
Enhancing Performance of Computer Vision
Applications on Low-Power Embedded Systems
Through Heterogeneous Parallel Programming

Stefano Aldegheri, Silvia Manzato, Nicola Bombieri
Department of Computer Science

University of Verona
Email: name.surname@univr.it

Abstract—Enabling computer vision applications on low-power
embedded systems gives rise to new challenges for embedded SW
developers. Such applications implement different functionalities,
like image recognition based on deep learning, simultaneous local-
ization and mapping tasks. They are characterized by stringent
performance constraints to guarantee real-time behaviors and,
at the same time, energy constraints to save battery on the
mobile platform. Even though heterogeneous embedded boards
are getting pervasive for their high computational power at low
power costs, they need a time consuming customization of the
whole application (i.e., mapping of application blocks to CPU-
GPU processing elements and their synchronization) to efficiently
exploit their potentiality. Different languages and environments
have been proposed for such an embedded SW customization.
Nevertheless, they often find limitations on complex real cases,
as their application is mutual exclusive. This paper presents a
comprehensive framework that relies on a heterogeneous par-
allel programming model, which combines OpenMP, PThreads,
OpenVX, OpenCV, and CUDA to best exploit different levels of
parallelism while guaranteeing a semi-automatic customization.
The paper shows how such languages and API platforms have
been interfaced, synchronized, and applied to customize an ORB-
SLAM application for an NVIDIA Jetson TX2 board.

I. INTRODUCTION

Computer vision is becoming pervasive in modern cyber-
physical systems [1], [2]. Its main goal is the use of digital
processing and intelligent algorithms to interpret meaning
from images or video streams. Computer vision applications,
in the context of cyber-physical systems, generally consists
of several computational-intensive kernels that implement
different functionalities, ranging from image recognition to
simultaneously mapping and localization (SLAM).

Developing and optimizing such applications for an em-
bedded system is not an immediate and simple task. Beside
functional correctness, developers have to deal with non-
functional aspects like performance, power consumption, en-
ergy efficiency and real time constraints. The optimization
is architecture dependent and spans across two main dimen-
sions: block-level and system-level. The first is more intuitive
and involves the re-implementation/parallelization of single
kernels for the target board accelerators (e.g., GPU, DSP,

or multi-cores) through specific languages or programming
environments like CUDA, OpenCL, Pthreads or OpenMP. The
system-level optimization targets the overall system power
consumption, memory bandwidth, and inter-process communi-
cation overhead. Mapping space exploration means exploring
the different strategies to map each of such kernels to the
right processing elements of the board and analyzing the
corresponding impact on the design constraints.

OpenVX [3] is increasingly gaining consensus in the em-
bedded vision community as programming environment and
API library for system-level optimizations [4]. Such a platform
is designed to maximize functional and performance portabil-
ity across different hardware platforms, providing a computer
vision framework that efficiently addresses different hardware
architectures with minimal impact on software applications.
Starting from a graph model of the embedded application, it
allows for automatic system-level optimizations and synthesis
on the target architecture by optimizing performance, power
consumption and energy efficiency [5], [6], [7], [8].

Nevertheless, due to the limitation of OpenVX to model
complex applications through data-flow graphs and to the
incompleteness of the OpenVX primitive library, any real em-
bedded vision application requires the integration of OpenVX
with user-defined C/C++ code. On the one hand, the user-
defined code can benefit from parallelization techniques for
multi-cores, thus providing heterogeneous parallel environ-
ments (i.e., multi-core + GPU parallelism). On the other hand,
due to the private and not user-controlled memory stack of
OpenVX, such an integration leads to the sequentialization of
the different execution environments, with a consequent strong
impact on the system-level optimization.

This paper presents a framework for heterogeneous paral-
lel programming of embedded vision applications. It allows
combining different programming environments, i.e., OpenMP,
PThreads, OpenVX, OpenCV, and CUDA to best exploit
different levels of parallelism while guaranteeing the semi-
automatic customization.

The paper presents an analysis of the limitations found
by applying the state-of-the-art parallel programming envi-
ronments to customize a modern SLAM application for the978-1-5386-4756-1/18/$31.00 c©2018 IEEE

119

widespread NVIDIA Jetson TX2 board. Finally, it presents
the results of the mapping space exploration we performed
by considering performance, power consumption, energy ef-
ficiency, and result quality design constraints. The paper is
organized as follows. Section II presents an introduction on
OpenVX and the related work. Section III presents an analysis
of parallel programming environments for embedded vision
applications through a case study. Section IV presents the
proposed framework. Section V presents the experimental
results, while Section VI is devoted to the concluding remarks.

