the unspecified behaviors
defined in the specification can be solved at compile time either automatically by
the compiler (e.g. synchronizing variables that otherwise could be accessed after
their life-time has ended), or by the programmer (e.g., the use of non-invariant
expressions in a linear clause). Other issues can be successfully addressed at
runtime (e.g. unexpected values passed to environment variables and runtime
libraries can be solved by defining default values to be used in such cases). In
some cases, supporting the required level of criticality might incur more overhead
than a traditional OpenMP implementation (e.g., tracking task dependencies’
overlap). Last but not least, there are a series of features that can be used
erroneously if their semantics are not properly exploited (e.g. tasks priorities or
flushes). We conclude that support for these features can be deactivated if the
level of criticality requires so.

The small modifications that this paper proposes back up OpenMP’s safety.
Nonetheless, we note some lacks in the current specification, e.g. error handling
techniques to improve resiliency. Hence, despite the functional safety aspect is
deeply addressed in this paper, the same analysis concerning time predictability,
including starvation, remains as future work. In that regard, we plan to analyze
the latest specification to find out how timing analyses could be affected by the
use of OpenMP.

244 S. Royuela et al.

Acknowledgments. This work was funded by the EU project P-SOCRATES (FP7-
ICT-2013- 10) and the Spanish Ministry of Science and Innovation under contract
TIN2015-65316-P.

Disclaimers
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in
the United States and/or other countries.
*Other brands and names are the property of their respective owners.

References

1. P-SOCRATES European Project: Parallel Software Framework for Time-Critical
Many-core Systems. http://p-socrates.eu

2. OpenMP Application Programming Interface (2015). http://www.openmp.org/
wp-content/uploads/openmp-4.5.pdf

3. Banerjee, U., Bliss, B., Ma, Z., Petersen, P.: A theory of data race detection. In:
Parallel and Distributed Systems: Testing and Debugging (2006)

4. Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P.,
Wonnacott, D.: ompVerify: polyhedral analysis for the OpenMP programmer. In:
Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP
2011. LNCS, vol. 6665, pp. 37–53. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21487-5 4

5. DO-178C: Software considerations in airborne systems and equipment certification
(2011)

6. Duran, A., Ferrer, R., Costa, J.J., Gonzàlez, M., Martorell, X., Ayguadé, E.,
Labarta, J.: A proposal for error handling in OpenMP. IJPP 35(4), 393–416 (2007)

7. Eslamimehr, M., Palsberg, J.: Sherlock: scalable deadlock detection for concurrent
programs. In: SIGSOFT (2014)

8. Fan, X., Mehrabi, M., Sinnen, O., Giacaman, N.: Exception handling with OpenMP
in object-oriented languages. In: Terboven, C., Supinski, B.R., Reble, P., Chapman,
B.M., Müller, M.S. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 115–129. Springer,
Cham (2015). doi:10.1007/978-3-319-24595-9 9

9. GNU: Link Time Optimization (2017). https://gcc.gnu.org/onlinedocs/gccint/
LTO.html

10. Hanawa, T., Sato, M., Lee, J., Imada, T., Kimura, H., Boku, T.: Evaluation
of multicore processors for embedded systems by parallel benchmark program
using OpenMP. In: Müller, M.S., Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 15–27. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02303-3 2

11. IntelR© Corporation: Interprocedural Optimization (2017). https://software.intel.
com/en-us/node/522666

12. International Electrotechnical Commission: IEC 61508, Functional Safety of Elec-
trical/Electronic/Programmable Electronic Safety-Related Systems, 2.0nd edn.
(2009)

13. International Organization for Standardization: ISO/DIS 26262. Road Vehicles -
Functional Safety (2009)

14. Kornecki, A.J.: Software Development Tools for Safety-Critical. Real-Time Sys-
tems Handbook. Office of Aviation Research and Development, FAA (2007)

15. Kroening, D., Poetzl, D., Schrammel, P., Wachter, B.: Sound static deadlock analy-
sis for C/Pthreads. In: ASE (2016)

http://p-socrates.eu
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://dx.doi.org/10.1007/978-3-642-21487-5_4
http://dx.doi.org/10.1007/978-3-642-21487-5_4
http://dx.doi.org/10.1007/978-3-319-24595-9_9
https://gcc.gnu.org/onlinedocs/gccint/LTO.html
https://gcc.gnu.org/onlinedocs/gccint/LTO.html
http://dx.doi.org/10.1007/978-3-642-02303-3_2
http://dx.doi.org/10.1007/978-3-642-02303-3_2
https://software.intel.com/en-us/node/522666
https://software.intel.com/en-us/node/522666

