

Proceedings of the

EMerging Technology (EMiT)

Conference 2016

2-3 June 2016

Barcelona Supercomputing Center, Spain

Edited by B.D. Rogers, D. Topping, F. Mantovani, M.K. Bane

http://emit.tech

June 2016

Foreword to the 2016 Emerging Technology (EMiT) Conference

Dear Delegate,

The Emerging Tech conference, EMiT, is now firmly established. In its third

year we are delighted to be hosted by Barcelona Supercomputing Center and
the Mont-Blanc project. BSC has long been held in very high regard, both for
its innovative HPC and also its renowned work on advancing new tools for

performance analysis and programming models. The presence of the
Mont-Blanc project on the EMiT Organising Committee emphasises the
growing importance of emerging technologies & techniques to improve the

cost and energy efficiency of next generation HPC platforms.

This third EMiT conference follows the philosophy of those preceding by

seeking out the challenges of hardware, software, tools and algorithms that
we are expecting from over the horizon or are helping create ourselves.

The Organising Committee has overcome many challenges to bring EMiT2016
to fruition. Please join me in extending your appreciation to each of them.

I would also like to thank each keynote, everybody submitting papers
(accepted or not), and each sponsor and stall, for showing support to the
EMiT series.

We are looking towards EMiT 2017. If you are inspired by this year’s
conference to host or join the Organising Committee next year then please

speak to us.

Michael Bane

Chair, EMiT2016 Organising Committee
http://highendcompute.co.uk
@highendcompute

2

Committee

Organising Committee

 Dr Michael K. Bane High End Compute

 Dr Filippo Mantovani Barcelona Supercomputing Center

 Renata Gimenez Barcelona Supercomputing Center

 Dr David Topping University of Manchester, School of Earth,

Atmospheric & Environmental Sciences

 Dr Stephen Longshaw Science & Technology Facilities Council, STFC

 Dr Benedict D. Rogers University of Manchester, School of Mechanical,

Aerospace & Civil Engineering (MACE)

 Irfan Alibay University of Manchester, School of Pharmacy

 Ignas Daugalas University of Manchester, IT Services

 Shih-Chen Chao University of Manchester, IT Services

 Prof. Dave Emerson Science & Technology Facilities Council, STFC

Printing
“The Organising Committee of the 2016 EMiT Conference” shall not be held

responsible for any statement or opinion advanced in papers or printed in this volume.

The authors’ papers have been prepared for final reproduction and printing without

any reduction, correction, etc. The authors are fully responsible for all the information

contained in their papers.

Copyright © Published by The Emerging Technology (EMiT) Conference

Manchester, U.K.

ISBN 978-0-9933426-3-9

3

CONTENTS

DAY 1: THURSDAY, JUNE 1ST, 2016 6

Keynote 1 . 6
The Road To Exascale: Its About The Journey Not The Flops

W. Sawyer . 6

Session 1: . 7
Parallel finite element analysis using the Intel Xeon Phi

Lee Margetts . 7
Evaluating the Maturity of OpenFOAM Simulations on GPGPU for Bio-fluid Applications

Ahmet Duran, Senol Piskin, Mehmet Tuncel . 11
Code modernization of DL MESO LBE to achieve good performance on the Intel Xeon Phi

Sergi Siso, Luke Mason, Michael Seaton . 15

Keynote 2 . 19
Back to the Future? High Performance Computing and ARM

Chris Adeniyi Jones . 19

Session 2: . 20
Low-Power, Fault-Resilient Communications in a Million-Core Neural Processing Architecture

Javier Navaridas, Mikel Lujan, Luis A. Plana, Steve B. Furber 20
Energy versus performance on low power processors for HPC applications

Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano and Raffaele Tripiccione . . 24
Embedding supercomputing at NVIDIA

Alex Ramirez . 28

4

DAY 2: FRIDAY, JUNE 3RD, 2016 29

Keynote 3 . 29
Efficient HPC: Waste Not Want Not

Michele Weiland . 29

Session 3: . 30
Whole Systems Energy Transparency

Kirsten Eder . 30
Code Saturn on POWER8 clusters: first investigations

Charles Moulinec, Yvan Fournier, Pascal Vezolle, Benedikt Anlauf 31
Emerging Technologies for the Convergence of Big Data and HPC

Herbert Cornelius . 35

Keynote 4 . 36
Are you getting the wrong answer, but fast? Challenges for reproducible research in HPC

Lorena Barba . 36

Session 4: . 37
Block structured Lattice Boltzmann simulation using OPS high-level abstraction

Jianping Meng . 37
Analyzing the Impact of Parallel Programming Models in NoCs of Forthcoming CMP Architectures

Ivan Perez, Emilio Castillo, Ramon Beivide, Enrique Vallejo, Jose Luis Bosque, Miquel Moreto,
Marc Casas, Mateo Valero . 41

Keynote 5 . 45
Technology emerging from the DEEP and the DEEP-ER projects

Estele Suarez . 45

Session 5: . 46
Accelerating High-Throughput Computing through OpenCL

Andrei Dafinoiu, Joshua Higgins, Violeta Holmes . 46
Energy Efficiency Evaluation in Heterogeneous Computers

Ivan Perez, Esteban Stafford, Ramon Beivide, Jose Luis Bosque 50

5

The Road to Exascale: It’s about the Journey not

the Flops

William Sawyer

Exa2Green,

Swiss National Supercomputing Centre,

Switzerland

Abstract— One look at the www.top500.org proves it: The exponential growth in supercomputer power

has now gone on for decades. Every time physical realities — for example the limits in processor frequency —

impinge on this trend, human ingenuity finds workarounds, for example, the evolution of multi-core

technology. The hounds have long been barking in the distance, heralding the demise of Moore’s Law and

reminding us that memory bandwidth is not keeping pace with processing power. And now energy

consumption is a key bottleneck: critics correctly point out that a computing center cannot have its own

dedicated nuclear power plant. Certainly the HPC advances cannot go on forever.

There is good reason to believe that the trend will continue to Exascale and beyond. Human ingenuity still

has the upper hand: new stacked memory offers a new increase in bandwidth; multi-core has given way to

many-core, and new processors are effectively reducing energy consumption per Flop. In this talk we present

some milestones at the Swiss National Computing Centre. Since the installation of our flagship platform, Piz

Daint, we have experimented with new numerical algorithms, developed domain-specific languages, and used

new compiler features to refactor codes for its constituent Graphics Processing Units (GPUs) to attain

dramatic improvements in time-to-solution and energy-to-solution. We draw the conclusion that HPC is alive

and well on its way to Exascale and beyond.

6

Parallel finite element analysis

using the Intel Xeon Phi

L. Margetts, J. D. Arregui-Mena

School of Mechanical, Aerospace and Civil Engineering

University of Manchester

 Manchester, M13 9PL, UK

lee.margetts@manchester.ac.uk

W. T. Hewitt, L. Mason

The Hartree Centre

STFC Daresbury Laboratory

Daresbury, Cheshire, WA4 4AD, UK

Abstract—This paper describes the porting of the open source

engineering software ParaFEM to the Intel Xeon Phi processor.

The results of a preliminary performance study are presented for

a new open source ParaFEM mini-app written especially for the

purpose. The main findings of the study are that: (i) The original

MPI-based software scales linearly on up to 56 of the 60 available

cores; (ii) A new mixed mode MPI/OpenMP implementation

boosts performance by a factor of 4 when using 4 threads per

core on 1-16 cores (for the largest problem that fits in the Xeon

Phi memory) and (iii) The best Xeon Phi solution time is ~2 times

faster than the host; here comprising 2 x 12 core “standard” Intel

Xeon processors. It appears that scaling beyond 16 cores and 4

threads per core is limited by the amount of work available to

each of the 240 threads. The authors propose a number of

strategies that can be explored to reduce the memory footprint of

individual finite elements so that a much larger problem can be

tackled. With more “parallelizable work” per thread, we expect

to be able to further improve the performance of the mixed mode

MPI/OpenMP implementation. This work will be of interest to

researchers and engineers who may wish to evaluate the Intel

Xeon Phi for scientific computing, particularly those using the

finite element method.

Keywords—Xeon Phi; finite element analysis; element by

element; engineering simulation; mixed MPI/OpenMP; mini-app

I. INTRODUCTION

 ParaFEM is a parallel library for general purpose finite
element analysis that has been written mainly in modern
Fortran and uses MPI for message passing. It is supplied with
a set of driver programs or “mini-apps” for solving different
types of engineering problem. The ParaFEM software
comprises a set of libraries for general purpose finite element
analysis [1], a library that uses MPI [2] for parallel processing
and a set of driver programs or mini-apps for specific types of
engineering problem. The mini-apps are concise parallel
programs of 2-4 pages in length. The philosophy behind
writing mini-apps rather than a monolithic program is that it
makes it easier for scientists and engineers to modify the
programs for their own use. It also enables parallel computing
experts to quickly evaluate strategies for improving
performance. The source code for the software is fully
documented, both from the point of view of the algorithms
used and the meaning of each variable name, in the popular
text book “Programming the Finite Element Method” [3].

 ParaFEM has been used on various HPC systems including
those at the Hartree Centre; the UK’s national HPC facilities
ARCHER and N8 HPC; as well as systems belonging to the
Partnership for Advanced Computing in Europe (PRACE).

 Recently published work using ParaFEM involves a
number of different scientific application areas including: the
characterization of materials for fusion reactors [4]; assessing
the structural integrity of nuclear power plants [5]; developing
a multiscale modelling platform for fracture using a coupled
cellular automata finite element strategy [6] and understanding
microstructural deformation in bone [7].

ParaFEM uses a matrix free or element by element method
[8]. This works very well in parallelising each stage of the
finite element process: general housekeeping (building tables
that relate nodes and elements to equations); generating the
stiffness matrix for each element; solving the equations (using
an element by element form of the Krylov solvers) and
computing derived quantities such as stress or strain from the
solution vector. No global matrix is ever created and this
approach is widely known to be more memory efficient than
global matrix assembly and factorization. The implementation
therefore seems to suit the small memory footprint (per core)
of the Intel Xeon Phi.

For large finite element problems that involve many load
steps or time increments, more than 90% of the time is spent
in the solver. Drilling down, time in the solver is dominated by
large loop count element by element “do loops” of small
matrix-vector multiplications. Each matrix represents a single
finite element and each vector relates to the element part of the
global solution vector. Getting good performance on the Xeon
Phi (and other types of hardware) therefore requires
optimising this part of the computation.

II. PORTING AND OPTIMISATION

A. Hardware

This research was carried out using the iDataPlex system
hosted at The Hartree Centre in the UK. The system comprises
84 nodes, each with 2 x 12 core Intel Xeon processors (Ivy
Bridge E5-2697v2 2.7GHz). 42 of the nodes have an Intel
Xeon Phi 5110P accelerator. Each Xeon Phi has 60 cores
running at 1.052GHz and can support 4x threads per core.

7

B. Software

A new mini-app was written to help evaluate the
performance of ParaFEM on the Xeon Phi. This was given the
name xx16 and can be found in the ParaFEM repository on the
Sourceforge platform [1]. xx16 contains instructions to
evaluate a range of implementation strategies as well as built-
in timers and counters. The program outputs a high level
report on the time spent in each major section of the program
as well as an estimate the number of floating point operations
per second. This research also made use of the Intel Vtune
Amplifier XE performance monitoring software.

C. Porting

The ParaFEM software is built using a top level makefile
that reads compiler specific flags from a machine specific
include file. A new include file was written for the Intel
compiler on the iDataplex system. Compared with using
general purpose graphics processors, compiling for the Xeon
Phi seems trivial. All that is needed to differentiate between
compiling for a standard Xeon chip and the Xeon Phi is the
addition of the compiler switch –mmic for the latter. The Xeon
Phi runs its own installation of Linux locally, so an executable
can be built to run on the card as easily as compiling for any
other Linux system.

The Xeon Phi can be used in three different ways: (i) as a
traditional accelerator, offloading computationally intensive
instructions from the host to the Xeon Phi; (ii) as a standalone
processor, running the executable entirely on the Xeon Phi or
(iii) in mixed mode, as part of a heterogeneous system
whereby the domain of a problem is subdivided over all
available cores (in both the Xeon host and the Xeon Phi card).
In this paper, the executable is run entirely on the Xeon host
and entirely on the Xeon Phi card, enabling a direct
comparison of the use of 2 x 12 Xeon processors and a single
60 core Xeon Phi card.

A number of different compiler options were evaluated and
the best performance on the Xeon Phi was obtained using the
following flags: -O3 -align array64byte and -opt-streaming-
stores, the latter specifically to improve performance in
memory bandwidth dominated programs. The sequential
version of the Intel maths kernel library (MKL) was used for
the matrix vector multiplication. The parallel version of MKL
gave no benefit here because of the small size of the arrays.

D. Mixed Mode MPI/OpenMP

Previously unpublished work (carried out by MSc/PhD
students at more than one research institution) has shown that
the element by element preconditioned conjugate gradient
(PCG) solver available in the ParaFEM library does not
benefit from mixed mode MPI/OpenMP on standard x86
processors. The documentation available for the Xeon Phi [9]
is very persuasive regarding how the hardware has been
specially designed for threading on each physical core. So,
despite a poor track record for mixed mode MPI/OpenMP, we
were encouraged to consider this strategy again. OpenMP
directives were inserted into the elements loop for testing.

The elements loop is parallelized using MPI, with each
MPI process (or physical core) operating on its own local set

of finite elements. The mixed mode MPI/OpenMP code
subdivides these local loops further, allowing us to test
performance on up to 60 Xeon Phi cores with up to 4 threads
per core, 240 way parallelism.

III. PRELIMINARY RESULTS

A number of different test runs have been carried out, but
here we focus on the results of one specific finite element
problem that best illustrates our preliminary findings. The
analysis involves applying a vertical load to a patch on the
surface of a cubic elastic domain; an engineering test problem
described in the text book for use with program p121, a mini-
app for the stress analysis of an elastic material [3]. In
ParaFEM, there is a command line program called
p12meshgen that can be used to quickly generate input decks
of different sizes for this problem.

It should be noted that this section reports on the
performance of a distributed do loop in the PCG solver that
operates on a local set of finite elements assigned to each core.
The results are representative of any general finite element
analysis that uses the PCG solver, both from the point of view
of the geometry of the model and the physics of the problem.

Every finite element stiffness matrix in the mesh is
assumed to be unique, so each one has to be stored in memory.
The “do loop” involves multiplying each stiffness matrix (here
60 by 60 double precision floating point numbers) by a vector.
Relevant problems include those involving material or
geometric nonlinearity (plasticity [10] and large deformations
[7]); transient heat flow [4]; thermo-mechanical stress analysis
[5] and forced vibrations [3].

The largest test problem (for the cubic domain) that could
be stored in the 8GB memory of the Xeon Phi card, using this
particular version of ParaFEM, was a mesh of 42,872 twenty
noded hexahedral elements (521,780 equations to be solved).

A. Speed-up

Fig. 1 shows speed-up for the largest test problem. The
original MPI implementation (labeled 1 thread per core) scales
linearly with increasing number of cores, with a slight drop off
between 56 and 60 cores.

The speed up for 4 threads per core was calculated with
respect to the time taken using 1 MPI core (with 1 thread).
This helps highlight the advantage of the mixed mode
MPI/OpenMP implementation. The mixed mode program
shows a striking improvement in performance compared with
the MPI only execution. On 1 to 16 cores, the use of 4
OpenMP threads per core leads to a “perfect” factor of 4
reduction in run time. Core counts greater than 16 cores do not
continue this trend.

B. Percentage Peak Performance

 The Xeon Phi used in this paper has a theoretical peak
performance of 2 teraflops for single precision and 1 teraflop
for double precision floating point operations. Here, the finite
element mini-app has been compiled for computation using
double precision. Fig. 2 shows that the (best to date) MPI
implementation only achieves ~2.5% of peak performance

8

Fig. 1. Speed-up using 1 thread and 4 threads per core

Fig. 2. Operations per second using 1 thread and 4 threads per core

Fig. 3. Number of finite elements per thread

using 60 cores. In the mixed mode MPI/OpenMP case, there is
a modest improvement to ~4% peak using the maximum
number of threads and cores, i.e. a maximum of 240 processes.
The dotted line in Fig. 2 shows that if the 4 threads per core
data series continued scaling linearly, this part of the mini-app
could be expected to achieve a more respectable ~10% peak
performance.

C. Number of finite elements per thread

 Fig. 3 shows the number of finite elements that each thread
processes during the analysis. For the MPI only
implementation (1 thread per core), performance scales
linearly on up to 56 cores. This corresponds to ~765 elements
per core. In the mixed mode MPI/OpenMP case, performance
drops off markedly after 16 cores and 4 threads per core (64
threads), ~670 elements per thread. The number of elements
reduces to ~178 elements per thread when the maximum 240
threads are used.

D. Comparison with the Xeon host

 The best performing Xeon Phi implementation reported
here runs around twice as fast as the 2 x 12 core Xeon
processors on the host. At the moment, care needs to be taken
in comparing the two platforms. There are further performance
optimisations that can be implemented and tested on both.

IV. DISCUSSION

One of the key features of the finite element method is that
it can be used to predict a range of physical processes
occurring in domains of arbitrary geometry. In 3D, individual
hexahedral or tetrahedral elements do not need to be perfect.
They can be distorted so that a mesh can fill any space. As
long as the elements have good aspect ratios, then the finite
element method will give reasonable results.

The characteristics of a finite element, such as the shape
and material properties, are captured in the element stiffness
matrix. In any general problem, it is standard practice to create
and store a unique element stiffness matrix for every element
in the mesh. In this paper, our results indicate that, for the
largest general problem that can be stored in 8GB RAM, there
is not enough work to keep all the available hardware of the
Xeon Phi busy.

To address this problem, it is possible to reduce the storage
requirements per element in certain problem specific cases.
For example, when a mesh comprises identical elements, it is
only necessary to store one stiffness matrix. In that case, the
loop of matrix-vector computations can be replaced by a
single matrix-matrix multiply. Typically meshes are not like
this, as the nuclear model in Fig. 4 shows. This model has
elements with different shapes on the face. Looking down the
bore, each of the face elements sits on top of a column of
identical elements. In this case, only elements on the top face
need to be stored.

In some engineering problems, the stiffness elements are
symmetrical, so only half needs to be stored. In the extreme
case, when the elements are perfect hexahedra, some of the
values in the symmetric part of the matrix are repeated.

9

 For example, the stiffness matrix storage for 8 node
hexahedral elements derived from voxel-based meshes (Fig. 5)
can be reduced from 24 x 24 floating point numbers to just 5.
All the cases described have been coded in program xx16.