II. BACKGROUND AND RELATED WORK

OpenVX is a framework to develop and optimize embedded
vision applications by considering different design constraints
(i.e., performance, power consumption). It relies on a graph-
based model to define a high-level and architecture indepen-
dent representation of the application. Such a representation
is modularly built by the user through the use of a set of
primitives, which are provided by the framework and that
represent the most commonly used functionalities and data
objects in computer vision algorithms, such as scalars, arrays,
matrices and images, as well as high-level data objects like
histograms, image pyramids, and look-up tables.

The high-level representation (i.e., the graph) is then au-
tomatically optimized and embedded thanks to the libraries
of architecture-oriented implementation of the primitives and
data-structures provided by the board vendor.

The developer defines a computer vision algorithm by in-
stantiating kernels as nodes and data objects as parameters (see
the example in Fig. 1). Each node of the graph is identified as
a function kernel that can run on any processing unit of target
heterogeneous board. Indeed, the application graph represents
the partitioning of the whole application into blocks, which
can be be executed across different hardware accelerators (e.g.,
CPU cores, GPUs, DSPs).

The programming flow starts by creating an OpenVX con-
text to manage references to all used objects. Based on this
context, the code builds the graph and generates all required
data objects. Then, it instantiates the kernel as graph nodes
and generates their connections. The framework first checks
the graph integrity and correctness (e.g., checking of data type
coherence between nodes and absence of cycles) and, finally,
it processes the graph. At the end of the code execution, it
releases all created data objects, the graph, and the context.

In the example of the Fig. 1, the application computes the
gradient magnitude and gradient phase from a blurred input
image. The Magnitude and Phase nodes are independently
computed, in that each does not depend on the output of the
other. OpenVX does not mandate that they are run simultane-
ously or in parallel, but it allows the runtime manager of the
board vendor to decide on the mapping and execution strategy.

By adopting any vendor library that implements the graph
nodes as Computer Vision primitives, OpenVX allows apply-
ing different mapping strategies between nodes and processing

UYVY
Image

Luma
extract

Virtual
Image

Luma
extract

Virtual
Image

Gradients

Virtual
Image

Virtual
Image

Magnitude Phase

VX_DF_image_u8 VX_DF_image_u8

Fig. 1. OpenVX sample application (graph diagram)

elements of the heterogeneous board, by targeting different de-
sign constraints (e.g., performance, power, energy efficiency).

Different works have been presented to analyze the use of
OpenVX for embedded vision [6], [7], [5], [8]. In [6], the
authors present a new implementation of OpenVX targeting
CPUs and GPU-based devices by leveraging different analyt-
ical optimzation techniques. In [7], the authors examine how
OpenVX responds to different data access patterns, by testing
three different OpenVX optimizations: kernels merge, data
tiling and parallelization via OpenMP. In [5], the authors intro-
duce ADRENALINE, a novel framework for fast prototyping
and optimization of OpenVX applications for heterogeneous
SoCs with many-core accelerators. In [8], we proposed a
methodology to integrate a model-based design environment to
OpenVX. The methodology allows applying Matlab/Simulink
for the model-based design, parametrization, and validation of
computer vision applications. Then, it allows for the automatic
synthesis of the application model into an OpenVX description
for the hardware and constraints-aware application tuning.

III. ANALYSIS OF PARALLEL PROGRAMMING

ENVIRONMENTS FOR EMBEDDED VISION APPLICATIONS

THROUGH THE ORB-SLAM CASE STUDY

In order to understand the limitations of the state-of-the-
art environments for parallel programming embedded vision
applications and the contribution of the proposed framework,
we first present the case study, which will be used as a
model in the subsequent sections. The case study, ORB-SLAM
[9], represents a typical real embedded application, which
is applied in different contexts, ranging from automotive to
robotic systems. NVIDIA Jetson TX2, which is a widespread
and low-cost embedded board, is the target platform.