A Functional Safety OpenMP∗ 245

16. Lakshmanan, K., Kato, S., Rajkumar, R.: Scheduling parallel real-time tasks on
multi-core processors. In: RTSS (2010)

17. Liao, C., Quinlan, D.J., Panas, T., Supinski, B.R.: A ROSE-based OpenMP 3.0
research compiler supporting multiple runtime libraries. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol.
6132, pp. 15–28. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13217-9 2

18. Lin, Y.: Static nonconcurrency analysis of OpenMP programs. In: Mueller,
M.S., Chapman, B.M., Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP-
2005. LNCS, vol. 4315, pp. 36–50. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68555-5 4

19. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: ICPP (2013)

20. Marongiu, A., Burgio, P., Benini, L.: Supporting OpenMP on a multi-cluster
embedded MPSoC. Microprocess. Microsyst. 35(8), 668–682 (2011)

21. Melani, A., Serrano, M.A., Bertogna, M., Cerutti, I., Quinones, E., Buttazzo, G.:
A static scheduling approach to enable safety-critical OpenMP applications. In:
ASP-DAC (2017)

22. Münchhalfen, J.F., Hilbrich, T., Protze, J., Terboven, C., Müller, M.S.: Classifi-
cation of common errors in OpenMP applications. In: DeRose, L., Supinski, B.R.,
Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766,
pp. 58–72. Springer, Cham (2014). doi:10.1007/978-3-319-11454-5 5

23. Naik, M., Park, C.S., Sen, K., Gay, D.: Effective static deadlock detection. In: ICSE
(2009)

24. Netzer, R.H., Miller, B.P.: What are race conditions? Some issues and formaliza-
tions. LOPLAS 1(1), 74–88 (1992)

25. Royuela, S., Duran, A., Liao, C., Quinlan, D.J.: Auto-scoping for OpenMP
tasks. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 29–43. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8 3

26. Royuela, S., Duran, A., Martorell, X.: Compiler automatic discovery of OmpSs
task dependencies. In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol.
7760, pp. 234–248. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37658-0 16

27. Royuela, S., Ferrer, R., Caballero, D., Martorell, X.: Compiler analysis for OpenMP
tasks correctness. In: International Conference on Computing Frontiers (2015)

28. Royuela, S., Martorell, X., Quinones, E., Pinho, L.M.: OpenMP tasking model for
ADA: safety and correctness. In: AE (2017)

29. Serrano, M.A., Melani, A., Bertogna, M., Quinones, E.: Response-time analysis of
DAG tasks under fixed priority scheduling with limited preemptions. In: DATE
(2016)

30. Serrano, M.A., Melani, A., Vargas, R., Marongiu, A., Bertogna, M., Quinones, E.:
Timing characterization of OpenMP4 tasking model. In: CASES (2015)

31. Süß, M., Leopold, C.: Common mistakes in OpenMP and how to avoid them. In:
OpenMP Shared Memory Parallel Programming (2008)

32. Vargas, R., Quinones, E., Marongiu, A.: OpenMP and timing predictability: a
possible union? In: DATE (2015)

33. Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., Supinski, B.R.,
Churbanov, A.: Towards an error model for OpenMP. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol.
6132, pp. 70–82. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13217-9 6

http://dx.doi.org/10.1007/978-3-642-13217-9_2
http://dx.doi.org/10.1007/978-3-540-68555-5_4
http://dx.doi.org/10.1007/978-3-540-68555-5_4
http://dx.doi.org/10.1007/978-3-319-11454-5_5
http://dx.doi.org/10.1007/978-3-642-30961-8_3
http://dx.doi.org/10.1007/978-3-642-30961-8_3
http://dx.doi.org/10.1007/978-3-642-37658-0_16
http://dx.doi.org/10.1007/978-3-642-13217-9_6

	A Functional Safety OpenMP* for Critical Real-Time Embedded Systems
	1 Introduction
	2 OpenMP Hazards for Critical Real-Time Embedded Systems
	2.1 Unspecified Behavior
	2.2 Deadlocks
	2.3 Race Conditions
	2.4 Cancellation
	2.5 Other Features to Consider

	3 OpenMP Support for Critical Real-Time Systems
	3.1 Changes to the Specification
	3.2 Implementation Considerations

	4 Related Work
	5 Conclusions and Future Work
	References