One final remark is that here, we advocate looking for
ways of reducing the storage required by each finite element -
in order to deal with the difficulties that arise due to the small
memory footprint per core (133MB) or per thread (33MB).
The implication is that to achieve good performance, it may be
better to have many “simple” low storage overhead finite
elements in a mesh than a completely unstructured one where
every element is unique. However, the story is not so simple.
An area of active research in finite element analysis is the
development of enriched elements to deal with special cases
such as fracture; near incompressibility of the material or
highly distorted elements [11]. These require an increased
amount of storage and larger number of floating point
operations per element. Getting the balance right, between
computer performance and the accuracy of the engineering
solution is therefore quite tricky!

Acknowledgment

 This work was carried out in collaboration with the Intel
Parallel Computing Centre hosted by The Hartree Centre,
STFC Daresbury Laboratory Warrington, Cheshire, UK.

References
[1] ParaFEM website, http://parafem.org.uk. Accessed 1 May 2016.

[2] Message Passing Interface Forum, “MPI: A Message-Passing Interface
Standard, Version 3.1, HLRS, 2015.

[3] I.M. Smith, D.V. Griffiths and L. Margetts, “Programming the Finite
Element Method”, Wiley, 2014.

[4] Ll.M. Evans, L. Margetts, V. Casalegno, L..M. Lever, J. Bushell, T.
Lowe, A. Wallwork, P.G. Young, A. Lindemann, M.J.J. Schmidt and
P.M. Mummery, “Transient thermal finite element analysis of CFC-Cu
ITER monoblock using X-ray tomography data”, Fusion Engineering
and Design, 100, pp.100-111, 2015.

[5] J.D. Arregui Mena, L. Margetts, D.V. Griffiths, L.M. Lever, G.N. Hall
and P.M. Mummery, “Spatial variability in the coefficient of thermal
expansion induces pre-service stresses in computer models of virgin
Gilsocarbon bricks”, J. of Nuclear Materials, 465, pp.793-804, 2015.

[6] A. Shterenlikht and L. Margetts, “Three-dimensional cellular automata
modelling of cleavage propagation across crystal boundaries in
polycrystalline microstructures”, Proceedings of the Royal Society A,
Volume 471(2177), 2015.

[7] F. Levrero, L. Margetts, E. Sales, S. Xie, K. Manda and P. Pankaj,
“Evaluating the macroscopic yield behaviour of trabecular bone using a
nonlinear homogenisation approach”, Journal of the Mechanical
Behaviour of Biomedical Materials, 61, pp. 384-396, 2016.

[8] I.M. Smith and L. Margetts, “The convergence variability of parallel
iterative solvers”, Engineering Computations, 23(2), pp.154-165, 2006.

[9] J. Reinders and J. Jeffers, “High Performance Parallelism Pearls:
Volume 2”, Elsevier, 2015.

[10] I.M. Smith and L. Margetts, “Portable parallel processing for nonlinear
problems”, VII International Conference on Computational Plasticity,
Barcelona, 2003.

[11] T.H. Ong, C.E. Heaney, C.K. Lee, G.R. Liu, H. Nguyen-Xuan, “On
stability, convergence and accuracy of bES-FEM and bFS-FEM for
nearly incompressible elasticity”, Computer Methods in Applied
Mechanics and Engineering, 285, pp. 315-345, 2015.

Fig. 4. Finite element mesh of a nuclear graphite brick comprising

arbitrarily shaped hexahedral elements.

Fig. 5. Slice through a typical X-ray tomography scan of nuclear graphite

and voxel mesh based on patch of X-ray tomography data.

10

11

12

13

14

% %

%

%

����%��������	
���%��%�
�����%
��%
�%	������%

����%�������	���%��%
��%��
��%����%����%

�����%����%	��%
� �%�	���%

��
��%�	�	����%�����
���%���
��!%"	�
���%���
��%

�������%	��%#��������$%&	����
���%�������%

�	���'��$!%(��
��%)������%

����������*�
���	��� !%�� ���	���*�
���	��� %

����	��%��	
��%

�����
	
���	�%������
�$%+����%

�������%	��%#��������$%&	����
���%�������%
�	���'��$!%(��
��%)������%

����	�����	
��*�
���	��� %

%

%

%
8�������%

���%�������%�	
����

%������	
�%	�%�������%����%���
%������
���
���%%���
�%�%��	� ���%�
�	�����!%��������%��	������
�%�
�%
����	������	
%�
%	����%�	%���������
"%���
���%
	��
%����
"%����

�
%�������������%����%��%���%	
�%	������%�"%���%#
��
%$�	
%&��'%

%

��% �,#-��(�#��,%

�
�����%
��% ./0.10% ��% 	% �����	�% �������% ����������%
�����	
���% �	� 	��% 2����% �	�% �����	
�% ���
�% ��������
%
�	

���3�	�% �$�
���% �����%
��%
	

���% ���
��	��% �4�	
���%
5
��6�%�
%��%����%
�%�����%�$�
���%2�
�%���
����%������%	��7��%
��	���%�������%
�%����
�%���������%	��%��	
%
�	�����!%	�%2���%	�%
	���$%�����
���	��$%������8%'����	����%����	�	
����$%�	���$�%%

#��% �	��% �������% ��%
���% ����% ��������
�% 	% �9:�%
	�����
��%.;0!%2����%�	
	%������������%	��%���������
��%'$%	%
�
���
% ����������% �����% ��%
��% �	

���% ������% #��% �9:�%
	�����
��% ��������% 2���% �����% ���
����% ��2% ����% ����
%
����������% 2�
�% ���!% ��2����!% �������	���% ��% 	% ������%
	����
��
���%�� �%
��%��
��%����%���%2	�%���	�����
����%%

��%
���% 2�� % 2�% �	��% ��3��������
��%
��%
	

���%
���
��	��% ������% 2�
���% �
�����% �����% ������%
���	��%
	��%����%��	����%	��%	%���'��3'�������%	��%�����
	
���	��$%
�������%	�����
���%#���%��������
	
���%�
������%
2���%	�%����%
�����$% '�
% ���2�% '�

��% �������	���% 58<% ��%����% ���% 	��%
8/�=% ��%����% ����������6% 	��% ��	�	'���
$% ��	�	�
����
����% %#��%
��2% ��������
	
���% �	�%
��% 	��	�
	��% ��% '����% ��	�$%
�% ���%

��%��	
����%��%�
���%������%	��%��
���%�	��2	��%	����
��
����%

�%�����%

#���% �	���% �
	�
�% ������'���%
��% ����% ���% 	����
��
���% ��%
���
���% 1% 	��%
��% �
�����%
	

���% ���
��	��% ��$����% ��%
���
���% ;�% #���!% �
% �8��	���%
��% �9:�% 	�����
��%
��������
	
���% ����% ��%
��% ������	�% �
�����% �	� 	��!%
���
���% >!% 	��%
��% #2�% +���% ��������
	
���% 2�% �	��%
��������
��%���%
��%��2%�������%��%
��%����!%���
���%<�%&��	��$%
���
���% ?% �����% ��
	���% ��%
��% ���
����	
���% 2����% ���
���% =%
����	���%
��%�������	���%	��%��	�	'���
$%��%
��%
2�% ��������%
��%
��%�����%%

���% �,#�
%���,%�"�%

#��%
	���
%	����
��
���%���%
���%���@��
%��%
��%��
��%����%���%
)����
�%������%������������%#��%����%���%��%	%�����$%�	�	����%
	����
��
���%2����%������
�%��%�	�$%��	��!%��2��%��������
!%��3
�����%�����!%�	��%��%2����%�	�%	%</13'�
%���
��%����������%���
%
5����% ���
6% .>0�% �
% ��% 	% 8A?% ?>'�
�% 	����
��
���% 2�
�% 	% �	���%
�����$% �$�
��% �����	�%
�% �����	�% �������% ��(�!%
��������%
���	�$%8A?%�����%
�	
%���%
�%���%2���%��%��(�%	���%���%��%
��%
����% ���!% '�
% ���%
�% �
�% �	���% ���'��% ��%
���	��% 	��% ���
��%
���
�% ����
�!% �
% ��% ��	��������%
�% ���
% �8��
���% 	�����	
����%
�%

���% ��	
�����% ,����
������!% �����%
��%
�����% ����% ��% ��(%
������%��%
��%�����
%$�	��!%���
���%	�����	
����%
�%
��%����%���%
�����%
�% ����	��%
��% 	�����	
����%
�% ��
���% �����	
����% ��%
�	��2	���%

��������	��$!%
��%�����
�%������
��%��%
���%�	���%	��%�'
	����%
�����%
��%��
��%����%���%�����������%<//B�%2�
�%
��%�����2���%
��������	
����C%

d% ?B%�����!%1>B%
���	��%5>%
���	��7����6%

d% /�B<;%+"�!%

d% /% #��	&
��% ���'��% ���������%
�����
��	�% ��	 %
�������	���!%

d% A%+�%�����$%2�
�%;1B%+�7�%'	��2��
�!%

d% </1%'�
%2���%����%���
��%������!%

d% ;1)�%
/!%</1)�%
1%�	���%���%����!%

d% &����%���
���$3	��%5&�:6%������
�%%

#��%�������	���% ��%����	���%2�
�%	%�����
�%����%�����%

2�%��
��%��$%������%����%�<31?D=%�1%	
%1�=B+"�%.<0�%

15

% %

%

%

����%
:##���%��
#E�:,,%��#"��%:,�%�
�����%

�
�����% ��% 	% �FF% �����	�% �������% ����������%
�����	
���%�	� 	��%2����%�����%2�
�%
2�%��������
%�����	
���%
��
����C% ������	
���% �	�
����% �$�	����% 5���6% 	��%
	

���%
���
��	��% �4�	
����% 5
��6% ./0.10�% #��% ������
% 2�� % ��%
���������%2�
�%
��%
��%��
���%�8��������$�%

#��%
��%��%	%�����
	
���	�%�����%�$�	����%��
���%2����%

�	�% �������% ����%
��% �	

���3�	�% 	�
��	
	% 	��% ��% ����%
�%

�����	
�%	%���
�
���%��% ���2%���'�����%��%
��%	%�����% �	�%

'�%��������
��%'$%�����%
��%���'	'���
$%��%�������%���%��%
�
�%�	�
�����%	
%	%�����%����
���%��%��	��%	��%
���%2�
�%	%

�����% �����
��!% ������'��% '$% 	% �����
$% ���
��'�
���%

����
���!% ×���� ��� �������������% ��%
��% ����
���!% ��!%
��%
�����
��!%������	��%
���!%·�%����%	%������%
���3�
��%�·%
��%

���
��'�
���% ����
���% 	
% �	��% �	

���% ����
% ��% �������%
���
�	��$%'$%����������%

%

% ×	���� �
� � ×	���� �� �
	% 5/6%

%

	��%
���% '$% ����	�	
���% '�
2���% �����'������% �	

���%

��
��%

%

% ×	��� � ��	��� � � ��� � ×	���� �
�% 516%

%

2����% ������% ��%
��% ������
$% ���
��% ���% �	

���% ��� % ���� �
�%
����
��%	%
���%������%
��%
���3�
��%	�
��%����������%�	��%

	 ��% ��	��% 	��%
	 % ��% 	% ���������% ����	
��% 	�
���% ��%
����	
����%����%���	�%�4����'��	�%

%

�
�����% ��������
�% �����	�% �������% ���%

���������%
��%�	��	'���%#��%2�� %������
��% ��%
���%�	���%

2�% �	��% ����%
��% ������% ���	8	
���% �
��% ��	
�	�	�3

+����3)��� %5�+)6%.<0%

%

%
	 � � ������
��

� % 5;6%

%

2�
�%	%���	8	
���%
���%G%���	
��%
�%
��% ����	
��%�������
$%

��%
��% �����% H�% #��% ���
��'�
���% ����
���% 	
% ���	�%

�4����'����% ���% 	% �	�
����	�% ����
% �	�% '�% ��
�������%

����%�
�%�����
$%	��%������
$%

%

% ×	
�� � ���	 �� � �������� !��� � "

������� !���# � $
!��#%% 5>6%

%

#��%���	8	
���%
���%��%��
�������%'$%%

%

% & � '(#)* � +
#, ��� - �* � .

/01�2 � +
#% 5<6%

%

2����%'(%��%
��%�����%��%�����%���%
��%�	

���%��%���C%
���%
�	���% ��% �4�	�%
�% ����3�4����% % ���% �4�	��% �	

����%
�����2���%
��%�;I/D%�����%

#�% ��	�% 2�
�% ��
��	�
����% '�
2���% ���
����%

��	���% 	��% �����% �������%
��% ��	�J����% 	�����
��%

.D0./B0% ��% ����% ��%
���% 2�� % 5�
�����% �	�% ����%

��
����6!%2����%�����%
��%�����%��%�����%	%	�%

%

% 56 � �76��� 8 96: 8 �	7:��� � �������������	: % 5?6%

%

96: % ��%
��% ��
��	�
���% ����������
% '�
2���%�������%�%	��%
�!%2����%�	�%'�%���	
��%�����
�$%
�%
��%��
���	��	�%
������%

'�
2���%
��% �������% �6:!% 	��% 76 % ��% 	% ������3��
��
�	�%
���%�������%�!%���	
��%
�%
��%�����%�����
$%��%
�	
%��������%

%

#��% 	��	�
	��% ��% �
�����% ����% �
���%

�	� 	���% ��������
���%
��%
	

���%���
��	��%�4�	
���%

��%
�	
% �
%	���2�% �����
���%���
����% ��������
�% 	��7��%

�����% ��	���% 	��% ��������%
���%2�
�% �
���%��$����% �� �%

��% ��	
%
�	�����% ����
���% ��% ����
�% ���������% �4�	
�����%

#���% ���8�'���
$%
�% ����% ��% ��������
% ��$����% �	 ��%

�
�����%
��% ���	�%
�% �����	
�% 	�����	
����% ����% 	�%

��% �	��
$% ���2% ���'���% ./;0!% ��% ��'@��
���% 	�% ���
�	��$%

�
	
���	�$%�����%
�%	%
�����	
���%����������%'�
2���%
2�%

�����%'����	����%./>0!%���2�%	
%������%/�%
%

%
&�����%/�%%-	$�����3���	��%�	
��	�%
����	�%������
���%��%�����%'�
2���%����%

	��%��
%��	
���%

#��%
	

���% ���
��	��% ��
���% ��% �����	��$% ���
	'��% ���%
�	�	����% �����
���% 	��% �
% ��% �	�$%
�% ����!% ��2����!%
��%
���
�����% ���8�'���
$% ��%
��% ��$����% �����% 2�
�% ����%
�������	���% ����
�	��
��% #��% �������
$% ��% �����
���%
��%
������3��
��
�	��%��%�	��%
���%�
��%	��%
��������%�	����%���3
���	�% ���������% �����
	
����% �������	
��%
��% 	�����
��%
����	���%
�%�
���%
��%��������
	
�����%

�K�% �9:�%:
+�-�#"�%

#����% �8��
% �����	�% 	�����
���%
�% ��������
%
��%
	

���%
���
��	��% �4�	
����% 	��% �	��% ��%
���%������% ��������
%
�	��3
����% ��%
����% ��% �����$% �
����	
���% 	��% �������	���% .A0�%
������	��$!%�
�����%
��%2	�%��������
��%�����%	%�9:�%
	�����
��% .;0% 2�
�%
��% ���% �	�	����% �����	�����% ������% ��%
�9:�%	�����
��%
��%�	
	%������������%��%
��%����%	��%	������%
'$% 	% �
���
% ����������% �����% ��%
��% �	

���% �����% 	��% '$%

16

% %

%

%

�8�����
�$% �8��	�����% ����% ��%
��% ���
��'�
���% �	����% ��%
��%
�	

���%����%	
%�	��%2�
�%
����%��%�����'������%������%%

���	���%�
%�������%
��%�	
	%������������!%�
%��4�����%���$%
���% �	

���%
�% �
���%
��% �
	
�% ��%
��% �����	
���% ������%
��%
���
����%"����!%�
%��%���$%��������
%��%
����%��%
��%
�
	�%�����$%
2�%����%
�%	����	
�%���%	%�����%���'���%�����%%

"�2����!%
��%�9:�%	�����
��%��%��	��������%
�%��������
%
��% �����$% �	�	����% 	����
��
����% ���%
�%
��% �
���
% �����% ��%
����������% ��%
��% ��������
% �	

�����% &��% ���
	���!% 2�% ����%
�%
������%
�	
%�	��%�	

���%��%	%�����'���%�	�
����%�	�%�����
��%�
�%
���������%'�����%2�%�2	�%
����%��%
��%������	�%��������
	
���%
��%
��%����%
���%��������%����%��������
%�����!%	��%�����%
������%

��% 2����% �	
	3�
���
����% #���% �����
����$% ���	
��% ���
����%
�	�	����% '	������% ��% �	��% �
��	
���% 	��%
��% �	���% �
����	
���% ��%
�����% #��% ���
����	
���% ��%
��% 	��
���
��% ����	
����% ��% 	���%
��	��������% '��	���%
��% �����% ����% �	�% ��	��%
���% ����
�% 	��%
��
��% 2�% ����%
�% ��
������% �������% 	��% ���	�����% �����%
�%
	�������	
�%
��%����%��%
��%����%
�%
��%���
��%�����
����%

#	'��%/%���2�%
��%���
����%��%
��%������	�%�
�����%����%
2����%���
%�8���
���%
���%��%����
%��%	�%�8���
���%��%	%����%
���������!%
���
���% 2�
�%
��%
/!%
;% 	��% �-:�% 	��%
��%
������
	��%��%&��	
���%����
%����	
����%���������%	
%
��%���
��%
���
�%��%
�	
%�8���
����%#���%�	
	%2	�%�'
	����%�����%
��%��
��%
K#���%�������	���%	�	�$���%
���%.//0�%%

ø�
���	
% ����%

()*%

�+%

�	�
�%

�,%

�	�
�%

�-.�%

�	�
�%

/���%

ø&%

()*%

�+�
�������	�����% /;�B% B�1DD% 3% 3% B%

��2	��	��L���'��M% /1�B% B�?D=% B�B=?% B�AD1% B%

���������������% /B�1% B�>1<% B�B;;% B% B%

�+�
:���	����
�% =�>B% B�1>/% B�% B% /BB%

��	����
��	�
�������% =�BB% B�/</% B�BB=% B�B>% ?B%

�+�
�4����'����&% ?�AB% B�;/A% B�BBD% B% <<%

#	'��%/�%�������	���%��
����%��%�
�����%
��%�9:�%��������
	
����%

K�% #9�3+-��%:
+�-�#"�%

#��% #2�3+���% :�����
��% ��������
��% ��% �
�����% ��%

��% ������
% 2�� % ��% 	% �������% 	����	���% #��% ���'	'���
$%
����
���%���
��'�
����%	��% �
����% ��%
2�% ��������
%�����!%:%	��%
��%#��%������3��
��
�	��%	��%
��%����������%	��%���������%2�
�%