ORB-SLAM solves the simultaneous localization and map-
ping problem when RGB camera sensors are adopted. It
computes, in real-time, the camera trajectory and a sparse 3D
reconstruction of the scene in a wide variety of environments,
ranging from small hand-held sequences of a desk to a
car driven around several city blocks. It builds a 3D map
starting from an input stream and/or it performs localization

120

Tracking	and	Localization	block	(1	Pthread)

Tracking
(ORB	desc.	comp)

Localization

Mapping	block	 (1	Pthread)

Mapping
Local	bundle	
adjustment

(OpenMP directives)

Loop	closing	block	 (1PThread)

Place	
recognition

Global	bundle	
adjustment

(OpenMP directives)

ORB-SLAM

Input	sensor
(RGB	camera)

GPU

CPU	
cluster

CPU	
cluster

(a)

Original	Pthread/
OpenMP code

Parallel	
exec.	on	
multicores

CPU	
cluster

CPU	
cluster

(b)

OpenVX +	Pthread/
OpenMP code

Parallel	exec.	
on	multicores

+	GPU

GPU
(idle)GPU

CPU	
cluster

CPU	
cluster

Parallel	
exec.	on	
multicores

Task	sequentializationGPU	idle

Fig. 2. Overview of ORB-SLAM application and execution models: (a) the
original code (parallelized for multicore), (b) the state-of-the-art OpenVX
implementation.

by considering the current map. The application consists of
three main blocks (see Figure 2):
- The tracking and localization block computes visual features,
it localizes the agent in the environment, and, in case of
significant discrepancies between an already saved map and
the input stream, it communicates updating information of
the map to the mapping block. The processing rate (i.e.,
the supported frame rate per second) and the main power
consumption of the whole application strongly depend on this
block performance.
- The mapping block updates the environment map by using
information (detected map changes) sent by the localization
block. In case of a well consolidated map, this module can be
shut down to save system resources.
- The loop closing block aims at adjusting the scale drift
error accumulated during the input analysis, which is unavoid-
able when adopting a monocular vision system (i.e., RGB
camera). When a loop in the agent pathway is detected, this
block updates the mapped information through a high latency
heavy computation, during which the first two blocks must
be suspended. This can lead the agent to loose tracking and
localization information and, as a consequence, the agent to get
temporary lost. As a consequence, the computation efficiency
of this block (run on-demand) is crucial for the quality of the
whole application results.

In the best ORB-SLAM implementation at the state of the
art [9], due to their concurrent execution model, the three
blocks are implemented to be run in parallel through PThreads
on shared-memory multiprocessors. In addition, since the
bundle adjustment task, both local in the mapping block and
global in the loop closing block, can have long latencies, it
is a primary target for parallelization. Its nested and data-
independent loops well apply for directive-based automatic
parallelization. Thus, the state of the art code is available with

OpenMP directives for parallel execution on multi-cores. No
block is originally considered for parallel execution on GPU
(see Figure 2(a)).

The manual implementation of any sub-block for GPU is
out of the scope of this work. Rather, due to the complexity of
such a parallelization task for this application class yet con-
sidering different design constraints (power consumption and
energy efficiency beside performance), we consider the semi-
automatic embedding of the application through OpenVX.

We rely on standard libraries of computer vision functions,
which are provided by the target board vendors (i.e., Vision-
Works [10] for NVIDIA boards). The library can be extended
through user-defined or third-party CUDA kernels, which are
integrated in the OpenVX implementation as custom nodes.

On the other hand, due to the limitation of OpenVX to
model complex applications through data-flow graphs and
to the incompleteness of the vendor library, the OpenVX
application has to be often integrated to standard C/C++ code.
In the ORB-SLAM case study, only the tracking sub-block
can be modelled through a data-flow graph and is worth to
be optimized for CPU/GPU execution. Even though the rest
of the code can still run on multicores, the two environment
execution (OpenVX+CUDA and the rest) is sequentialized to
allow for communication and synchronization, as explained in
Section IV. The proposed method aims at integrating the two
environments. Such an integration involves several advantages,
such as, multi-level parallel execution of the application and
better mapping space between tasks and processing elements
to be explored.

IV. METHOD

Figure 3 depicts the overview of the proposed framework.
We consider six different languages and parallel program-
ming environments (environments in the following): C/C++,
Pthreads, OpenMP, OpenCV, OpenVX, and CUDA. The en-
vironment heterogeneity allows implementing different ap-
plication blocks with the most appropriate style, such as
C/C++ for control parts, Pthreads for concurrent execution
functions on the CPUs, OpenMP for directive-based automatic
parallelization of code chunks, CUDA for any kernel (if
available) acceleration on GPU, and OpenVX for primitive-
based parallelization of data-flow routines. OpenCV has been
chosen to implement standard I/O communication protocols of
computer vision applications through standard data-structures
and APIs. This allows the embedded vision applications to
be portable and efficiently integrated to any other application
compliant to the standard.