��%�	����%��%
��%����%:%	��%
��%���
3���������%�	����%��%�	��%
����%	��% ������	
��$%�
��	���%
�%
����%�����'����%	��%�
����%
��%�	

���%��%:
%
��%���%��%
��%�
��	
���%�	

���%����
���%
�%:%	��%
�%	��%�2	����%	��%
��%�
��	
���%�
	�
�%����%

:�
�����%
��%#2�3+���%:�����
��%��%��
%	�%������
��	
��%	�%

��% �9:�% 	�����
��!% �
% ����% ��
% �	��% �����
�% �����%
������������% 	��% 	���2�% 	% ����% �	
��	�% �	�	����%
��������
	
���%����%'�
�C%
���	��%	��%���
��%���
���
�����%

�
�����%����%
��%������%�	�	'���
���%
�%���
��'�
�%
��%
2�� % '�
2���% ��������
%
���	��% �����% 	% �
	
��% ��������% 	��%
	����%
��% ���
��% �	���% �����%
��% ����% �����
���% 	�	��	'��%
�����%������%>�B%./10�%"����!%
��%�	�	����%��������
	
���%��%
@��
%	% ��2%	���
���	�%�����%
�%
��% ����	�% ��������
	
���%��%
��%
�����%#���%���	
�$%�������%
��%������8�
$%��%
��%����%'��	���%
'�
�%��������
	
����%��	��%
��%�	��%����%'	���%

#��% ��2% ����% �	�%
��%�	��% 	��	�
	��%
�	
%
��% 	�����
��%
�����%�	�%'�%�����%��
�%@��
%
2�!%���%���%
��%������3��
��
�	��%
���3�����
	
����% 	��% 	��
���% ���%
��% ���������% 	��% �
��	����%

�
����%�����4���
�$!%
��% �	
	3�
���
���% ��%���$%
�	������%
2���%
	��%�	��%������
%
�	
%��%��	��%�	�%����%�����
	
���	�%�
���%
�%
'�% �����% #���% ��	��%
�% 	% ��2��% �	���% ��������% 	�% ���2�% ��%
#	'��% 1�% #��%
	'��% ������
�% �	��% ����
���% ��%
��% #2�3+���%
�������% ��%
��% ����!% 	�	��% 2�
�%
��%
/!%
;!% �-:�% 	��%
���
����	
���%��	��%��������%'$%K#����%

ø�
���	
% ����%

()*%

�+%

�	�
�%

�,%

�	�
�%

�-.�%

�	�
�%

/���%

ø&%

()*%

������8��
��	
����% ??�1% B�<>% B�BB>% B�1;>% /BB%

#	'��%1�%�������	���%��
����%��%�
�����%
��%#2�3+���%��������
	
����%

K��% K��#�-�E:#��,%:,�%�����
�%#���%�:-:��#�-�%

#�%��
%	%����%�������	���%����%
��%�8�����
%���
����	
���%
��������
	
���%2�%���$%��%
��%	'���
$%��%
��%��������%
�%������%
����%������%��������	��$!%2�%2	�
%
�%������%
��%
2�%���
%�����%
�����% ��% �����%
�% ���
�����%
��% ;��% ���
��% ����!% 2����% �	�% 	%
��������	'�$%�	����%
���%����
�%"�2����!%
��%��������%����%��
%
�	��% ������% ������	
���% ������% �������%
���%
�% �������$%
�8���
�% ����% ����������% #��������!% ���% ����
���% ��%
�% �������%
����% ��%
��% �����	
���% �	�	��
���% 	
%
��% ���������% �
	��%
��	'����%
��%��������%
�%
	 �%��	�
��%����������%

%

%

&�����%1�%�
(��%��%�
�����%
��%�����	
���%2�
�%��������
%�	�	��
��%��
%

��%	
%�������%
����%

&�����% 1% ������
�%
��% �������%
	

���% (��	
�% ���% ������%
5�
(��6% ���% �����	�% ���'��	
����% ��% �	�	��
���% �������% 	
%
�������%
����%#��% ������% ������
�	
��%
�	
%2���%2�% �������%
����%�	�	��
���%
��%��������%��%	'��%
�%�������%��������	�
�$%
'�

��% ���
����	
���% ��%
��% ����!% 	��%
�	
% ��	��%
�% �	�
��%
�
��	
�����%

K���% ��-&�-�:,��%:,�%��:
:��
�#N%����:-���,%

&�����%;%���2�%��2%
��%�������	���%��%
��%��
��%����%���%
��% ��������% '$% ����%
�	�% ����%
����% 2�
�%
��% ��2%
��������
	
���% ����	���%
�%
��% �9:�% 	�����
���% #��%
�������	���%��%
��%����%����������% ��%	���% ��������%'$%/�<�%

Ù

�Ù

�Ù

�Ù

�Ù

�ÙÙ

��Ù

�

�

0

&

�

.���
�%1	���
�%����%&���������

��
��%����%��� <//B�%*%/�B<+"�

����

,�%����

17

% %

%

%

�����������%
��% ��2% �������	���% �8���
���% 	% �����	
���% ��%

��%��
��%����%���%��%=BO%�	�
��%
�	�%��%	%1%'$%/1%����%����%
�����% :���!%
���% ��2% ��������
	
���% �	�%
��% 	��	�
	��% ��%
'����%��	�$%
�%���%
��%��	
����%��%��
���%�	��2	��%	����
��
����%
2����%������%���
��%���
�%	��%����%�����%	��%�8���
���%

%

&�����%;�%�������	���%����	�����%��%
��%�9:�%	��%#2�3+���%	�����
��%
��%
��%����%	��%
��%����%���%�����������%

&�����%>%���
�%
��%��	�	'���
$%��%'�
�%��������
	
����%��%
��%
����% ���% 	����
��
����% ,�
�%
�	
%
��% �9:�% 	�����
��% 2	�%
��������
��% �����%���% �����	�����%�����%2����%
��%#2�3
+���% 	�����
��% ��% ��������
��% �����%
��% ������% :��% ���%

���	���% �����	������% % ��% '�
�% �	���%
��$% ��	��% ��	���	'�$%
2���%��
��%?B%�����!%���%
���	�%���%����%��%
��%����%���%<//B�!%
'�
%	�
��%?B%�����%
��%#2�3+���%������%�������%��	���%'�

��%
'$% ��	�����% 8/>B% �����% ��% 	
% 1>B%
���	��% 2����%
��% �9:�%
��������
	
���%��	����%A/%	
%1>B%���%����������%%

-�&�-�,���%

./0% ��% :�% ��	
��!% -�%
�% :�������!% ��% ��
�% 	��% 9�% ���
�!%
�
�����C%�����$%��	�	'��%������	��%�����	
����!%����%����%
;D%5/B6!%=D?JA1/%51B/;6%

.10% ��%:�%��	
��%	��%9�%���
�!%�
�����%(���%�	��	�%

.;0%)�% �	

��		!% P�% "$�Q����	'!% #�% -����	!% ��% :���Q��% 	��% P�%
9��
�������!% :�% ��������
% �2	�% 	�����
��% ���%
��% �	

���%
���
��	��% ��
���!% �����
��% ��$����% ��������	
�����%
&�'��	�$%1BB=%

.>0% ��
��%������	
���!%��
��%����%���%�����������%�$�
��%��R
2	��%
����������% +����!% 1B/1!% �

�C77��R
2	�����
������7��3��7���3
����������%

.<0% ��
��S% ����S% ���������% �<31?BB% �1% ������
% &	���$�%
�

�C77	� ���
������7������
�7������7=<1D/7��
��3����3
���������3�<31?BB3�13������
3&	���$T*:��%

.?0% P�%
	

!% "�2%
�% ��������
% $���% ��I4% �$�	����% 2�
�% ���$% 4%
�	��	'���% ���% ����% 5���
�	�% ��% 146!% #������	�% -����
!% #��
�%
(�������
$!%�������!%(�:!%1BB=%

%

%

&�����%>�%�	�	����%��	�	'���
$%����	�����%��%
��%�9:�%	�����
��%5���6%
	��%
��%#2�3+���%	�����
��%5������6%��%
��%��
��%����%����%

%

.=0% ��
�%��	
�	�	�!% ����% +����!%��%)��� !%:%�����% ���% ���������%
���������%��%�	����%��%��	��%	����
���%���������%��%��	����%	��%
���
�	�%���3��������
%�$�
���!%��$��%-���%D>%5;6%5/D<>6%<//J
<1<�%

.A0% ��% 9�

�	��	!% #�% E�����	!% +�% "	���	!% +�% 9������'�%
����	�����% ��% ��������
% ����	�	
���% �
���% ���%
��%
	

���%
���
��	��% ��
���!% �����
���% 	��% �	
���	
���% 2�
�%
:�����	
����%

.D0% ��%��	�%	��%"�%�����%
	

���%���
��	��%�����%���%�����	
���%
�2�%2�
�%���
����%��	���%	��%��������
��%��$���	�%-����2%�C%
�
	
��
��	�% ��$����!% ��	��	�!% &�����!% 	��% ���	
��%
��
�����������	�$%
�����!%>=5;6C/A/<U/A/D!%�	���%/DD;�%

./B0% ��%��	�%	��%"�%�����%�����	
���%��%������	�%�	���%	��%��4���3
�	�% ��	��%
�	���
����% '$%
��% �	

���% ���
��	��% �4�	
����%
��$���	�% -����2% �C% �
	
��
��	�% ��$����!% ��	��	�!% &�����!% 	��%
���	
��%��
�����������	�$%
�����!%>D5>6C1D>/U1D>A!%:����%/DD>�%

.//0% ��
��S%K#���V%:��������%1B/?�%�

��C77���
2	�����
������7��3
��7��
��3�
���3	��������38�%

./10% ������% :�����	
���% �����	�% ��
���	��% K������% >�B% 3% P��$%
1B/;%

./;0% ��% "��!% I�% E��!% ��% ����!% +�% ������!% 	��% :���% �����$!%
�����	
���%��%�	��
$% ���2%'$%
��%�	

���%���
��	��%��
���!%P�%
�����%��$��%//A%5/DD<6!%���%;1D3;>=�%

./>0% E�%+��!%��%���!%	��%��%E����!%:%�������% �	

���%�+)%�����%
���%
��% ���������4% �4�	
����!% ��
�% P�% ,�����% ��
��% &��;D%
51BB16!%���%;1<3;>1�%

%

%

B

1B

>B

?B

AB

/BB

/1B

������	�%���%���$ -�����
���%������

�
�
0
&
�

�������%���%&���	���
��

5�+)%��	�%����%2�
�%>%������!%����C%/?BW;6

1%8%��
��%����%�<31?D=%�1%51>%
	� �%��%
���	��6

��
��%����%���%<//B�%51>B%
	� �%��%
���	��6

B

<B

/BB

/<B

1BB

B 1B >B ?B AB /BB /1B />B /?B /AB 1BB 11B 1>B

�
�
�
�
�
%0
�

�������

�������%���%���
���
��"

5�+)%��	�%����%2�
�%>%������!%����C%/?BW;6

���	�

������	�%�9:�%	�����
��%2�
�%���

#2�3�
��%#2�3+���%:�����
��%2�
�%������

18

Back to the Future?

High Performance Computing and ARM

Chris Adeniyi-Jones,

ARM Research Cambridge,

United Kingdom

Abstract—Achieving Exascale levels of performance for HPC systems within a sustainable power

budget is the widely held goal for many. Improving the efficiency of HPC systems is going to require

novel technologies and new ways of using existing technology. ARM is a leading provider of

Intellectual Property. Our range of IP products and our partnership business model enables our

partners to address many different markets. I will highlight the Mont-Blanc project as an example of a

different approach to HPC; what was done and what we learnt. I will also discuss the changes over the

past five years and how new products are helping us prepare for the next five years of advances in

high-performance computing.

19

Low-Power, Fault-Resilient Communications in a
Million-Core Neural Processing Architecture

Javier Navaridas, Mikel Luján, Luis A. Plana and Steve B. Furber
School of Computer Science, The University of Manchester

Oxford Road, Manchester, UK, M13 9PL

Abstract— The SpiNNaker neuromimetic architecture is a
biologically-inspired massively-parallel architecture based on a
custom-made multicore System-on-Chip (SoC). In order to deal
with the challenging and atypical communication demands of
spiking neural networks, SpiNNaker features a specialised, ad
hoc communication infrastructure based around a custom-made
multicast router. This paper summarizes the main research work
around the peculiarities of SpiNNaker's architecture and
interconnects focusing on the most exceptional features of the
platform. We derived the main topological properties of the
network, analyzed the effects of failures congestion and traffic
burstiness in the stability of the interconnect and, finally,
proposed a collection of multicast routing algorithms.

Keywords—Interconnection Networks, Massively Parallel
Systems, Multicast Routing Algorithms, Performance Evaluation.

I. INTRODUCTION

SpiNNaker is a bespoke massively-parallel architecture
targeting the simulation, in biological real-time, of very large-
scale spiking neural networks, with more than 109 neurons. To
put this number in context, it roughly represents 10% of the
human cortex. Spiking neural networks communicate by means
of spike events which occur when a neuron is stimulated
beyond a given threshold and discharges an electrical impulse.
These spikes are communicated to all connected neurons, with
typical fan-outs of the order of 103. At a realistic biological
firing rate of 10Hz, there could be more than 1010 neuron
firings per second, which can replicate up to 1013
communication events per second in the largest SpiNNaker
configuration. Thus, an essential problem inherent to the
simulation of spiking neural networks is how to distribute large
numbers of small packets very widely amongst up to the
million processors featured by SpiNNaker in an efficient way
and with minimal latency. In this paper, we discuss the most
important research that has been carried out around the custom-
made interconnection network of SpiNNaker. In [1], we
performed a theoretical analysis of the network, deriving
theoretical properties such as the maximum throughput and
distance-related characteristics of its topology. We also studied
the fault tolerance capabilities of the system showing that the
network is able to adapt and to remain stable in the presence of
failures [3]. Later on, we investigated how the traffic burstiness
inherent to the application affects network stability. As
increasingly larger configurations of the system have become
available, there has been a great effort on understanding how to
better exploit SpiNNaker’s multicast infrastructure [4, 5] in
order to prevent the interconnection network from becoming
the main performance and scalability bottleneck.

A. Machine Construction Progress

The construction of large-scale versions of SpiNNaker is
ongoing and is expected to culminate with the million-core
system in the following months. Some prototypes and
production systems have already been designed and fabricated.
Back in 2010 a first batch of test chips (two cores and a fully
functional router) were produced and successfully
demonstrated running spiking neural nets. This was followed in
2011 by the production of small quantities of full-fledged
SpiNNaker chips with 18 ARM cores and the development of
small boards, able to house four SpiNNaker chips and to
support inter-board communications. These boards, due to their
low-power design, have been used as control devices for
robotic systems . As shown in Fig. 1, we have reached most
milestones in the path towards the full-fledged SpiNNaker: a
48-chip board has been designed and large numbers of them
have been produced and can be interconnected to construct
increasingly large machines. One board forms a 103-core
machine, one rack frame with 24 boards forms the 104 one, a
cabinet with five of these frames (120 boards) forms the 105
machine. Very recently 5 of these cabinets have been installed.
The final expansion to reach the full-fledged, million-core
SpiNNaker machine will be to add 5 more cabinets together,
which will be done in the next few months.

B. System software and libraries

Aside from the hardware, an extensive collection of system
software and application libraries is already offered to operate
SpiNNaker and new features are developed and released
frequently. Among all the software involved in SpiNNaker, is
especially important the PyNN frontend, a domain specific
language devised to define spiking neural networks widely
used within the neuroscientist community. The PyNN/
SpiNNaker combination exploits the system flexibility and
decouples neural applications from the actual hardware,
allowing users to rapidly develop and simulate spiking neural
networks without any knowledge of the intricacies of the
underlying system. Thanks to this transparency for the end-
user, the adoption of SpiNNaker as a simulation platform is
rapidly growing within the cognitive computing community.

II. SPINNAKER ARCHITECTURE

The main foundations of SpiNNaker’s design philosophy
were to reduce power consumption, to improve reliability by
means of high redundancy and to provide a flexible
architecture, general enough to run a wide range of
applications. Each SpiNNaker SoC contains 18 low-power

20

general-purpose ARM968 cores, typically running an
independent event-driven process, which responds to events
generated by different on-chip modules: timer,
communications controller and DMA controller, among others.
The chip is packaged together with a 128 MB SDRAM, whose
primary function is to store synaptic information. The chips are
interconnected (see Fig. 2) using a two-dimensional triangular
torus relying on a custom-made on-chip multicast router which
handles both inter- and intra-chip communications. It has 18
ports for the cores plus six external ports to communicate with
adjacent chips. To avoid the high complexity intrinsic to
crossbar-based designs, the SpiNNaker router uses a simpler
architecture in which ports are hierarchically merged into a
single pipelined queue so that only one packet can use the
routing engine at once. The routing engine is not expected to
become a bottleneck as it has much higher bandwidth than the
transmission ports (8 Gbps vs. 250 Mbps). The router supports
point-to-point and multicast communications using small
packets of 40 bits. The multicast engine reduces the pressure at
the injection ports and the number of packets traversing the
network and so is the main communication method during
regular operation of the system.

Another interesting aspect of the interconnection
architecture is the routing paradigm. Following the Address

Event Representation protocol, packets do not contain any
information about their destination(s), only an identifier of the
neuron that has fired. The information necessary to deliver a
neural packet to all the relevant cores and chips is compressed
and distributed across the 1024-word routing table within each
router. To minimize the impact of such an exiguous resource
and allow the system to perform complex routing, routing
tables offer a masked associative route look-up and routers are
designed to perform a default routing—which requires no entry
in the routing table—by sending the packet to the port opposite
to the one the packet comes from, i.e. if a packet comes from
the North it will be sent to the South. Routing tables are not
intended to remain static during long simulations. They can be
modified dynamically in real-time to accommodate scenarios
of congestion or even failures in the interconnection network.

The flow-control is very simple: when a packet arrives to
the routing engine, one or more output ports are selected and
the router tries to transmit the packet through them. If the
packet cannot be forwarded, the router will keep trying, and
after a given period of time it will also test the clockwise
emergency route. Finally, if a packet stays in the router for
longer than a given threshold the packet will be dropped to
avoid deadlock. This threshold is an arbitrary router
configuration parameter which was thoroughly studied in [1].

a) Unpackaged (left) and

packaged (right) SpiNNaker chips.

b) 48-chip production board (103 machine) c) 24-board frame (104 machine) d) 19" rack cabinets (halfway to 106 machine)

Fig. 1. Different sizes of SpiNNaker Machines, from a single chip to the recently installed 5-cabinet system.

Fig. 2. Example of an 8×8 SpiNNaker topology (left) and a communication-centric diagram with the main components of a chip (right). The peripheral

connections of the topology are not depicted for the sake of clarity. The regular route (slashed line) and the two emergency routes (thick arrows) between the
shaded nodes are shown.

21

III. EVALUATING THE INTERCONNECTION NETWORK

A. Topological Analysis

One of the most important aspects of a network is its
topology as it has a great effect on the overall performance
both in terms of bandwidth and latency. As a first step to assess
SpiNNaker network [1], we derived theoretical properties such
as the maximum throughput (Θ), the average distance (δ) and
the diameter (D) based on the nodes per dimension (n):

nodecyclepackets
nn

n
//

16·16
2

==Θ
 (1)






=




+=
3

·2

62

nnn
D

 (2)

()
)1·(

3mod
2

·3
6

·9,1max·
2

·2
2

·3·6
6

1

2

1

2

−


















+






 −














 ++−
=

∑∑









==

nn

n
i

n
i

nn
i

n

i

n

iδ
 (3)

B. Network stability under failures

Another interesting insight coming from our previous
evaluations is the stability of SpiNNaker’s interconnect in the
presence of failures thanks to the emergency routing
mechanism [1]. Fig. 3 shows the temporal evaluation of a
SpiNNaker system when the emergency routing is either
deactivated or activated. In these simulation results, we started
with a fault-free network and every 5k cycles the number of
faults is increased (to 1, 2, 4, 8, etc as per the top axis). These
results show clearly that whereas performance metrics in the
system without Emergency routing have large fluctuations as
failures are added up, the system with emergency routing
shows a very stable operation with small variations in max
latency as we approach large number of failures. However,
while the emergency routing mechanism is shown to be
excellent when dealing with failures, it has been found more
recently to be one of the contributors of the system
vulnerability to congestion. Fig. 4 shows the network
throughput as measured with and without the mechanism
activated. It is clear that activating this mechanism may be
counterproductive in scenarios of congestion (after about 0.1
load) because accepted load is reduced when the emergency

routing is used. Although congestion is not expected to be a
major problem in SpiNNaker given the small packet size and
the traffic locality, the emergency routing mechanism is
normally deactivated unless failures are detected in order to
avoid network reaching saturation prematurely.

C. Effects of traffic burstiness

SpiNNaker features a very distinctive execution model
which generates traffic with some characteristics which are
dissimilar from the typical workloads that can be found in other
parallel computers such as datacentres or HPC systems. For
this reason we later investigated the effects that these
characteristics (traffic burstiness, locality and causality) had on
the network [3]. The most important of these characteristics is,
without any doubt, that the event-driven nature of the
application tends to generate traffic in bursts because all the
neural activity is checked at the beginning of each simulation
step (typically with a resolution of 1 ms). Fig. 5 shows the
effect that increasing the burstiness of the traffic – up to 50%
of the traffic being in the form of 10-packet bursts – has on the
packet dropped ratio of the system. It can be seen that the
proportion of bursts barely affects the generation rate when the
network starts dropping packets, just about a 5% earlier when
half of the traffic is bursty. Note that this experiment was
carried out in an extremely pessimistic configuration in which
the traffic was mostly non-local and the injection rates in which
packets are first dropped are about 4 times higher than the
typical operation of the system. These results show that
SpiNNaker will be able to perform in a stable manner when
dealing with the anticipated network workloads.

D. Multicast Routing

With the relentless increase in the size of the available
systems the use of SpiNNaker’s multicast infrastructure is
becoming increasingly important [4, 5] as route generation has

0

100

200

300

400

500

600

700

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

 P
ac

ke
ts

C
yc

le
s

0.000

0.005

0.010

0.015

0.020

0.025

Accepted Load

Max.
Delay

Average Delay

Dropped packets

1 2 4 8 16 32 64 128 256 512 1024

0

100

200

300

400

500

600

700

0 5000 100 00 15000 20 000 25000 30 000 35000 40 000 45000 50 000 55000 60 000

 P
ac

ke
ts

C
yc

le
s

0.000

0.005

0.010

0.015

0.020

0.025

Accepted Lo ad

Max Delay

Average Delay

Dropp ed packets

1 2 4 8 1 6 32 64 128 256 512 10 24

Fig. 3 Temporal evolution of the systems under uniform traffic at a given

load of 0.02 packets/node/cycle. Without emergency routing (top) and
with emergency routing (bottom). Adapted from [2].

0.0

0.2

0.4

0.6

0.8

1.0

0 0.01 0.02 0.03 0.04
Generation rate (packets/node/cycle)

P
ac

ke
t d

ro
pp

ed
 r

at
io

No bursts
5% bursts
10% bursts
25% bursts
50% bursts

Fig. 5 Effects of burst in the packet dropped ratio. Bursts of 10 packets,

Adapted from [3].

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 0.1 0.2 0.3 0.4
Generation rate (packets/node/cycle)

A
cc

ep
te

d
lo

ad

Emergency Routing
no Emergency Routing

Fig. 4 Effects of emergency routing mechanism on network throughput.

22

a great impact on the performance and efficiency of the
network. In this line, we have proposed (Fig. 6.) a number of
multicast routing algorithms providing alternatives to reduce
the different aspects of the network which can limit scalability.
DOR (Fig. 6a), one of the most frequently used algorithms for
mesh-like topologies, is shown to be the worst alternative as it
requires the highest network resources. LDFR (Fig. 6b) is a
well-rounded solution as the multicast routes can be generated
very quickly while keeping resource requirements low and
balanced. ESPR (Fig. 6c) searches for connections using
always shortest paths. NER (Fig. 6d) searches around without
requiring shortest path. Both of them can reduce network use
but they generate the routes slower than LDFR and so they
may be relegated to those cases in which any of the scarce
resources of the network limits system scalability.Fig. 7 shows
the required network bandwidth and route generation time as
the number of destinations is increased up to one thousand.
These results were captured assuming the destinations are
uniformly distributed; again, worst-case with little locality.
First, we can see how the aggregated network bandwidth
required to deliver a packet to each destination is reduced
considerably when compared to a unicast alternative. Indeed,
unicast can require over one order of magnitude more
aggregated bandwidth than the best multicast alternative and 2-

3× in most of the cases. NER is shown to require the lower
aggregated bandwidth in most of the cases, only ESPR is better
in the cases in which the number of destinations is reduced.
Looking at the route generation time we can see how the search
done by ESPR and NER burdens their generation time except
in these cases in which there are many destinations so finding
connections is likely and has a positive return as once a
connection is made the rest of the route can be safely skipped.

IV. CONCLUSIONS

In this paper we have highlighted the most important
features and strengths of SpiNNaker interconnect. Our analysis
shows that SpiNNaker’s low-spec, custom-made multicast
router will be able to sustain the demand and operate in a stable
manner in most foreseeable situations as regards traffic load,
burstiness and network failures. Only in unlikely scenarios,
with extremely low locality and pathological allocation of
neurons, may the network become a bottleneck. Further we
justify the router architecture by showing that its multicast
nature substantially reduces required bandwidth when
compared to unicast.

ACKNOWLEDGMENT
The design and construction of the SpiNNaker machine was supported

by EPSRC (the UK Engineering and Physical Sciences Research Council)
under grants EP/D07908X/1 and EP/G015740/1. Ongoing development is
supported by the EU ICT Flagship Human Brain Project (FP7-604102),
and our own exploration of the capabilities of the machine is supported by
the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement 320689.
Dr Luján holds a Royal Society University Research Fellowship. Dr.
Navaridas is supported by EPSRC, through Grant EP/K015699/1 and by
the EU H2020 through Grant agreement No. 671553.

REFERENCES
[1] J Navaridas, et al. “Understanding the Interconnection Network of

SpiNNaker”. International Conference on Supercomputing (ICS’09),
June 8 to 12, 2009, New York, USA.

[2] J Navaridas et al. “SpiNNaker: Fault tolerance in a power- and area-
constrained large-scale neuromimetic architecture”, Parallel Computing,
39(11), Nov 2013, pp. 693-708, DOI: 10.1016/j.parco.2013.09.001.

[3] J Navaridas, et al. “SpiNNaker: Impact of Traffic Locality, Causality
and Burstiness on the Performance of the Interconnection Network”.
Computing Frontiers (CF’10), 2010,

[4] J Navaridas, et al. “Analytical Assessment of the Suitability of Multicast
Communications for the SpiNNaker Neuromimetic System”. IEEE
International Conference on High Performance Computing and
Communications (HPCC 2012), June 25-27, 2012, Liverpool, UK.

[5] J Navaridas, et al. “SpiNNaker: Enhanced Multicast Routing”. Parallel
Computing 45, Jun 2015, pp. 49-66 DOI: 10.1016/j.parco.2015.01.002

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 10 100 1000

Number of destinations

T
ra

ve
rs

ed
 li

n
ks

 (
n

or
m

al
iz

ed
 to

 U
n

ic
as

t)

dor

ldfr

espr

ner

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 10 100 1000

Number of destinations

E
x

ec
u

ti
o

n
ti

m
e

(n
o

rm
a

liz
e

d
to

 D
O

R
) dor

ldfr

espr

ner

Fig. 7 Evaluation of the different routing algorithms with uniformly

distributed destinations. Network utilization (top) and route generation
time (bottom). Adapted from [5].

a) Dimension Order Routing (DOR)

b) Longest Dimension First Routing (LDFR)

c) Enhanced Shortest Path Routing (ESPR)

d) Neighbour Exploring Routing (NER)

Fig. 6. Example of multicast trees for each algorithm. Legend: ‘x’ source, ‘o’ destinations, ‘*’ entry in routing table, ‘-’ ‘|’ ‘/’ default route. From [5]

23

Energy versus performance on low power
processors for HPC applications

Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano and Raffaele Tripiccione
INFN and Università degli Studi di Ferrara, Ferrara, Italy

Abstract—Energy efficiency is becoming more and more impor-
tant in the HPC field; high-end processors are quickly evolving
towards more advanced power-saving and power-monitoring
technologies. At the same time, low-power processors, designed
for the mobile market, attract interest in the HPC area for
their increasing computing capabilities, competitive pricing and
low power consumption. In this work we compare energy and
computing performances for different low-power platforms. As
a benchmark we use an HPC Lattice Boltzmann application, in-
strumented with several software and hardware tools to monitor
its power consumption; our analysis uses time-accurate measure-
ments performed on all systems by a simple custom-developed
current monitor. We consider the ARM Cortex-A15 CPU and the
GK20A GPU of a NVIDIA Tegra k1, as well as an ARM Cortex-
A53 CPU. We discuss several energy and performance metrics,
evaluating the different energy-performance tradeoffs available
on the tested architectures.

I. INTRODUCTION

The computational performances of current HPC systems
are increasingly limited by power consumption, and this is
only expected to worsen in the foreseeable future. This is also
relevant from the point of view of operating costs; indeed,
large computing facilities are considering the option to charge
not only running time but also energy dissipation. In response
to these problems, high-end processors are quickly introducing
more advanced power-saving and power-monitoring technolo-
gies [1]. On the other hand, low-power processors, designed
for the mobile market, are gaining interest as it appears that
they may eventually fill (or at least reduce) their performance
gap with high-end processors and still keep a competitive
edge on costs, thanks to the economies of scale associated
to large production volumes of mobile devices [2], [3]. The
power consumption problem is starting to be approached also
from the software point of view, with developers focusing not
only on performance, but also learning to optimize codes to
achieve acceptable trade-offs between performance and energy
efficiency [4], [5].

In this paper we address one facet of these issues. We
analyze in details, using accurate measurements, the role
played by hardware factors and by some software aspects in
the energy-performance landscape of real-life HPC applica-
tions. Our application benchmark is a Lattice Boltzmann code
widely used in CFD. As a hardware testbed we consider a
low-power Tegra K1 SoC (System on a Chip), embedding a
multi-core ARMv7 CPU and a GPU, and a 96boards HiKey
system embedding a 64-bit multi-core ARMv8 CPU. We
use three versions of our code, optimized for the two ARM
CPUs and the NVIDIA GPU, with different configurations and

compilation options. We then measure energy consumption
and performance of the computationally intensive kernels in
our code, using several clock frequency combinations, building
a large database of measured data. We then analyze these
results, also guided by a simple but effective model of the
energy behavior of our test systems.

II. THE HARDWARE TESTBED

Our hardware setup is based on two development boards
and a custom current monitoring system described in [6], able
to acquire and store current values out-of-band [1].

A. Jetson TK1 Development Board

The Tegra K1 SoC, hosted on the Jetson TK1 board, has a
CPU and a GPU on a single chip; the CPU is a NVIDIA “4-
Plus-1”, a 2.32GHz ARM quad-core Cortex-A15 and a low-
power shadow core; the GPU is a NVIDIA Kepler GK20a
with 192 CUDA cores (with 3.2 compute capability). Both
units access a shared DDR3L 2 GB memory bank on a 64-
bit bus running at up to 933 MHz. This system has several
energy-saving features: cores in the CPU can be independently
activated and the frequency of the CPU, GPU and memory
system can be individually selected in a wide frequency range
(CPU: 204 · · ·2320.5 MHz in 20 steps; GPU: 72 · · ·852 MHz
in 15 steps; Memory: 12.75 · · ·924 MHz in 12 steps).

B. 96 Boards HiKey

The HiKey board is based around the HiSilicon Kirin 620
eight-core ARM Cortex-A53 64-bit SoC, running at 1.2GHz
and embeds 1GB of 800MHz LPDDR3 DRAM on-board
modules. The board has the standard 96Boards credit-card
form factor and is powered by an 8-18V DC 2A power supply.
Also this system has several energy-saving features: cores in
the CPU can be independently activated and the frequency of
the CPU can be selected between 208MHz and 1.2GHz, in 5
steps.

C. Power monitoring system

Both boards are powered by a 12V source, so their power
consumption can be easily derived by current measurements.
We have developed a simple system able to measure the
current flowing into the boards with very good accuracy and
time resolution (≈ 1 msec) and able to correlate measurements
with the execution of specific software kernels. The setup uses
an analog current to voltage converter (using a LTS 25-NP
current transducer) and an Arduino UNO board; the latter

24

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

C
u

r
r
e
n

t
[
m

A
]

Time [ms]

Propagate on Jetson GPU - Lattice size: 128x4096

Fig. 1: Raw data collected by the current monitoring system
as the Jetson GPU runs 20 iterations of a CUDA kernel.
Current increases during the first iterations as the performance
governor (in default mode) increases the clock frequency.

uses its embedded 10-bit ADC to digitize current readings
and stores them in its memory. We synchronize the Arduino
UNO and the instrumented application through a simple serial
protocol built over an USB connection. With this setup, a
generic application running on the boards only needs to
trigger the Arduino UNO to start acquisition immediately
before launching the kernel function to be profiled. After the
function under test completes, acquired data is downloaded
from the Arduino UNO memory, so it can be stored and
analyzed offline. The monitor acquires current samples with
1 ms granularity; for increased accuracy, multiple consecutive
readings (e.g. 5 in our case) are performed and averaged. This
setup is able to correlate current measurements with specific
application events with an accuracy of a few milliseconds,
while minimally disrupting the execution of the kernel function
to profile. Fig. 1 shows a typical raw current measurement
of a CUDA kernel running 20 times on the Jetson GPU; it
highlights the good time resolution and accuracy. Note the
increasing values of the measured current during the first
iterations, as the performance governor, left in in default mode
in this example, scales the clock frequency.

Starting from N current samples i[n] for the time interval
TS corresponding to the execution of a given kernel, different
power metrics can be computed. The instantaneous power is
p[n] = V × i[n] and the average power Pavg = 1

N ∑N−1
n=0 p[n].

Another popular metric, the so-called energy-to-solution is
defined as ES = TS ×Pavg.

III. THE APPLICATION BENCHMARK

For our tests, we use a production-grade computational
fluid-dynamics code based on the Lattice Boltzmann (LB)
method. LB methods [7] – discrete in position and mo-
mentum spaces – are based on the synthetic dynamics of
populations sitting at the sites of a discrete lattice. At each
time step, populations hop from lattice-site to lattice-site and
then collide among one another, that is, they mix and their
values change accordingly. We consider a state-of-the-art LB
code reproducing the thermo-hydrodynamical evolution in two
dimensions of a fluid with the equation of state of a perfect
gas (p = ρT) [8], [9]. This model, extensively used for large
scale simulations of convective turbulence (see e.g., [10], [11]),

uses 37 populations (a D2Q37 method, in standard LB jargon).
Populations (fl(x, t) l = 1 · · ·37), defined on a discrete and
regular lattice and each having a lattice velocity cl , explicitly
evolve in (discrete) time:

fl(x, t +∆t) = fl(x−cl∆t, t)− ∆t
τ

(
fl(x−cl∆t, t)− f (eq)

l

)

(1)
Macroscopic variables, density ρ, velocity u and temperature
T are defined in terms of the fl(x, t) and of the cls (e.g., ρ =

∑l fl , ρu = ∑l cl fl) and the equilibrium distributions (f (eq)
l)

are in turn a function of these quantities. In suitable limiting
cases, the evolution of the macroscopic variables obeys the
thermo-hydrodynamical equations of motion of the fluid.

An LB simulation starts with an initial assignment of the
populations, corresponding to an initial condition on some
spatial domain, and iterates Eq. 1 for each point and for
as many time-steps as needed. At each iteration two critical
kernels are executed (all other routines having a negligible
computational cost): i) propagate moves populations across
the lattice, collecting at each site all populations that will
interact at the next phase (collide). So, propagate moves
blocks of memory locations across sparse memory addresses,
corresponding to populations of neighbor cells; ii) collide
performs all steps needed (per Eq. 1) to update population
values at the new time step, using data gathered by propagate.
This is the floating point intensive step of the code.

This code – an important HPC application per se – has two
specific merits as a benchmark: i) it has a huge degree of
easily identified parallelism, that can be exploited by different
architectures (e.g., many-core CPUs or GPUs), and ii) one of
the two key routines (propagate) is strongly memory-bound
while the other (collide) is strongly compute-bound.

IV. MEASUREMENTS

Our benchmark is based on codes implementing the LB
algorithm described in the previous section and exploiting to
a large extent the available parallelism. On the GPU we run
an optimized CUDA code, developed for large scale CFD
simulations on large HPC systems [12], [13]. On the CPUs
we run two plain C versions using respectively 32-bit and 64-
bit NEON SIMD intrinsics exploiting the vector unit of the
ARM Cortex-A15 and Cortex-A53. We also use OpenMP for
multi-threading within the CPU cores and OpenMPI for future
testing purposes on multiple boards.