For the sake of clarity and without loss of generality, we
consider, as a running example, the widespread and most
popular NVIDIA Jetson TX2 as the target platform. Such
an embedded board relies on a shared-memory architecture,
in which two different clusters of CPUs (four cores Cortex-
A57 CPUs and two cores Denver CPUs) and a GPU with two
symmetric multiprocessors share an unified memory space.

121

SM_0
(128	cores)

SM_1
(128	cores)

GPU	(Pascal)

512	KB	L2	cache

Denver	CPU	clusterCortex-A57	CPU	cluster

CPU_0 CPU_1 CPU_2 CPU_3 CPU_0 CPU_1

User-controlled	stack Private	(not	user-controlled)	stack

C/C++/Pthread/OpenMP OpenCV OpenVX+CUDA

Input	
data

Communication	
wrapper OpenVX data-

structures
C/C++	data-
structures

Linux	task-CPU	mapping

Memory	controller

DRAM

Input	sensor
(RGB	camera)

Unified Linux	task	scheduling

OpenVX task- CPU/GPU	mapping	
(Performance/Power-aware)

GPU	stream_0

GPU	stream_n

… Kernel	
Engine

L1	cache	
128+128KB

L1	cache	
128+128KB

L1	cache	
128+128KB

L1	cache	
128+128KB

2MB	L2	cache 2MB	L2	cache

L1	cache	
128+128KB

L1	cache	
128+128KB

Communic.	stack

Fig. 3. Framework overview: memory stack, task mapping, and task schedul-
ing layers of an embedded vision application developed with the proposed
method on the NVIDIA Jetson TX2 board.

The top of Figure 3 depicts the stack layer involved by the
concurrent execution of each environment. It relies on two
main parts:

• The user-controlled stack, which allows for shared
memory-based communication among processes run-
ning on different CPUs. They include C/C++ processes,
OpenCV APIs, Pthreads, and processes generated by
OpenMP.

• The private (not user-controlled) stack, which is created
and handled by OpenVX and allows for communication
between OpenVX graph nodes running on different CPUs
or on the GPU.

The tasks related to the user-controlled stack are mapped to
the CPU cores by the operating system (i.e., Linux Ubuntu for
the NVIDIA Jetson). The OpenVX tasks are mapped to the
CPU cores or GPU multiprocessors by the OpenVX runtime
system.

To enable the full concurrency of the two parts, to avoid
sequentialization of the two sets of tasks, and to avoid the
consequent synchronization overhead, we associate the two
parts to a single unified scheduling engine. This allows all
the tasks mapped to the CPU cores (of both stack parts) to
be scheduled by the operating system, while the GPU task
scheduling, the CPU-to-GPU communication and synchroniza-
tion (i.e., GPU stream and kernel engine) to be controlled by
the OpenVX runtime system. To do that, we propose a C/C++-
OpenVX template-based communication wrapper, which al-
lows for memory accesses to the OpenVX data structures on
the private stack and for full control of the OpenVX context
execution by the C/C++ environment.

Figure 4 gives an overview of the wrapper and its integration
in the system. The OpenVX initialization phase generates the

OpenVX init:
vxCreateContext()
vxCreateGraph
…
Opaque_	pointer	op =	create_data-struct()

OpenVX data	struct

C/C++
(e.g.	Tracking and	Localizationblock)

Raw	data

Metadata

User-controlled	stack

Uncommiteddata

OpenVX MUTEX

vxProcessGraph()

Communication
wrapper

OpenVX private	stack

vxMapImage()
//LOCK	MUTEX
VxRead/Write()
vxUnMapImage()
//UNLOCK	MUTEX

Write-Read_on_vx_Datastruct(op)

C/C++
(e.g.	Mapping block) C/C++	data	struct

Raw	dataC/
C+
+	
	M
UT

EX

C/C++
(e.g.	Loop closing block)