We have instrumented both critical kernels as described in
Sec. II-C, and performed several test runs, monitoring the
current profile at all times during the tests, accumulating a
large database of measured data. On the software side, we have
included runs with different numbers of OpenMP threads (for
CPUs) and CUDA block sizes (for the GPU); on the hardware
side we have logged data for most combinations of the
adjustable clock frequencies, disabling automatic frequency
scaling. The C code using NEON intrinsics, was run on
the Cortex A15 manually forcing the use of the G cluster
(i.e. the high performance quad-core). When running on the
GPU, the CPU was forced to use the LP cluster (i.e. the

25

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900

C
u

r
r
e
n

t
[
m

A
]

Time [ms]

Collide on Jetson CPU - 128x1024sp - Changing CPU Clock

Fig. 2: Current measurements of the Cortex A15 CPU for
the collide kernel on a lattice of 128 × 1024 points with 4
OpenMP threads. Each plot line refers to a different CPU clock
frequency, between 204MHz (lowest green line) and 2.3GHz
(highest red line). The memory clock stays at its maximum
value.

low performance shadow core). We performed all tests in
single and double floating point precision, but for the sake
of a fair comparison, here we only consider single precision
results; indeed, the Cortex-A15 is a 32-bit CPU (lacking
double precision vector instructions) and the GK20a GPU does
not have double precision floating point units.

As an example of data obtained by the various test runs,
in Fig. 2 are shown current readings for the collide kernel for
several values of the CPU clock (GPU and memory clocks are
fixed); similar results are available for the propagate kernel,
for most clock combinations and for all processors.

V. RESULTS AND DISCUSSION

We consider energy-to-solution (ES) and time-to-solution
(TS) – and the correlations thereof – relevant and interesting
handles to explore tradeoffs between potentially conflicting
time and energy requirements.

To better highlight the time/energy tradeoff, we plot ES
as a function of TS, for all processors and for both kernels,
see Fig. 3. Interestingly enough, ES scales approximately
linearly with TS. A crude way to understand this behavior is
as follows: as the processor executes a kernel, it consumes
power in two ways: i) the power associated to the (constant in
time) background current (including the leakage current of the
processor and the current drawn by ancillary circuits on the
board) and ii) the power associated to the switching activity of
all gates of the processor as it transitions across different states
while executing the program. The first term implies a constant
power rate (P0), while the second term implies an average
energy dissipation CV 2 every time a bit in the state of the
processor toggles during execution (V is the processor power
supply and C is an average value of the output capacitance
of each gate); this model derives directly from early power
analyses found in classic books in VLSI design [14], and
recently discussed in [15]. We are fully aware that the actual

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800 900

E
n

e
r
g

y
 t

o
 S

o
lu

ti
o

n
 [

J
]

Time to Solution [ms]

Propagate
Collide
Fit line

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800 900

E
n

e
r
g

y
 t

o
 S

o
lu

ti
o

n
 [

J
]

Time to Solution [ms]

Propagate
Collide
Fit line

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800 900

E
n

e
r
g

y
 t

o
 S

o
lu

ti
o

n
 [

J
]

Time to Solution [ms]

Propagate SP
Collide SP

Propagate DP
Collide DP

Fig. 3: Measured values of ES vs. TS on the Cortex A15
CPU (top), NVIDIA GK20a GPU (middle) and Cortex A53
(bottom), for the collide (blu) and propagate (red) kernels
for several clock frequencies. Results of a fit of collide data
to Eq. 2 are also shown (top and middle). For the Cortex
A53 (bottom), we also include results for the double precision
version of the code for collide (cyan) and propagate (orange).

situation is more complex, but we let this simple model guide
our further analysis. We fit ES as a function of TS as follows:

ES = E0 +P0 ×TS (2)

P0 should be independent of the program under test, while E0
should depend on the kernel and the processor executing it,
as – to first approximation – it counts the number of state
transitions that the processor has to go to execute the code,
irrespective of the frequency at which they happen.

Deviations from the scaling behavior occur as clustered
points of roughly equal TS but different ES. These abnormal
energy costs are associated to a mismatch between the clock
frequencies of the processor and the memory system.

Therefore, contrary to intuition, using low clock frequencies
is an ineffective way to reduce energy dissipation, since a
low clock frequency does not affect E0 significantly while it
increases TS, causing an higher value for ES. This phenomena
is known as the "clock race to idle" [16] and is clearly visible
in Fig. 3.

Summing up, running codes at very low frequencies is
almost useless for all the tested processors (at least for our
benchmarks); it would probably be more useful to add flexible
(and fast) options to remove power from parts of the processor;
efficient ways to save the state of the subsystem before shut
down would be useful.

26

To first approximation, the best energy saving options for
this class of processors, correspond to running the system at a
frequency close to the highest possible value, and accurately
tuning the match between the clock frequencies of the various
subsystems. In the high frequency corner (lower-left in all
panels of Fig. 3), an interesting tradeoff between energy- and
time-to-solution can be looked for.

Taking into account these tradeoffs regions, different clock
frequencies could be selected from a sub-set of all the available
ones in order to tune the energy consumption with respect to
an affordable worsening of the performances.

Different points could be chosen for the different archi-
tectures, but in order to perform a fair comparison one has
to adopt a single metric [5]. There is no single well-defined
criterion here, but one of the most used is the EDP (Energy
Delay Product) cost model [17], which is the product of ES and
TS. EDP values for the compute intensive (single precision)
collide kernel in our application are shown in Tab. I, where
for each processor we have selected the best corresponding
figure.

Processor ES [J] per iter. TS [ms] per iter. EDP [J s]

GK20A 0.30 42 0.013
ARM A15 0.67 58 0.039
ARM A53 0.52 77 0.040

TABLE I: Best EDP values, with corresponding energy-to-
solution and time-to-solution, for the tested processors, run-
ning the (SP) collide kernel.

According to this metric and for the LBM code we have
considered, the GPU is more efficient than the CPUs by a
factor of three. Interestingly, we also see that the two different
ARM CPUs have approximately the same EDP value.

VI. CONCLUSIONS AND FUTURE WORKS

Our analysis shows that a limited but not negligible opti-
mization of the energy consumption is possible by carefully
matching the values of clock frequencies to the characteristics
of the code being executed.

Comparison among different architectures is not simple
because of the large number of parameters involved and
the lack of a well-defined metrics. Drawing a preliminary
conclusion, the EDP values of Tab. I may provide a “general
purpose” assessment of energy vs. performance merits across
different processors.

For the future, we plan to extend our analysis in several
ways: i) improving the current monitoring system, to have
more information available and to measure how the vari-
ous parts of the system contribute to energy dissipation; ii)
applying our analysis to more advanced low-power systems
supporting double precision floating point operations, such as
the Jetson X1 board and high-end system like the Cavium
ThunderX ARM Processors, also comparing with mainstream
HPC accelerators, such as NVIDIA K80 GPUs; iii) consider-
ing not only hardware-based tuning, but also software options
toward energy saving.

ACKNOWLEDGEMENTS

This work has been done in the framework of the COSA,
COKA and Suma projects, supported by INFN. The Jetson
TK1 and HiKey boards were awarded to E.C. for the best
paper at UCHPC 2014 and 2015.

REFERENCES

[1] D. Hackenberg, T. Ilsche, R. Schone, D. Molka, M. Schmidt, and
W. Nagel, “Power measurement techniques on standard compute nodes:
A quantitative comparison,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on, 2013, pp.
194–204.

[2] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez,
“Tibidabo: Making the case for an ARM-based HPC system,” Future
Generation Computer Systems, vol. 36, no. 0, pp. 322 – 334, 2014.

[3] J. Choi, M. Dukhan, X. Liu, and R. Vuduc, “Algorithmic time, energy,
and power on candidate HPC compute building blocks,” in Parallel and
Distributed Processing Symposium, IEEE 28th Int., 2014, pp. 447–457.

[4] J. Coplin and M. Burtscher, “Effects of source-code optimizations on
GPU performance and energy consumption,” in Proceedings of the 8th
Workshop on General Purpose Processing Using GPUs, ser. GPGPU
2015, 2015, pp. 48–58.

[5] M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein, “Chip-level
and multi-node analysis of energy-optimized lattice Boltzmann CFD
simulations,” Concurrency and Computation: Practice and Experience,
2015.

[6] E. Calore, S. F. Schifano, and R. Tripiccione, “Energy-Performance
Tradeoffs for HPC Applications on Low Power Processors,” in Euro-
Par 2015: Parallel Processing Workshops, ser. LNCS, 2015, vol. 9523,
pp. 737–748.

[7] S. Succi, The Lattice-Boltzmann Equation. Oxford university press,
Oxford, 2001.

[8] M. Sbragaglia, R. Benzi, L. Biferale, H. Chen, X. Shan, and S. Succi,
“Lattice Boltzmann method with self-consistent thermo-hydrodynamic
equilibria,” Journal of Fluid Mechanics, vol. 628, pp. 299–309, 2009.

[9] A. Scagliarini, L. Biferale, M. Sbragaglia, K. Sugiyama, and F. Toschi,
“Lattice Boltzmann methods for thermal flows: Continuum limit and ap-
plications to compressible Rayleigh–Taylor systems,” Physics of Fluids
(1994-present), vol. 22, no. 5, p. 055101, 2010.

[10] L. Biferale, F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi, and
R. Tripiccione, “Second-order closure in stratified turbulence: Simula-
tions and modeling of bulk and entrainment regions,” Physical Review
E, vol. 84, no. 1, p. 016305, 2011.

[11] ——, “Reactive Rayleigh-Taylor systems: Front propagation and non-
stationarity,” EPL, vol. 94, no. 5, p. 54004, 2011.

[12] J. Kraus, M. Pivanti, S. F. Schifano, R. Tripiccione, and M. Zanella,
“Benchmarking GPUs with a parallel Lattice-Boltzmann code,” in
Computer Architecture and High Performance Computing (SBAC-PAD),
25th Int. Symposium on. IEEE, 2013, pp. 160–167.

[13] E. Calore, S. Schifano, and R. Tripiccione, “On Portability, Performance
and Scalability of an MPI OpenCL Lattice Boltzmann Code,” in Euro-
Par 2014: Parallel Processing Workshops, ser. LNCS, 2014, vol. 8806,
pp. 438–449.

[14] C. Mead and L. Conway, Introduction to VLSI systems. Addison-Wesley
Reading, MA, 1980, vol. 802.

[15] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets
static power,” Computer, vol. 36, no. 12, pp. 68–75, Dec 2003.

[16] G. Hager, J. Treibig, J. Habich, and G. Wellein, “Exploring performance
and power properties of modern multi-core chips via simple machine
models,” Concurrency and Computation: Practice and Experience,
vol. 28, no. 2, pp. 189–210, 2014.

[17] J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Vandyke,
and C. Vaughan, Energy-Efficient High Performance Computing: Mea-
surement and Tuning. Springer London, 2013, ch. Energy Delay
Product, pp. 51–55.

27

Embedded supercomputing at NVIDIA

Alex Ramirez

NVIDIA

Abstract— In 2007, NIDIA introduced its CUDA parallel programming language: an extension to C, C++,

and Fortran that enables general purpose parallel computing on GPU accelerators. It has always been the

plan for NVIDIA to enable "CUDA anywhere".

Following that plan, NVIDIA introduced the Tegra K1 in 2014. Its first embedded multicore featuring 192

CUDA-capable cores based on Kepler microarchiteture, delivering over 300 GFLOPS (single precision).

From there, NVIDIA produced the Tegra X1, upgrading the GPU to 256 Maxwell cores, and delivering 512

GFLOPS. The Tegra X1 was built into the dual-socket Drive PX embedded supercomputer, enabling

development of smart self-driving cars. The NVIDIA DrivePX2 system features dual Tegra sockets coupled

with two discrete Pascal GPU accelerators to deliver over 24 TFLOPS of performance in an embedded

supercomputer meant to be under the hood of your next self-driving car.

In this talk I will describe the architecture and capabilities of these embedded supercomputers, as well as

highlight some upcoming technologies (NVlink, UVM) that will enable integration of larger systems built

from these embedded components.

28

Efficient HPC: Waste Not? Want Not?

Michele Weiland

ADEPT Project,

Edinburgh Parallel Computing Centre,

UK

Abstract— The focus of the HPC community is firmly on reaching its next big goal: the Exascale. There are

many technical hurdles that need to be overcome to reach this goal in the next five to ten years, but there is an

underlying theme of efficiency. HPC applications often only use a few percent of the peak performance a

system can offer, wasting vast amounts of resources that could be exploited to achieve increased science

throughput. The efficiency of Exascale systems in terms of power is also of great concern – we will need to

achieve 50 GFlop/s per Watt if we want to stay within a 20MW power envelope. In this talk, I will present the

work of two projects: Adept, which investigates and models power/energy expenditure in parallel systems;

and NEXTGenIO, which exploits Intel 3D XPoint technology to eliminate the I/O bottleneck in large-scale

parallel systems.

29

Whole Systems Energy Transparency

Kerstin Eder

Department of Computer Science

University of Bristol

Abstract— Energy efficiency is now a major (if not the major) concern in electronic systems

engineering. While hardware can be designed to save a modest amount of energy, the potential for

savings are far greater at the higher levels of abstraction in the system stack. The greatest savings are

expected from energy consumption-aware software. This talk emphasizes the importance of energy

transparency from hardware to software as a foundation for energy-aware system design. Energy

transparency enables a deeper understanding of how algorithms and coding impact on the energy

consumption of a computation when executed on hardware. It is a key prerequisite for informed

design space exploration and helps system designers to find the optimal tradeoff between performance,

accuracy and energy consumption of a computation. Promoting energy efficiency to a first class

software design goal is therefore an urgent research challenge. In this talk I will outline the first steps

towards giving "more power" to software developers. We will cover energy monitoring of software,

energy modelling at different abstraction levels, including insights into how data affects the energy

consumption of a computation, and static analysis techniques for energy consumption estimation.

30

Code Saturne on POWER8 clusters:
First Investigations

Charles Moulinec
and Vendel Szeremi

and David R. Emerson
STFC Daresbury Laboratory, UK

Yvan Fournier
EDF R&D, FR

Pascal Vezolle
and Ludovic Enault
IBM Montpellier, FR

Benedikt Anlauf
and Markus Bühler
IBM Böblingen, GE

Abstract—Code Saturne is a Computational Fluid Dynamics
(CFD) multi-physics software parallelised using MPI and some
OpenMP. It has demonstrated extreme scalability on Argonne
IBM Blue Gene/Q up to 3.0 million threads and on Jülich IBM
Blue Gene/Q up to 1.8 million threads. Recent developments
have been carried out to link the code to the PETSc library, in
order to access more options to solve linear systems, but also to
benefit from their latest developments on GPUs. Results showing
Code Saturne’s performance for a canonical flow (lid-driven
cavity) are presented using MPI only first, then hybrid MPI-
OpenMP results are shown, before presenting some performance
using PETSc on CPUs and on CPUs & GPUs.

I. INTRODUCTION

Code Saturne [1][2][3] is a Computational Fluid Dynamics
(CFD) multi-physics software primarily developed by EDF
R&D. The code is open-source since 2007 under GNU GPL
and is one of the only 2 CFD codes of the PRACE Unified
European Applications Benchmark Suite [4]. The code is
parallelised using MPI and some OpenMP. It has demonstrated
extreme scalability on the whole Jülich IBM Blue Gene/Q up
to 1.8 million threads, joining then the JUQUEEN High-Q
Club [5]. Recent developments have been carried out to link
Code Saturne to the PETSc library, in order to get access
to more options to solve linear systems, but also to benefit
from their latest developments on GPUs. Very first results are
presented in this work.

II. BRIEF DESCRIPTION OF THE IBM POWER8
ARCHICTECTURE

The target machines for this paper are IBM POWER81

clusters [6]. Two types of nodes are considered, S822LC
and S824L and a short description is given in the following
subsections.

A. S822LC node

A node is made of 2 processors, each of them having 10
cores running at about 2.92GHz. It also has 8 logical cores,
allowing to use Symmetric Multi-Threading (SMT). Four on-
chip memory controlers are available (SCM). A node has got
about 256 GB RAM available.
Two NVIDIA K80 GPUs are attached to each node. Each
of them has got 2 GPU GK210 with 12 GB memory and

1Trademarks of IBM in USA and/or other countries

2496 stream processors. These 2 K80 cards are similar to 4
K40 cards, in terms of computing capability but have similar
performance as 2 K40 cards only, in terms of CPU-GPU data
transfers.

B. S824L node

A node is made of 2 processors, each of them having
12 cores running at about 3.0GHz. It also has 8 logical
cores, allowing to use SMT. Eight on-chip memory controlers
are available (DCM). A node has got about 256 GB RAM
available.
Two NVIDIA K40 GPUs are attached to each node. Each of
them has got 12 GB memory and 2880 stream processors.

C. CPU Binding

To efficiently use POWER8 nodes, CPU binding is required
and the distribution of the cores is different from the one
for x86 nodes, where the cores are consecutively numbered.
The following examples show the core distribution when a
single POWER8 node is used. For instance, a 20 MPI tasks
simulation would run best on cores 0, 8, 16, ... (see Fig. 1), a
40 MPI tasks simulation on cores 0, 4, 8, 12, 16, ... (see Fig.
2), a 80 MPI tasks simulation on cores 0, 2, 4, 6, 8, 10, 12,
14, 16, ... (see Fig. 3) and a 160 MPI tasks simulations on
cores 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... (see Fig. 4).

Fig. 1. Load of a single node with 20 MPI tasks.

31

Fig. 2. Load of a single node with 40 MPI tasks.

Fig. 3. Load of a single node with 80 MPI tasks.

Fig. 4. Load of a single node with 160 MPI tasks.

III. DESCRIPTION OF THE CODE

Code Saturne is an open-source CFD software package
based on the finite volume method to simulate the Navier-
Stokes equations. It can handle any type of mesh built with
any cell/grid structure. Incompressible and compressible
flows can be simulated, with or without heat transfer, and
a wide range of turbulence models is also available. The
velocity-pressure coupling is handled using a projection-like
method. The default algorithm to compute the velocity is
the Jacobi algorithm and the pressure is solved with the
help of an algebraic multigrid (AMG) algorithm. Parallelism
is handled by distributing the domain over MPI processes,

with an optional second level of shared memory parallelism
based on the OpenMP model. Several partitioning tools
are available, i.e. geometric ones (Space-Filling Curve with
Morton and Hilbert approach) and graph-based ones (METIS
[7], ParMETIS [7], SCOTCH [8] and PT-SCOTCH [8]).

Code Saturne can be used as a standalone package, but
extra libraries may also be plugged in, as to read some of the
supported mesh formats (CGNS, MED, CCM, for instance),
to get access to graph-partitioners (METIS, ParMETIS,
SCOTCH, PT-SCOTCH) or to additional sets of linear
solvers (PETSc [9], for instance). The code (350,000 lines) is
written in Fortran (∼37%), C (∼50%) and python (∼13%).
In this work, python is only used on the frontend, where
Code Saturne ’cases’ are prepared, i.e. the executable is
created, accounting from the usersubroutines, and a symbolic
link is added pointing on the mesh in the native format.

MPI is used for communications between subdomains
and OpenMP pragmas have been added to the most time-
consuming parts of the code.