C/C++	 pointers

C/C++	 pointers

Co
nc
ur
re
nt
	ex

ec
ut
io
n

(I	
le
ve
l	p
ar
al
le
lis
m
) CP

U/
GP

U	
ex
ec
ut
io
n

(II
	le
ve
l	p

ar
al
le
lis
m
)

Op
en
M
P

(II
	le
ve
l	p

ar
al
le
lis
m
)

Op
en
M
P

(II
	le
ve
l	p

ar
al
le
lis
m
)

C/C++	 pointers

Write-Read_on_vx_Datastruct(op)

Write-Read_on_vx_Datastruct(op)

Fig. 4. Overview of the communication wrapper and its integration in the
system.

graph context and allocates the private data structures. Such
allocation returns opaque pointers to the allocated memory
segments, i.e., pointers to private memory areas which layout
is unknown to the programmer.

OpenVX read and write primitives
(Write-Read_on_vx_Datastructure() in the
Figure) have been defined to access the private data structures
through the opaque pointers. The primitives are invoked
from the C/C++ context and, through the communication
wrapper APIs, they set a mutex mechanism to safety access
the OpenVX data structures. The same mutex is shared with
the OpenVX runtime system for the overall graph processing
(vxProcessGraph() in the Figure). As a consequence, the
mechanism guarantees synchronization during the accesses
to the shared data structures between the OpenVX and
C/C++ contexts when run concurrently on multicores. It is
important to note that the invocation of the overall graph
processing, which is performed in the C/C++ environment,
starts the execution of the data-flow oriented OpenVX code.
As shown in Figure 4, such an invocation can be performed
concurrently by different C/C++ threads, and each invocation
involves a mapping and scheduling of the corresponding
graph instance. The proposed communication wrapper and
mutex system allow for synchronization among the different
concurrent OpenVX graph executions and the C/C++ calling
environments.

Standard mutex mechanisms are adopted to synchronize
all the other C/C++ based contexts belonging to the user-
controlled stack, when accessing shared data structures.

The mutex-based communication wrapper allows for multi-
level parallel execution of the application. Considering for ex-
ample the ORB-SLAM case study, the first level of parallelism
is implemented by the Pthreads, which run the three main
modules of the application on different CPU cores.

Then, the tracking block of the first module is implemented

122

in OpenVX and run on a CPU core and on the GPU. The
parallel implementation of the graph nodes offloaded on the
GPU is provided by the OpenVX library vendor (i.e., NVIDIA
VisionWorks for our case study) and are optimized for the
specific GPU architecture. In case two nodes of the OpenVX
graph are independent (see the the example of Fig. 1), they
are executed concurrently.

Finally, OpenMP provides another level of parallelism when
a block is enriched with parallel directives (e.g., Mapping and
Loop closing blocks in the example). Each of these blocks is
executed in parallel by the threads generated automatically by
the compiler, which run on the available CPU cores.

V. EXPERIMENTAL RESULTS

The framework has been applied to embed the ORB-SLAM
application on the Jetson TX2 incrementally. We started from
the most efficient parallel implementation at the state of the
art [11]. We then integrated modularly the different parallel
environments supported by the framework as follows:

• Version 1 (Pthreads): It is the starting version [11], in
which the three main blocks (Tracking and localization,
Mapping, and Loop closing blocks) are run concurrently
by Pthreads on the CPU cores.

• Version 2 (Phtreds+OpenMP): It extends version 1, by
enabling OpenMP parallelism. In particular, it parallelizes
the bundle adjustment task, both local in the mapping
block and global in the loop closing block.

• Version 3 (Pthreads+OpenVX): It extends version 1 (i.e.,
with Pthreads, without OpenMP parallelism) by imple-
menting the tracking sub-block in OpenVX.

• Version 4 (Pthreads+OpenMP+OpenVX): It extends ver-
sion 3 by enabling also OpenMP.

• Version 5 (Pthreads+OpenVX+CUDA): starting from ver-
sion 3, we reused a CUDA kernel that implements the
ORB primitive in the tracking sub-block. We modularly
replaced the corresponding OpenVX VisionWork primi-
tive with such a more optimized kernel.

• Version 6 (Pthreads+OpenMP+OpenVX+CUDA): It ex-
tends version 5 by enabling also OpenMP.