MPI-IO is used for output of postprocessing files, which
by default uses the EnSight Gold format, also readable by
ParaView, for dumping potential checkpointing files and
meshes (mesh output file) if requested by the user, and also
for reading the mesh input file and potential restart files.

IV. TEST CASE

The canonical test case of the lid-driven cavity is used for
benchmarking. The configuration is a cubic box of size 1×1×1
and the mesh is made of 13 million tetrahedral cells. Symmetry
boundary conditions are set in the spanwise direction, inlet
boundary conditions at the top of the box, with a constant
horizontal velocity of 1 and wall boundary conditions for the
3 last faces of the box.
The Reynolds number based on the cavity edge size and the
lid velocity is set to 100.

V. SETTINGS

Code Saturne version 4.2.1 is used, as it supports PETSc
and allows testing the behaviour of the code on GPUs.
For the CPU simulations, the native Algebraic Multigrid algo-
rithm is used as a preconditioner with a Conjugate Gradient-
like algorithm as a solver for the Poisson pressure equation.
For the simulations involving GPUs, the Conjugate Gradient
algorithm of the PETSc library is used to solve the Poisson
pressure equation.

VI. RESULTS

Performance studies are carried out, using different MPI
distributions and compilers. They will be mentioned at the
beginning of each subsection. The native Algebraic Multigrid
algorithm is used as a preconditioner and a Conjugate

32

Gradient-like algorithm as a solver, in order to solve the
Poisson pressure equation, except in the last tests dealing with
GPUs, where the linear solver is changed to the Conjugate
Gradient algorithm of the PETSc library, which supports
CUDA. Fifty time-steps will be run, except for the PETSc
simulations, where only 5 time-steps will be run, in order to
limit compute time consumption, but still showing a realistic
behaviour of the code.

Nomenclature: #C is the number of cores, #T the number of
threads, T (s) the average time for a time-step to complete, E
(%) the code efficiency and SP the speedup observed between
two simulations using the same number of CPUs, but without
and with GPU acceleration.

A. POWER8 nodes vs x86 node

The first test deals with simulations performed on 1 node of
the S822LC (made of 20 cores) machine, the S824L (made of
24 cores) machine and an x86 Ivy Bridge E5-2697v2 2.7GHz
node, made of 24 cores [10]. Table I gathers the timings
obtained while running on half a node (i.e. using the two
sockets half loaded and not only one of the 2 sockets) and
a full node (without using hyper-threading).

TABLE I
COMPARISON OF 2 TYPES OF NODES OF POWER8 AND 1 NODE OF X86.

S822LC S824L x86
#C T (s) E (%) #C T (s) E (%) #C T (s) E (%)
10 26.50 - 12 21.51 - 12 31.61 -
20 16.43 81 24 11.80 91 24 25.33 62

A speed-up is observed for all 3 cases, but the efficiency
is much better on POWER8 nodes being over 80 % for
S822LC and over 90 % for S824L, whereas it is quite poor
for the x86 node (about 62 %). This is most likely explained
by a better bandwidth in the case of the POWER8 nodes,
but also by the presence of a L3 cache partitioned per core
on POWER8 nodes, which reduces performance degradation
when the system is fully loaded. All these very early tests on
POWER8 nodes have been carried out in SMT8 mode, and
performance of simulations using 1 process per physical core
might be slightly improved in SMT1 mode, as in SMT8 mode,
a single logical core does not have access to all store and load
units. Note also that the same partition is used for S824L and
x86.
It is also quite remarkable to see that the simulation on 1 node,
using S824L is more than twice as fast as on the x86.

B. Pure MPI

The runs on the POWER8 nodes have been performed using
IBM Parallel Environment (PE) and XL compilers.

Table II presents the timings obtained when using hyperthread-
ing on a single node, in SMT 8 mode (the same as the one

TABLE II
SIMULATIONS RESTRICTED TO 1 NODE (MPI ONLY WITH

MULTI-THREADING - SMT8).

S822LC S824L
PE/XL PE/XL

#C T (s) #C T (s)
20 16.43 24 11.80
40 14.35 48 9.94
80 14.38 96 9.62
160 14.75 192 11.10

described for the CPU binding). A 15 % (resp. 18 %) gain is
observed going from 20 to 40 threads (resp. 24 to 48 threads)
on S822LC (resp. S824L). From 24 to 96 using the S822LC
node, a gain of 22 % is achieved.

C. MPI & OpenMP
The simulations are performed with 20 MPI tasks (physical

cores) using 1 node of S822LC. The number of threads varies
from 1 to 8 and the SMT8 mode is used. The performance of
the OPENMPI + GNU distribution is presented.

TABLE III
SIMULATIONS RESTRICTED TO 1 NODE (MPI AND OPENMP - 20 MPI

TASKS - SMT8).

S822LC
OPENMPI/GNU

#T T (s) SP
1 18.49 1.00
2 16.01 1.16
4 14.20 1.30

Table III shows that a speed-up of 1.3 is achieved when using
4 threads (80 non-physical threads in total).

D. Comparison CPU and CPU+GPU
The objective of the last series of tests is to compare

performance when using CPUs and CPUs & GPUs. These
are preliminary tests on POWER8 nodes. Two K80s (each
of them made of 2 GK210 GPUs) are available per node on
the S822LC machine, and 2 K40s on the S824L machine.
Figures 5 and 6 show the GPU loads for a 4 CPUs & 4 GPUs
simulations and for a 2 CPUs & 2 GPUs simulation, using a
S822LC and S824L node, respectively (cs solver is the default
name of Code Saturne’s executable).

The second and fourth columns of Table IV show the timings
obtained on CPUs only, as a function of the number of used
CPUs and the third and fifth columns the timings observed
when using the GPUs. Note that the values are displayed in
italic when the GPUs are overloaded.

Using GPUs is clearly cheaper as long as they are not
overloaded (running only 1 executable).

33

+--+
| NVIDIA-SMI 352.59 Driver Version: 352.59 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K80 On | 0000:03:00.0 Off | 0 |
| N/A 51C P0 66W / 149W | 477MiB / 11519MiB | 28% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K80 On | 0000:04:00.0 Off | 0 |
| N/A 42C P0 79W / 149W | 477MiB / 11519MiB | 27% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla K80 On | 0002:03:00.0 Off | 0 |
| N/A 49C P0 67W / 149W | 477MiB / 11519MiB | 32% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla K80 On | 0002:04:00.0 Off | 0 |
| N/A 41C P0 78W / 149W | 477MiB / 11519MiB | 27% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 44382 C ./cs_solver 420MiB |
| 1 44383 C ./cs_solver 420MiB |
| 2 44384 C ./cs_solver 420MiB |
| 3 44385 C ./cs_solver 420MiB |
+---+

Fig. 5. K80 usage on the S822LC node.

+--+
| NVIDIA-SMI 352.59 Driver Version: 352.59 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K40m On | 0002:01:00.0 Off | 0 |
| N/A 35C P0 61W / 235W | 144MiB / 11519MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K40m On | 0006:01:00.0 Off | 0 |
| N/A 35C P0 63W / 235W | 144MiB / 11519MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 30297 C ./cs_solver 87MiB |
| 1 30298 C ./cs_solver 87MiB |
+---+

Fig. 6. K40 usage on the S824L node.

TABLE IV
SIMULATIONS RESTRICTED TO 1 NODE (CPUS VS CPUS+GPUS - SMT8).

S822LC S824L
CPU CPU CPU CPU

&GPU &GPU
#C T (s) T (s) SP #C T (s) T (s) SP
1 1022.18 630.54 1.62 1 1087.75 637.86 1.71
2 621.20 337.12 1.84 2 659.71 327.81 2.01
4 263.61 173.95 1.51 4 267.82 189.04 1.42

20 76.38 109.75 0.70 24 57.81 104.82 0.55

VII. CONCLUSIONS - FUTURE WORK

Code Saturne has been tested on 2 types of IBM POWER8
nodes, using MPI only, MPI OpenMP and also on GPUs,
with the help of the PETSc library. Compared to current x86
systems the performance scales nearly linearly as a function
of the number of cores per node, especially on the IBM
S824L model. Using SMT mode with several MPI or OpenMP
threads per physical core helps reducing the time to solution,
but the main results come from the preliminary tests carried
out on POWER8 nodes using PETSc on GPUs, where it is
cheaper to use the CPU/GPU model than pure CPU, up to
a number of CPUs equal to the number of GPUs available
on a node. Using the PETSc library to make use of the GPU
architecture provided interesting gain in compute time, but the

full capability of each node was not exploited. New compilers
with OpenMP 4.5 directives for GPU will be available in
the next few months, and it will be then possible to offload
some other parts of the code to GPUs. Another significant
performance boost should be observed when the new NVIDIA
TESLA P100 GPU architecture will be available. Beyond
a dedicated high speed interconnect (NVLink) between the
GPUs and POWER CPUs, Code Saturne should be able to
take advantage of other features, in terms of performance
and implementation, like hardware Unified Memory, paging,
Compute Preemption and stacked high bandwidth memory.

ACKNOWLEDGMENTS

The authors would like to thank the Hartree Centre for
performing the x86 tests on their NextScale machine. They
also would like to thank PRACE (PRACE-4iP - WP7.2B)
for funding the performance analysis on GPUs and the UK
Turbulence Consortium (EP/L000261/1) for the rest of the
work.

REFERENCES

[1] F. Archambeau, N. Méchitoua, M. Sakiz; Code Saturne: a finite volume
code for the computation of turbulent incompressible flows - industrial
applications. International Journal on Finite Volumes 1 (2004) 1–62.

[2] Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A.G. Sunderland, J.C.
Uribe; Optimizing Code Saturne computations on Petascale systems.
Computers & Fluids 45 (2011) 103–108.

[3] http://www.code-saturne.org
[4] http://www.prace-ri.eu/ueabs
[5] http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/ node.html
[6] https://www.redbooks.ibm.com/portals/power
[7] http://glaros.dtc.umn.edu/gkhome/views/metis
[8] https://gforge.inria.fr/projects/scotch/
[9] https://www.mcs.anl.gov/petsc/

[10] http://community.hartree.stfc.ac.uk/wiki/site/admin/resources.html#systems2

34

Emerging Technologies for the Convergence of

HPC and Big Data

Herbert Cornelius

INTEL

Abstract— As we see Moore's Law well alive, more and more parallelism is introduced into all computing

platforms and on all levels of integration to achieve higher performance and energy efficiency. HPC is also

reaching an inflection point with the convergence of (traditional) high performance computing and the

emerging world of Big Data Analytics: High-Performance Data Analytics (HPDA) – using HPC for Big Data.

We will discuss the evolution of general purpose Multi-and Many-Core processing, and for very specific

applications and workloads augmented by FPGA acceleration in the future. In order to support the ever

increasing compute performance, we will furthermore discuss new emerging memory and storage

technologies and paradigms, as well as advanced communication technologies supporting new capabilities and

capacities going forward.

35

Are you getting the wrong answer, but fast?

Challenges for reproducible research in HPC

Lorena Barba

School of Engineering and Applied Science George

Washington University in Washington, DC

More info: https://about.me/lorenabarba

Abstract—On undertaking a full replication study of a previous publication by our own research

group, we learned some new lessons about reproducible computational research. The previous study

used an in-house code to solve the Navier-Stokes equations for flow around an object, using GPU

hardware. As is common in CFD applications, we rely on an external library for solving linear systems

of equations, in this case, the NVIDIA Cusp library. We later did a code re-write of the CFD solver in

a distributed parallel setting, on CPU hardware. This version uses the PETSc library for solving linear

systems of equations. In addition, we used two open-source CFD libraries: OpenFOAM and IBAMR

(from New York University). Apart from the many things that can go wrong with discretization

meshes and boundary conditions, we found that simply using a different version of an external library

can lead to different results, for example. In view of this exercise, we tightened our reproducibility

practices even more. Open data and code are the minimum requirement; we also require a fully

automated workflow, systematic records of dependencies, environment and system, and only scripted

visualizations (no GUI manipulation). We must also raise awareness of numerical non-reproducibility

of parallel software and include this topic as part of the training of HPC researchers.

36

High-Level Abstraction for Block Structured
Application: A Lattice Boltzmann Exploration

Jianping Meng
Scientific Computing Department,

STFC Daresbury laboratory,
Warrington WA4 4AD, UK

Xiao-Jun Gu
Scientific Computing Department,

STFC Daresbury laboratory,
Warrington WA4 4AD, UK

David R. Emerson
Scientific Computing Department,

STFC Daresbury laboratory,
Warrington WA4 4AD, UK

Gihan R. Mudalige
Oxford e-Research Centre,

University of Oxford,
Oxford OX1 3QG, UK

István. Z. Reguly
Faculty of Information Technology

and Bionics, PPCU, Hungary

Mike B. Giles
Oxford e-Research Centre,

University of Oxford,
Oxford OX1 3QG, UK

Abstract—We explore the Oxford Parallel Library for
Structured-mesh solvers (OPS) by developing a two-dimensional
lattice Boltzmann application. OPS, an embedded domain specific
language (EDSL) minimizes the programming effort for utilising
various emerging hardware platforms by providing a concise
abstraction and automatic code generation facilities. When using
OPS the applications developer does not use any explicit calls to
MPI and/or utilize OpenMP/CUDA where the EDSL generates
the necessary parallelisations automatically. The resulting appli-
cation demonstrates near optimal performance in tests for both
multiple-CPU and multiple-GPU calculations.

Index Terms—Heterogeneous system, High-level abstraction,
Lattice Boltzmann method.

Multi-core and many-core processors have gained popular-
ity in high-performance computing including both mainstream
CPUs and add-on accelerators. This trend however, presents a
significant challenge for scientific software development since
there are competing hardware platforms which often require
different software frameworks. It is not only time-consuming
but also risky to adapt to an emerging hardware platform.

One approach to tackle this challenge is to utilise high-
level abstractions, which allows the decoupling of computa-
tions from their parallel implementation. Following this spirit,
OPS was designed to ease the burden of developing block-
structured applications [1]. With carefully designed abstrac-
tions, the library hides both the implementation details on
various parallel systems and the complexity of the multi-
block mesh technique such as domain decomposition and
communications among blocks. It is therefore very attractive
from an application developer’s point of view. In this work,
we will explore the library by developing a two-dimensional
lattice Boltzmann code and report the experience [2].

The lattice Boltzmann method (LBM) is a simple to un-
derstand yet powerful mesoscopic CFD tool [3], which is
particularly suitable for parallelisation and is often able to
provide near-linear scaling. As a special approximation to the
Boltzmann-BGK equation [4]–[7], its governing equation is

∂fα
∂t

+Cα · ∇fα = −1

τ
(fα − feqα) + Fα, (1)

which represents the evolution of the distribution function
fα(r, t) for the αth discrete velocity Cα at position r =
(x, y, z) and time t. The effect of external body force is
described by Fα, and the discrete equilibrium distribution
function by feqα (r, t). In order to simulate incompressible and
isothermal flows, it is common to use an equilibrium function
with second order velocity terms, i.e.,

feqα = wαρ[1 +
U ·Cα

RT0
+

1

2

(U ·Cα)
2

(RT0)2
− U ·U

2RT0
], (2)

which is determined by the density ρ, the fluid velocity U ,
and the reference temperature T0, where the gas constant is
denoted by R. The weight factor is denoted by wα for a
discrete velocity Cα. The relaxation time τ is related to the
fluid viscosity µ and the pressure p via the Chapman-Enskog
expansion, i.e., µ = pτ . To get the macroscopic quantities, for
example the density and velocity, we only need summation
operations, i.e.,

ρ =
∑

α

fα, and, ρU =
∑

α

fαCα.

As shown, the governing equation (1) has a linear convec-
tion term, which is very easy to be numerically solved in
parallel. In particular, a smart trapezoidal scheme can be used
to achieve the stream-collision scheme [8],

f̃α(r +Cαdt, t+ dt)− f̃α(r, t) =
− dt
τ+0.5dt

[
f̃α(r, t)− feqα (r, t)

]
+ τFαdt

τ+0.5dt , (3)

by introducing

f̃α = fα +
dt

2τ
(fα − feqα)− dt

2
Fα. (4)

At the same time, the macroscopic quantities become

ρ =
∑

α

f̃α, and, ρU =
∑

α

Cαf̃ +
ρGdt

2
. (5)

where the actually acceleration is denoted by G.

37

For two dimensional flows, the D2Q9 lattice is commonly
used where the nine discrete velocities (α = 1..9) are

Cα,x =
√

3RT0[0, 1, 0,−1, 0, 1,−1,−1, 1], (6)

Cα,y =
√

3RT0[0, 0, 1, 0,−1, 1, 1,−1,−1], (7)

and the corresponding weights are

wα = [
4

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

36
,
1

36
,
1

36
,
1

36
]. (8)

To test the code performance, this lattice will be used for the
simulations in this paper.

Since the scheme (3) actually assumes a regular grid, it
is particularly suitable to be implemented using the OPS
library which supports solvers over structured meshes. In
this library, a concise abstraction framework is designed to
ease the burden of application development. As a multi-block
structured mesh will divide the whole geometry into blocks,
the library provides an ops block construct to describe this
split conceptually. A quantity such as f needed for evolution
can then be defined as an ops dat construct on the block
by using a function ops decl dat, which requires the input
of the dimension of quantities and the mesh size (see Code
example 1). The library hides the implementation detail for
distributing blocks into different MPI ranks if in a distributed
computing environment. Of course, a large block, which may
not fit to one core due to either the computation or memory
cost, will be also split automatically.

Code example 1: Define blocks and variables

ops block∗ grid2D;
grid2D = new ops block[block num];
grid2D[ib] = ops decl block(2, blockname);
ops dat∗ velo;
velo = new ops dat[block num];
velo[ib]=ops decl dat(grid2D[ib],2,

size,base,d m,d p,(Real∗)temp,”double”, veloname);

Code example 2: Define kernels and parallel loops

void collision(const Real ∗f, const Real ∗feq, Real∗ fcoll,
const Real∗ omega) {
for (int l = 0; l < nc; l++) {

fcoll [OPS ACC MD2(l, 0, 0)] = (1 − (∗omega)) ∗
f[OPS ACC MD0(l,

0, 0)] + (∗omega) ∗ feq[OPS ACC MD1(l, 0, 0)];
}

}
ops par loop(collision, ”collision”, grid2D[0], 2,

iter range coll,
ops arg dat(f[0], nc, S2D 00, ”double”, OPS READ),
ops arg dat(feq[0], nc, S2D 00, ”double”, OPS READ),
ops arg dat(fcoll[0], nc, S2D 00, ”double”, OPS WRITE),
ops arg gbl(&omega, 1, ”double”, OPS READ));

The key part of a typical scientific code is a loop over all
the grid points which updates evolutionary quantities such as
f . There is an ops par loop API call in the library for this
purpose. It accepts a so-called kernel function as its input and

automatically distributes the operations described in the kernel
function over grid points assuming that the loop iterations are
independent (see Code example 2). OPS will automatically
generate different parallelizations for this loop. For instance,
if we aim to run the code on a GPU, then the call may
be translated into a CUDA source file. Also, utilising this
opportunity, the script may be able to do other optimisations
such as vectorisation. Currently, the library supports CUDA,
OpenACC, OpenMP and OpenCL so that the final code will
be able to run on most of current hardware platforms. More-
over, the library also supports execution on Multi-GPUs/Intel
Xeon Phis by using hybrid MPI/CUDA(OpenMP, OpenACC,
OpenCL) programming.