We validated and evaluated all the versions by using the
KITTI dataset [12], which is a standard and widespread
benchmark for vision applications. The dataset consists of
video streams captured by driving around a car equipped with
RGB camera in the mid-size city of Karlsruhe, in rural areas
and on highways. For the sake of space, we present the results
obtained on the sequence number 13, since it is the most
meaningful to show the variance of workload in all the three
blocks of ORB-SLAM and the corresponding effects on the
design constraints.

For the evaluation, we set the Jetson TX2 board with
two different configurations: medium frequency (75%) and
maximum frequency (100%). They represent the frequency
setting of 4 board components, i.e., the four cores Cortex-A57
cluster (1.42 GHz and 2.035 GHz as medium and maximum

frequency, respectively), the two cores Denver cluster (1.42
GHz and 2.035 GHz), the GPU (1.032 GHz and 1.3 GHz),
and the memory (1.062 GHz and 1.866 GHz).

Tables I and II show the results for the medium and
maximum frequency setting, respectively. The best results are
reported in bold. The mapping columns report the number
of processing elements used by the different versions during
computation. The Pthreads guarantee the minimum level of
parallelism, by enabling one core per block. OpenMP has been
set to use the maximum number of available CPU cores (6).
The GPU is enabled only by OpenVX/CUDA.

Columns FPS and Time per frame report information about
the application performance, and, in particular, FPS represents
the maximum number of frames per second supported by the
embedded system. The columns underline how each level of
parallelism influences the overall performance.

To understand the effect of the different versions on power
and energy efficiency, the tables report the total energy spent
for the computation of the whole stream, the average and peak
power, and the average energy per frame.

Finally, the tables report information about the quality
of service (QoS) results. It includes the number of frames
correctly processed against those skipped for the overloading
of the processing elements. Frame skipping is caused by
the mapping and loop closing blocks that run the bundle
adjustment computation and, due to the work overload, their
latency prevent the tracking block in analysing new frames.
The maximum number of frames skipped tolerated is a design
constraints, since it involves the QoS of the application like
the number of times the system gets lost (see Section III).

The tables underline that, as expected, the performance
(FPS) provided by the different versions are strictly correlated
with the power consumption. Enabling all the processing
elements through the different levels of parallelism leads to
the best performance at the cost of the higher peak power.
However, we found that OpenMP allows improving the per-
formance in the overall heterogeneous context not in all cases.
Version 6 is an example, in which switching on the OpenMP
parallelism does not provide better performance than the
Pthread+OpenVX+CUDA version while it increases the peak
power consumption. On the other hand, version 6 provides
better QoS in the maximum frequency configuration. This is
due to the fact that OpenMP is strictly involved by the bundle
adjustment phases, which affect the frame skipped while they
do not affect the supported FPS. This does not happen in the
medium frequency setting as the CPU frequency in which such
a kernel is run does not allow the tracking block to respect
the real time constraints.

We found that, for the medium frequency configuration,
version 3 is the most energy efficient and provides the best
QoS results. Version 5 provides the best performance and does
not involve the worst power consumption. Version 6 provides
the best performance, and it pays the almost best QoS (99.8%)
with the highest power consumption.

123

TABLE I
AVERAGE FPS AND TIME PER FRAME VALUES ON KITTI, SEQUENCE 13, 75% OF THE FREQUENCIES

Version
Mapping

FPS
Time per

frame (ms)
Energy (J) Avg Power (W)

Peak
power (W)

% frame processed
Energy per
frame (J)A57 Denver GPU SM

Version 1 3 - - 13.1 76.4 1,205 3.37 4.05 3,097/3,281 (94.4%) 0.357
Version 2 4 2 - 12.9 77.2 1,125 3.43 5.24 3,021/3,281 (92.1%) 0.372
Version 3 3 - 2 18.3 54.7 1,039 3.78 5.62 3,279/3,281 (99.9%) 0.378
Version 4 4 2 2 19.8 50.6 1,242 5.79 7.85 3,260/3,281 (99.4%) 0.381
Version 5 3 - 2 23.2 43.2 1,184 3.61 5.46 3,269/3,281 (99.0%) 0.362
Version 6 4 2 2 23.2 43.2 1,197 5.65 7.92 3,271/3,281 (99.8%) 0.366

TABLE II
AVERAGE FPS AND TIME PER FRAME VALUES ON KITTI, SEQUENCE 13, 100% OF THE FREQUENCIES

Version
Mapping

FPS
Time per

frame (ms)
Energy (J) Avg Power (W)

Peak
power (W)

% frame processed
Energy per
frame (J)A57 Denver GPU SM

Version 1 3 - - 16.9 59.1 1,917 5.84 8.54 3,264/3,281 (99.5%) 0.587
Version 2 4 2 - 17.2 58.2 1,967 6.00 9.61 3,269/3,281 (99.6%) 0.602
Version 3 3 - 2 21.2 47.2 1,954 5.96 9.54 3,276/3,281 (99.8%) 0.597
Version 4 4 2 2 21.7 46.0 1,945 7.93 11.01 3,280/3,281 (100%) 0.593
Version 5 3 - 2 29.3 34.1 1,895 5.98 9.65 3,274/3,281 (99.0%) 0.579
Version 6 4 2 2 29.2 34.3 1,843 7.62 11.70 3,279/3,281 (99.9%) 0.562

For the maximum frequency configuration, version 5 pro-
vides the best tradeoff in terms of performance and power
consumption, while version 6 provides the best tradeoff in
terms of performance, energy efficiency, and QoS.

In conclusion, the experimental results show how the differ-
ent versions and, for each of them a frequency configuration of
the single processing elements, provide a very large mapping
space to be explored (which is out of the scope of this
work). Such a space can provide the best solution for each
of the considered design constraints like performance, power
consumption, energy efficiency, and quality of service.

VI. CONCLUSION

This paper presented a framework for heterogeneous parallel
programming of embedded vision applications. The paper first
presented an analysis of the actual limitations of the most
meaningful and used environments for parallel programming
embedded vision applications at state of the art when ap-
plied singularly. The paper then presented how the frame-
work allows combining such environments, i.e., OpenMP,
PThreads, OpenVX, OpenCV, and CUDA to best exploit
different levels of parallelism while guaranteeing the semi-
automatic customization. The paper presented the analysis
and framework through a real case of study, i.e., an ORB-
SLAM application, which has been customized for an NVIDIA
Jetson TX2 embedded board. The paper finally showed that,
thanks to the larger mapping space generated and the multi-
level parallelism provided by such a heterogeneous parallel
programming, we obtained sensibly better results over differ-
ent design constraints i.e., performance, power consumption,
energy efficiency, and result quality.

REFERENCES

[1] B. Meus, T. Kryjak, and M. Gorgon, “Embedded vision system for
pedestrian detection based on hog+svm and use of motion information
implemented in zynq heterogeneous device,” vol. 2017-September, 2017,
pp. 406–411.

[2] B. Z. C. Z. K. M. jizhong zhao; Nanning Zheng, “Hierarchical and
parallel pipelined heterogeneous soc for embedded vision processing,”
vol. 99, no. 99, 2017.

[3] Khronos Group, “OpenVX: Portable, Power-efficient Vision Processing,”
https://www.khronos.org/openvx.

[4] S. Aldegheri, D. D. Bloisi, J. J. Blum, N. Bombieri, and A. Farinelli,
“Fast and power-efficient embedded software implementation of digital
image stabilization for low-cost autonomous boats,” in Proc. of 11th
International Conference Field and Service Robotics (FSR), 2017, pp.
129–144.

[5] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, “Adrenaline:
An openvx environment to optimize embedded vision applications on
many-core accelerators,” in International Symposium on Embedded
Multicore/Many-core Systems-on-Chip, 2015, pp. 289–296.

[6] K. Yang, G. A. Elliott, and J. H. Anderson, “Analysis for supporting
real-time computer vision workloads using openvx on multicore+gpu
platforms,” in Proceedings of the 23rd International Conference on Real
Time and Networks Systems, ser. RTNS ’15, 2015, pp. 77–86.

[7] D. Dekkiche, B. Vincke, and A. Merigot, “Investigation and performance
analysis of openvx optimizations on computer vision applications,” in
14th International Conference on Control, Automation, Robotics and
Vision, 2016, pp. 1–6.

[8] S. Aldegheri and N. Bombieri, “Extending OpenVX for model-based
design of embedded vision applications,” in Proceedings of the 2010
18th IEEE/IFIP International Conference on VLSI and System-on-Chip,
VLSI-SoC, 2017, pp. 1–6.

[9] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards, “Orb-slam: A versatile
and accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, Oct 2015.

[10] NVIDIA Inc., “VisionWorks,” https://developer.nvidia.com/embedded/
visionworks.

[11] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality, Nov 2007, pp. 225–234.

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

124