Another important aspect is to deal with communications
among connected blocks. For this purpose, the OPS library
implements two constructs and three functions (see Code
example 3). Firstly, an ops halo construct is provided and can
be defined by calling ops decl halo, which needs the connec-
tivity information as input. Additionally, a ops halo group
class can be used to group all the related halo points, which can
be defined by using the call ops decl halo group. Finally, to
trigger the communications within the halo group, one just
needs to call ops halo transfer, which will finish all the
operations as necessary.

Code example 3: Define halos and trigger communications

ops halo∗ halos;
ops halo group f halos;
halos[1] = ops decl halo(velo[0], velo[1], halo iter,

base from, base to, dir, dir);
f halos = ops decl halo group(halo num, halos);
ops halo transfer(f halos);

By utilising the above abstractions, an application developer
can focus on the scientific problem itself and the library
will take care of almost all of implementation details and
optimisation. In general, no explicit MPI/CUDA/OpenCL call
will be necessary for the application code. However, due to
the complexity of debuging a parallel code, the recommended
working flow is to debug the application code in the non-
optimised serial and MPI mode first, and ensure that the code
can work correctly, then utilise the code generation tools to
translate the code into an optimised form for various hardware.

Following the aforementioned work flow, we first develop a
two-dimensional lattice Boltzmann code based on the OPS li-
brary [2], and then test the code on various platforms including
an IBM Power S824L server, an IBM Power 8335-GTA server
and an iDataPlex cluster by using a 4096× 4096 mesh. In the
Power S824L system, there are 24 physical cores running at
3.32GHz and two NVIDIA Tesla K40 GPU accelerators while
there are 32 nodes with 16 CPU cores and two NVIDIA Tesla
K80 GPU ccelerators per node for the IBM Power 8335-GTA
server. The iDataPlex cluster is equipped with the Intel Ivy
Bridge E5-2697v2 2.7GHz CPU. For the IBM Power S824L
server, we use the IBM XL C/C++ V13.1.2 compiler for CPU
and the NVIDIA CUDA 7.0 SDK for the K40 GPU. Moreover,

38

OpenMPI 1.10.1 is used for message passing of both multiple-
CPU and multiple-GPU calculations. While for the IBM Power
8335-GTA server, the tools sets are upgraded to the IBM XL
C/C++ V13.1.3, the NVIDIA CUDA 7.5 and OpenMPI 1.10.2
respectively. For the iDataPlex cluster, the code is compiled
by the Intel C/C++ V15.2.164, and the Intel MPI 5.03 is used.

To investigate the capability of using various hardware
platforms and associated programming API, we first run a
few tests on MPI, OpenMP, CUDA and hybrid MPI/OpenMP
using the IBM Power S824L system. As discussed above,
the provided Python script can automatically translate all
the kernel functions into appropriate form and there is no
need to manually write any MPI, OpenMP or CUDA code.
The generated code can be compiled natively using relevant
compilers, and is human readable which is very useful. As has
been shown in Fig. 1, the various versions of compiled code
run successfully on the system. Interestingly, the MPI version
actually shows better performance than the OpenMP version,
which is consistent to the finding in [1] (see e.g., Fig. 5).

�

��

���

���

���

���
���� (�)

� ���

�� ���

� ���

�� ���

� ��� × � ���

� ��� × � ���

���

Fig. 1: Tests of MPI, OpenMP(OMP), CUDA and hybrid
MPI/OpenMP capability using the IBM Power S824L system.

Further tests have been conducted for the Multiple-GPU
calculations, which is perhaps the most interesting capability
from an application developer point of view. In Fig. 2, we
presents the results on both two IBM systems although the
CPU results are based on the Power S824L CPU. It is found
that, while using double precision, a single K40 GPU can
achieve similar performance of 16 IBM Power S824L CPU
cores. Consistently, “a half” K80 GPU has the similar perfor-
mance. The code demonstrates nearly linear scalability for the
current tests, which is important for large scale simulations.

The capability for multiple-CPU calculations is mainly
tested based on the iDataPlex cluster. The results are shows in
Fig. 3. For reference, we also present data of the LBM code
in the DL MESO (DL) package, which is developed by the
Daresbury laboratory. However, we remind that the two codes
have different functionalities and thereby different internal
data structures, the results should only be understood as a
rough reference. It can be seen that the code also demonstrates
nearly linear scaling behaviour for multiple-CPU calculations.
Considering that no MPI code is manually written for the OPS-
based code, it appears that we have good chance to achieve a
good balance of performance and productivity.

It is also of interest to look at the energy consumption. For
this purpose, we choose to use the iDataPlex cluster for tests of

���� ���� ���� ���� ������ ���� ����
�

��

���

���

���

����(�)

Fig. 2: Multiple-GPU tests using IBM Power 8 systems. “P8”
means the Power S824L CPU core.

�� �� �� ��

���
��

�

��

���

���

����(�)

Fig. 3: Strong scaling tests using the iDataPlex cluster. “DL”
means the LBM code in the DL MESO package and “OPS”
the present 2D LBM code.

CPU since the system will report the total energy consumption
which is believed to be more reliable, although this system also
take the energy consumption of idle CPU cores into account.
For the K40 and K80 GPU, we calculate the consumption
according to the computational time and its power specified
by NVIDIA. As has been shown in Table I, the results are
in general consistent with those of computational time. In
particular, the K80 GPU uses roughly a half of energy of the
K40 GPU, which is consistent to the TDP and performance
specification of two GPUs.

Overall, it appears that the code does not achieve excellent
speedups over one CPU core. This might be attributed two
reasons: the first one is, as motioned above, we are using
double precision; The second one is that the OPS based code
is written in a way that is more easy to understand from the
application point of view. For instance, the iteration for Eq. (3)
has been divided into five major ops par loops and there also
several sub ops par loops for such as the boundary treatment.
This way may not be optimal for the GPU calculation since it
may induce more data exchanges between CPU and GPU. In
fact, it appears that a LBM code tends to be memorybound [9]
so that the memory bandwidth can become a serious limiting
factor. Therefore, the performance may be improved by using
more GPU-oriented optimisation but there will be certainly

39

a trade-off between performance and such as readability of
the code. On the other hand, the performance reported here
appears consistent with the discussion in Ref. [9] in which a
Nvidia GTX280 GPU just gets 5X speedups over one Intel
Core I7 CPU with for cores.

TABLE I: Energy consumption on iDataPlex and GPUs

Cores/GPU DL (KWh) OPS (KWh)
12 0.0072 0.0061
24 0.00397 0.00477
48 0.0028 0.00371

1K40 – 0.00931
1K80 – 0.00495

To summarise, the OPS library provides concise abstractions
for writing block-structured applications. It is encouraging
that the OPS based LBM code demonstrates nearly linear
scaling behaviour in our simulations for both multiple-CPU
and multiple-GPU calculations. The latter is also important
because a single-GPU is not enough for certain tasks re-
quiring either large memory or more computing power. With
the reference of the LBM code in the DL MESO package,
we find that the OPS based code achieves nearly optimal
performance while no MPI and/or CUDA/OpenMP code is
manually written.

ACKNOWLEDGEMENTS

All authors would like to thank the UK Engineering and
Physical Sciences Research Council for their support “Future-
proof massively-parallel execution of multi-block applica-
tions” (EP/K038451/1 and EP/K038494/1). JPM and DRE
also thank for the UK Consortium on Mesoscale Engineering
Sciences (UKCOMES) under Grant EP/L00030X/1.

REFERENCES

[1] G. R. Mudalige, I. Z. Reguly, M. B. Giles, A. C. Mallinson, W. P. Gaudin,
and J. A. Herdman, “Performance analysis of a high-level abstractions-
based hydrocode on future computing systems,” in Proceedings of the
5th international workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computing Systems (PMBS ’14), 2014.

[2] J. P. Meng, X.-J. Gu, D. R. Emerson, G. R. Mudalige, I. Z. Reguly,
and M. B. Giles, “Block structured lattice Boltzmann simulation using
ops high-level abstraction,” in Conference Abstracts: 28th International
Conference on Parallel Computational Fluid Dynamics, 2016.

[3] S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,”
Annu. Rev. Fluid Mech., vol. 30, no. 1, pp. 329–364, 1998.

[4] X. He and L.-S. Luo, “A priori derivation of the lattice Boltzmann
equation,” Phys. Rev. E, vol. 55, pp. R6333–R6336, Jun 1997.

[5] X. He and L.-S. Luo, “Theory of the lattice Boltzmann method: From
the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E,
vol. 56, pp. 6811–6817, 1997.

[6] X. Shan and X. He, “Discretization of the velocity space in the solution of
the Boltzmann equation,” Phys. Rev. Lett., vol. 80, pp. 65–68, Jan 1998.

[7] X. W. Shan, X. F. Yuan, and H. D. Chen, “Kinetic theory representation
of hydrodynamics: A way beyond the Navier Stokes equation,” J. Fluid
Mech., vol. 550, pp. 413–441, 2006.

[8] X. He, S. Chen, and G. D. Doolen, “A novel thermal model for the lattice
Boltzmann method in incompressible limit,” J. Comput. Phys., vol. 146,
no. 1, pp. 282–300, 1998.

[9] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100x GPU vs. CPU myth: An evaluation
of throughput computing on CPU and GPU,” in Proceedings of the 37th
Annual International Symposium on Computer Architecture, ser. ISCA
’10. New York, NY, USA: ACM, 2010, pp. 451–460.

40

Analyzing the Impact of Parallel Programming
Models in NoCs of Forthcoming CMP Architectures

Iván Pérez∗, Emilio Castillo†‡, Ramón Beivide∗, Enrique Vallejo∗,
José Luis Bosque∗, Miquel Moretó†‡, Marc Casas†‡, Mateo Valero†‡

∗Universidad de Cantabria (UC), Santander, Spain
†Barcelona Supercomputing Center (BSC), Barcelona, Spain

‡Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain

Abstract—Modern chip multiprocessors (CMPs) are complex
systems with an increasing amount of cores. It is expected to
see more heterogeneous CMPs with thousands of cores in the
future. To take advantage of such parallel systems, alternative
parallel programming paradigms are gathering strength. With
this scenario, we performed realistic simulations in order to
compare a traditional parallel programming model (pthreads)
with an alternative based on tasks (OmpSs). To identify the
advantages and understand the architectural requirements of
OmpSs we modeled two networks on-chip (NoCs), a complete
graph and a mesh. The results show that OmpSs provides better
performance despite the overhead introduced by its runtime,
independently of the NoC. Such a higher performance can lead
to an increase of the on chip network requirements.

I. INTRODUCTION

As the number of compute units and diversity grows in
CMPs, the importance of optimizing parallel computing grows
consequently. Conventional threading programming models
like pthreads [5] or OpenMP [7] (before version 3.0) are inap-
propriate to implement certain types of parallelism, requiring
complex and inefficient mechanisms. In addition, the increas-
ing development cost with the increasing size of these systems,
implies poor productivities. To alleviate these problems, task
parallelism [4] is emerging. Task parallel paradigms distribute
the workload in tasks and link them by data dependencies.
When these data dependencies are met, tasks can be executed
asynchronously. In this work we used OmpSs [8]. OmpSs’
runtime tracks data dependencies between tasks. When these
dependencies are satisfied, the runtime maps the task in a cpu
thread. This type of execution improves the load balancing
distributing the tasks when the cpu threads are available.

There are works that compare both programming models
or equivalents. This is the case of [8], which evaluates six
micro-benchmarks written in OmpSs, matching or improving
the performance of their counterparts written in OpenMP
and OpenCL, in homogeneous and heterogeneous environ-
ments. The work presented in [9] shows performance trade-
offs between the OmpSs and OpenMP 4.0 tasking and loop
parallelism and also exhibits speedup improvements towards
pthreads, using some PARSEC benchmarks. In [6], the benefits
of task programming models are analyzed in 16-core system
with realistic workloads for the PARSEC benchmark suite.

In this work we analyze the differences of pthreads and

OmpSs from the side of the interconnect and memory hierar-
chy. The purpose is to observe the response of the program-
ming model to architectural changes, in particular the network
topology, identifying the benefits and inconveniences of using
OmpSs. To carry out this study we present detailed full-system
simulations of some PARSEC benchmarks in a 64-core system
using two NoCs: a fully connected graph and a mesh.

II. METHODOLOGY

We have performed our experiments by running three PAR-
SEC [2] benchmarks under Linux 2.6.28 on a customized
gem5 [3] able to support OmpSs. Table I collects the bench-
marks and input sets used for the experiments.

Table I: Benchmarks and input sets simulated.

Benchmark Input set
Blackscholes 1,048,576 options
Bodytrack 1 frame, 1,000 particles (simmedium)
Ferret 64 queries, 13,787 images (simmedium)

We configure gem5 to model a 64 core system based on
x86. The organization of the system is presented in Figure 1.
Table II summarizes the most relevant simulation parameters.

We use the out-of-order (O3) cores and a dynamic voltage
and frequency scaling model from 100MHz to 2GHz. We use
Ruby to model the memory hierarchy and Garnet [1] for the
on-chip interconnection (NoC), with a frequency for network
and caches of 1 GHz. We use the standard router with a
pipeline of 5 stages and a MESI coherence protocol based on
directories with a private L1 cache and a shared L2 with one
cache bank per core. The number of memory controllers is set
to 16, allocated to the first and last rows of cores in the SoC.
Two topologies are used for the NoC: a complete graph as the
performance-reference network, and a mesh as the realistic
one. Three virtual networks are used in both cases to avoid
protocol-deadlock.

III. RESULTS

In this section we present metrics that relate the network
topology with the programming model.

41

DRAM DRAMDRAM DRAM DRAM DRAM DRAM DRAM

DRAM DRAMDRAM DRAM DRAM DRAM DRAM DRAM

CPU

L1

Memory Controller

L2

I/O

CPU

L1

L2

I/O

Network
Interface

Network
Interface

Network
Interface

Network
Interface

Network
Interface

Figure 1: Modeled 64 core CMP with a 64 bank NUCA
of shared cache. There are two types of nodes, one without
memory controller (light gray) and the other with a memory
controller (dark gray).

Table II: Simulation parameters

Parameter Value
CPU units 64
CPU ISA x86
CPU model O3
CPU frequency 100 MHz - 2 GHz
Ruby frequency 1 GHz
Coherence protocol MESI
Memory controllers 16
Network model 5-stage Garnet router
Topology 8x8 mesh and 64 complete graph
Virtual network (VN) 3
Virtual channels per VN 1
Buffers per port 10 flits
Flit size 16 B
Block size 64 B
Message control size 8 B
L1I Size 32 KB
L1D Size 64 KB
L1 Latency 1 Ruby cycle
L2 Size 64 banks of 512 KB
L2 Latency 15 Ruby cycles
DRAM type DDR3-1600

A. Performance

The most significant metric to measure the performance of
a system is execution time. Figure 2 shows execution times
normalized to the complete graph with pthreads. As expected,
the complete graph performs better than the mesh, thanks to
its better distance and throughput parameters. Concerning the
programming model, OmpSs consistently shows better results,
especially with Bodytrack and Ferret. It is remarkable that the
OmpSs versions of these benchmarks run on a mesh clearly
outperform their pthread counterparts run on the complete
graph. This illustrates the need of co-design techniques: a
change on the programming model habilitates for much lower
NoC costs without compromising performance.

Table III quantifies the relative speedup of the OmpSs
versions with respect to the pthreads, one for each benchmark.

blackscholes bodytrack ferret
0

0.5

1

1.5

N
or
m
al
iz
ed

ex
ec
u
ti
on

ti
m
e

Complete Graph - pthreads Complete Graph - OmpSs

8x8 Mesh - pthreads 8x8 Mesh - OmpSs

Figure 2: Execution time normalized to the complete graph
with pthreads.

Table III: OmpSs speedup against pthreads.

Topology Blackscholes Bodytrack Ferret
Complete Graph 1.023 1.637 2.187
Mesh 1.006 1.693 2.401

The speedup values are very similar for both topologies, and
they are significantly larger for Bodytrack and Ferret. These
two benchmarks are parallelized using a pipeline model, and
the load-balancing and fine-grain task dependency tracking
mechanisms implemented in OmpSs provide a more balanced
execution and higher performance.

The performance improvement in Bodytrack when using
OmpSs was already observed in [6], and the improvement of
Ferret occurs due to a lack of scalability of the pthreads version
with a large number of threads. Figure 3 shows a visualization
of a trace of execution of the OmpSs version of Ferret in an
8x8 mesh. Bars of different colors represent different types of
tasks; the pipeline is composed of five consecutive tasks. The
dynamic assignment of tasks to cores makes that each set of
pipeline tasks do not execute consecutively in the same core,
but instead they are balanced dynamically as their operands
become available. The pthreads version, by contrast, relies on a
synchronization mechanism with significant overheads, which
employs a huge number of threads, and results in reduced
performance.

B. Number of memory accesses

The number of memory accesses in conjunction with the
miss rate of each core are the two factors that will determine
the amount of messages generated in the network that intercon-
nects L2 banks (and memory controllers). Figure 4 shows the
distribution of data memory accesses. Except for Blackscholes,
OmpSs executions generate slightly more requests on average,
caused by the larger number of instructions executed, which
is presumably related with the runtime overhead.

C. Miss rate

Memory accesses that miss in some level of the hierarchy
are the cause of the traffic injected in the NoC in our
model. These messages comprise requests for a memory block,
memory blocks data themselves or control messages generated

42

Figure 3: Visualization of the different tasks of the OmpSs
version of Ferret in an 8x8 mesh.

Figure 4: Distribution of data memory accesses per core. The
three highlighted points of each distribution from top to bottom
are the maximum, average and minimum memory accesses
among cores.

by the coherence protocol. In this way, cache miss rates give
an idea of the amount of traffic that the application will
generate per memory access. As the L1 caches act as a NoC
accesses filter, misses at L1 will provoke the most significant
contribution to the traffic injected to the NoC. Figure 5 shows
the distribution of the L1 cache miss rates in all the 64 cores.

OmpSs generally shows lower L1 miss rates than pthreads
with the exception of Blackscholes, in which the slightly
higher average miss rate of OmpSs comes from the large value
corresponding to the main thread that creates tasks. This means
that OmpSs generates less network traffic per memory access.

Also there are minimal differences between NoC topologies,
but generally the mesh shows average lower miss rates which
is a positive fact, reducing the total amount of traffic as
described in the following subsection.

D. Network Behaviour

Figure 6 shows the amount of flits injected into the network
and the injection rate. The results of injected flits are coherent
with the L1 miss rates and the number of memory accesses
showed previously. Because of the higher values of injection
rate, it can be deduced that OmpSs stresses more the network

Figure 5: Distribution of L1-D miss rates.

in overall terms. These ratios are higher because of the shorter
execution times and the similar amounts of injected flits. In
addition, injection rates are lower for the 8x8 mesh, essentially
due to the increased execution time.

Figure 7 depicts the injection queueing latency and the
network latency respectively. From these graphs, there are two
points to remark:

• The non-linear part of the latency corresponding to con-
tention at the routers is very low, supposing uniform
traffic. This can be deduced knowing that base network
latencies (latencies for zero load) are approximately 15
and 37 cycles for the complete graph and the mesh,
respectively, when using the 5-stage Garnet model.

• Despite the low injected load, Blackscholes has high
values for injection latency, particularly with pthreads,
which means that messages are unable to enter the
network easily. We observed that this is caused by a
particular hotspot pattern with the pthreads version.

IV. CONCLUSIONS

These set of experiments presented in this work analyzes,
at a first approach, the beneficial effects of using task-based
programming models instead of traditional ones based on
threads on modern CMPs. We have seen that OmpSs performs
better, independently of the interconnection network selected.
In general, OmpSs generates a higher volume of memory traf-
fic despite better exploiting locality. Presumably, such higher
traffic is caused by the overhead introduced by its runtime.
OmpSs shorter execution times generate larger injection rates,
causing a higher stress in the network.

As future work, our intention is to evaluate both models un-
der more resource-constrained networks, such as concentrated
meshes. Such topologies reduce average distance and therefore
latencies, what typically increases performance under modest
concentration levels. However, because of the higher network
load observed when using the OmpSs model, employing con-
centrated topologies might cause an increase of congestion and
a reduction of performance with those programming models.

43

blackscholes bodytrack ferret
0

2

4

6

·108

In
je

ct
ed

fl
it

s
Complete Graph - pthreads Complete Graph - OmpSs

8x8 Mesh - pthreads 8x8 Mesh - OmpSs

(a) Injected flits.

blackscholes bodytrack ferret
0

1

2

3

·10−2

In
je
ct
io
n
ra
te

(
f
li
ts

c
y
c
le
×
n
o
d
e
)

(b) Injection rate.

Figure 6: Injected flits into the network and injection rate defined as the number of flits per cycle and node, considering a
node as all the injectors connected to the same router

blackscholes bodytrack ferret
0

5

10

15

In
je
ct
io
n
la
te
n
cy

(c
y
cl
es
)

Complete Graph - pthreads Complete Graph - OmpSs

8x8 Mesh - pthreads 8x8 Mesh - OmpSs

(a) Injection latency.

blackscholes bodytrack ferret
0

10

20

30

40
N
et
w
o
rk

la
te
n
cy

(c
y
cl
es
)

(b) Network latency.

Figure 7: Injection and network latencies. Injection latency is defined as the delay from message creation to message injection
into the network. Network latency is the delay of a message from its injection to its ejection to the destination node queue.

ACKNOWLEDGMENT

This work has been supported by the Spanish Government
(Severo Ochoa grants SEV2015-0493, SEV-2011-00067), by
the Spanish Ministry of Science and Innovation (contracts
TIN2015-65316-P, TIN2012-34557, TIN2013-46957-C2-2-P),
by Generalitat de Catalunya (contracts 2014-SGR-1051 and
2014-SGR-1272) and the European HiPEAC Network of Ex-
cellence. The research leading to these results has received
funding from the European Communitys Seventh Frame-
work Programme (FP7/2007-2013) under the Mont-Blanc
Project (http://www.montblanc-project.eu), grant agreement n◦

610402, and RoMoL project, GA 321253. M. Moretó has
been partially supported by the Ministry of Economy and
Competitiveness under Juan de la Cierva postdoctoral fellow-
ship number JCI-2012-15047. M. Casas is supported by the
Secretary for Universities and Research of the Ministry of
Economy and Knowledge of the Government of Catalonia and
the Cofund programme of the Marie Curie Actions of the 7th
R&D Framework Programme of the European Union (Contract
2013 BP B 00243). E. Castillo has been partially supported by
the Spanish Ministry of Education, Culture and Sports under
grant FPU2012/2254.

REFERENCES

[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GARNET: A detailed
on-chip network model inside a full-system simulator. In Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, pages 33–42. IEEE, 2009.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings of
the 17th international conference on Parallel architectures and compila-
tion techniques, pages 72–81. ACM, 2008.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The Gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime system.
Journal of parallel and distributed computing, 37(1):55–69, 1996.

[5] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley
Professional, 1997.

[6] D. Chasapis, M. Casas, M. Moretó, R. Vidal, E. Ayguadé, J. Labarta, and
M. Valero. PARSECSs: Evaluating the impact of task parallelism in the
parsec benchmark suite. ACM Trans. Archit. Code Optim., 12(4):41:1–
41:22, Dec. 2015.

[7] L. Dagum and R. Enon. OpenMP: an industry standard API for shared-
memory programming. Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

[8] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas. OmpSs: a proposal for programming heterogeneous multi-
core architectures. Parallel Processing Letters, 21(02):173–193, 2011.

[9] R. Vidal, M. Casas, M. Moretó, D. Chasapis, R. Ferrer, X. Martorell,
E. Ayguadé, J. Labarta, and M. Valero. Evaluating the impact of openmp
4.0 extensions on relevant parallel workloads. In IWOMP, pages 60–72,
2015.

44

Technology emerging from the DEEP & DEEP-ER

projects

Estela Suarez

Jülich Supercomputing Centre (JSC)

Germany

Abstract— Striving at pushing the applications scalability to the limits, the DEEP project proposed an

alternative heterogeneous HPC architecture: It matches the different concurrency levels existing in large and

complex simulation codes into the hardware. In this architecture, a standard HPC cluster is connected to the

so-called “Booster”: a cluster of autonomous accelerators. While the highly scalable parts of the application

codes run on the energy efficient Booster, their low/medium scalable parts profit from the high single-thread

performance of the Cluster side of the system.

Extending this concept, the DEEP-ER project adds to the Cluster-Booster architecture a multi-level

memory hierarchy exploiting non-volatile memory technologies, with the ultimate goal of improving the I/O

and resiliency capabilities of the system to better support data intensive applications.

Additional to their hardware developments culminating in various prototype systems, both the DEEP and

DEEP‑ER projects have developed innovative software packages to support the newly introduced

architecture, and extended existing programming environments preparing them for future heterogeneous

Exascale systems.

This keynote will highlight some of the hardware and software technologies emerging from the European

Exascale projects DEEP and DEEP-ER.

45

Accelerating High-Throughput Computing through
OpenCL

Andrei Dafinoiu, Joshua Higgins, Violeta Holmes
High-Performance Computing Research Group

University of Huddersfield
Huddersfield, United Kingdom

Abstract—As the computational trend diverges from standard
CPU computing, to encompass GPUs and other accelerators, the
need to integrate these unused resources within existing systems
becomes apparent. This paper presents the implementation of
an HTCondor pool with GPU execution capabilities through
OpenCL. Implementation is discussed from both the system
setup and the software design standpoint. The GPU landscape is
investigated and the efficiency of the system is evaluated via Fast-
Fourier Transform computations. Experimental results show that
HTCondor GPU performance matches a dedicated GPU cluster.

I. INTRODUCTION

In more recent years, the computing environment has seen
a shift from the traditional CPU based computing onto a much
diverse, and more parallel architecture such as GPUs. As of
November 2015, two of the top ten supercomputers make use
of GPU accelerated computing[1].

However, not all computational tasks are based on raw exe-
cution performance. Thus the emergence of High-Throughput
Computing (HTC), a branch focusing on computational tasks
that require the use of resources over an extended period of
time.

The HTC community is not concerned about the execution
rate of jobs, but rather, the parallelism of discrete jobs, given
a much larger pool of resources. The interest is in how many
jobs can be executed over a given amount of time, not the
execution speed of a single job. HTC can take advantage of
opportunistic resources, for example idle PCs in a University
campus, to execute tasks, thus ”stealing” CPU time[2].

OpenCL is a heterogeneous programming framework for the
development of applications that span across multiple archi-
tectures, including CPUs, GPUs, DSPs, and other accelerators.
Whilst, from a computing standpoint, GPUs are being used
as accelerators in supercomputers, the commodity, general
purpose GPUs (GPGPUs) available in typical workstations
may not have a significant impact on the fast processing
required for High Performance Computing. In HTC, the fast
performance of individual units is not the most important
consideration, thus making HTC a better candidate for GPGPU
based acceleration[3].

Previous work has shown that middleware vendors support
the idea of GPU computing in HTC through built-in detection
methods of GPU capabilities, as it is the case with newer
versions of HTCondor[4]. Typically this relies on CUDA, the
proprietary GPU computing framework developed by NVidia.

However, CUDA is limited to newer NVidia GPUs, while also
requiring special packages to be installed on the system in
order to function[5]. In terms of general purpose PCs available
on a university campus, only a small number of workstations
may be capable of supporting CUDA. In order to exploit a
much larger and more diverse mix of computing resources,
OpenCL is a framework that can be used to exploit a much
larger pool of devices than CUDA.

While attempts have been made to create computing en-
vironments using commodity GPUs, these implementations
typically operate as dedicated clusters with the sole purpose
of emulating typical GPU clusters, thus requiring large invest-
ments to develop[6].

A significant number of UK universities deploy HTC pools
through HTCondor, including Oxford Unversity, Cambridge
University, and Manchester University[7], however there is
limited research output indicating the development of GPU
integration within these pools.

This research aims to expand the capabilities of the existing
HTC system by enabling use of the GPU resources in addition
to the CPU resources of the pool, to be utilised during
periods when they would otherwise be idle, supplementing the
dedicated GPU computing cluster. To evaluate the ease-of-use,
efficiency and flexibility of the OpenCL framework across the
heterogeneous HTCondor pool, an FFT computation test case
is implemented.

By increasing the amount of GPU resources available to
researchers it is anticipated that the system would be more
appealing, and GPU computing would be more accessible.
This, in turn, would encourage some of the researchers using
CPU intensive programs to shift to GPU instead, and improve
utilisation of dormant resources.

II. BACKGROUND

A. HTCondor

HTCondor is a workload management system used primar-
ily for executing processes in an opportunistic environment,
where tasks are distributed between resources as they become
available, allowing the user to take advantage of otherwise
idle resources. It features execution queues, job scheduling,
priority, and resource discovery and management[2].

HTCondor employs cycle-stealing, the ability to use general
workstations whilst they are unused for their specific purpose
and would otherwise sit idle. HTCondor also contains a

46

checkpoint system that allows it to migrate jobs to different
machines once a machine starts to be used by the owner.

Submitted jobs are matched to resources by using the
ClassAd mechanism, a framework that allows both jobs and
machines to specify requirements and or preferences in regards
to resource allocation.

The University of Huddersfield implements an HTCondor
pool across all workstations available on campus, ranging from
low-end library dedicated PCs to high-performance worksta-
tions in the design laboratories[7]. The university has a policy
in place setting the minimum core count of a processor to 4,
however no restrictions apply to the GPU components. The
system is accessed via SSH authentication on the HTCondor
headnode, and user data storage is offered via a GLUSTER
based mirrored storage.

The HTCondor pool actively updates available resources,
with offline machines being removed from the HTCondor pool.
There are approximately 7000 CPU cores registered within
the pool, however, the number of available cores changes
constantly based on the availability of PCs on campus. On
average, between 700 and 3000 are available for opportunistic
jobs at peak times.

B. OpenCL
OpenCL is an open source framework for developing het-

erogeneous programs, created by a consortium of leading com-
panies to develop standards for graphic acceleration and paral-
lel computation, which has grown to include most commodity
CPU/GPU providers, as well as specialised accelerators in the
form of FPGAs and DSPs[3].

Since OpenCL has wide device support, workstation speci-
fications are not as relevant at the programming stage of devel-
opment, making OpenCL a viable solution for environments
that contain more than one architecture or operating system.
Its ability to operate using base drivers promises a much faster
integration with existing systems.

Development of OpenCL applications is split into two
different files. The host file is a C code that deals with the
outer control logic of the system, dispatching work kernels
to the compute units, controlling memory read/writes and
executing the serial segments of the code. The kernel is also
written in C, however it also incorporates OpenCL specific
syntax. It represents the parallel component of the program,
to be executed on the compute nodes, and can be compiled at
run time by the host, to allow for a more diverse execution
environment.

The flexibility of OpenCL allows for the creation of pro-
grams targeting machines with CPUs and GPUs (used individ-
ually or together), CPUs and other accelerators, or dedicated
clusters that contain multiple GPUs (or CPUs) within each
node.

III. OPENCL ON HTCONDOR

In order to evaluate feasibility of OpenCL within an HT-
Condor pool, a test case was designed around the use of
Fast-Fourier Transforms, as they are the basis for many
computational algorithms in scientific software[8].

A. Configuring Condor

An HTCondor job must be scheduled for execution within a
’slot’. The default implementation advertises separate slots for
each CPU core in a machine. The HTCondor ClassAd could be
modified to add information about the GPU resource. HTCon-
dor recommends that the GPU is appended to one of the CPU
slots,[9] so that a machine may run both OpenCL and regular
CPU jobs at the same time, as can be seen in Figure 1. During
preliminary testing of this environment, it was determined that
such an implementation slows down the OpenCL execution,
for example where multi core CPU parallelism is employed,
hence a different approach was considered.

Therefore, we configured a slot that allows an OpenCL
program to block the entire machine, using all available
resources. This was done alongside the existing slots, allowing
a computer to either act as a CPU resource, advertising each
CPU node individually, or as a single OpenCL entity, as shown
in Figure 1. This dual setup is mutually exclusive, meaning
that a machine that has started running a CPU job will be
unavailable for OpenCL jobs, and vice versa.

CPU

CPU

CPU

CPU

GPU

CPU Slot

CPU Slot

CPU Slot with
attached GPU

CPU

CPU

CPU

CPU

GPU
OpenCL
slot

HTCondor Suggested Structure Implemented Structure

CPU

CPU

CPU

CPU

CPU Slot

CPU Slot

CPU Slot

CPU Slot

CPU Slot

or

Fig. 1. HTCondor Slot Structure

B. Implementing OpenCL

The host file is created in order to setup the OpenCL
environment, control execution and manage data transfers.
Multiple segments of the host file are reusable across different
OpenCL programs, mainly those that deal in environment
setup and data transfers. Memory sizes, work-flow and optimi-
sations depend on the targeted architecture and device. Within
the host file, the command queue which controls execution is
defined. It creates the execution kernels and enqueues them,
either sequentially or parallel, also transferring memory buffers
between devices and the host.

The kernel file, executed on the compute device, represents
the parallel segment of the program. It encapsulates the com-
putations to be executed and is directly controlled by the host.
The kernel file does not change across different architectures or
devices, and is only influenced by the type of parallelism used.
The kernel file functions as a C function, that is executed inside
a loop, either synchronously or asynchronously. Kernels can
be task parallel, executing multiple functions simultaneously

47

or data parallel, executing a single function on multiple data
elements.

There are two methods of compiling the kernel file. The
file can be compiled before execution, at the same time as
the host file, reducing setup latency but limiting execution to
the chosen architecture and device. Alternatively, the host file
can be allowed to compile the kernel at run time to allow for
execution across multiple devices and architectures. Figure 2
illustrates the compute device selection segment of the host
code. The arguments passed to the function determine the
selected device. As an example, assuming that a machine
has both a CPU and a GPU, to execute the kernel on one
or the other only requires a change in the arch variable in
Figure 2. In reality, this results in a functional, yet unoptimised
program. However, this example emphasises the flexibility of
the OpenCL.

Fig. 2. OpenCL host code excerpt

C. GPU discovery and landscape

HTCondor implements a function for GPU detection, how-
ever this relies primarily on CUDA and while also offering
minimal support for OpenCL, returns insufficient device de-
tails to make optimisation decisions. For this reason, a program
was designed to poll the target computer for available OpenCL
devices and record their specifications.

Since OpenCL can run on CUDA drivers, there is no
need to implement a separate CUDA program. The detection
program was executed on 1000 machines, and, as seen in
Table I, the GPU landscape discovered is quite diverse. Of the
investigated machines, 300 failed to return information about
their GPUs. This could be due to a lack of up-to-date drivers
supporting OpenCL, or unsupported GPUs. The majority of
devices are mid-range GPGPUs, mostly released around 2011.
However, the program also identified a number of much newer
generation NVIDIA GPUs, which feature a large number of
cores that are more suited for efficient parallel execution.

D. Application

The Fast-Fourier Transform technique is used to convert
time-domain signals into frequency-domain signals, and is
widely adopted by researchers in engineering and science. For
this reason it was chosen as a test-case for the system, which
will be used in the aforementioned fields[8].

To better represent a real-world use case, GPU bench-
marking was executed in a live environment, meaning that
HTCondor resources became available only when idle, and
jobs stopped when users returned to their machines. Tests were
run using using the OpenCL Fast-Fourier Transform library on

TABLE I
GPU LANDSCAPE

GPU Nr
AMD 5600 8
NVIDIA Quadro K600 42
NVIDIA GTX 610 40
NVIDIA GTX 670 75
NVIDIA GTX 750 Ti 77
NVIDIA GTX 970 133
AMD 6500 137
AMD 6400 189
Not detected 299
Total 1000

single dimensional FFTs[10]. To exploit the high number of
available compute cores present in GPUs, FFT calculations
were batched together until they filled the available memory
size. The results are displayed in GFLOPs, calculated based
on the FFTW benchmarking methodology[11]. To ensure the
accuracy of the results, each FFT calculation was iterated 1000
times.

The challenge when using HTCondor is that the resource
used for execution is unknown in advance, thus increasing
the difficulty of optimizing the application for each individual
GPU found through the discovery. For this experiment, the
lowest GPU specification was used, to ensure execution across
the entire system. For example, executing the program with a
batch size lower than the GPU maximum will not exploit the
best performance, however, using a batch size higher than the
maximum will prevent execution.

Initial testing of CPU performance has shown between
0.6 and 1.7 GFLOPs on a standard Intel i5 CPU, shown
in Figure 3. CPU benchmarking of the FFT implementation
was not executed on a similar scale to the GPU since it
would be beyond the scope of this work. More extensive CPU
benchmarking has already been carried out by [12].

27 210 213 216 219 222 225

0.5

1

1.5

Size of FFT

G
FL

O
PS

Intel i5 CPU

Fig. 3. CPU FFT execution

IV. BENCHMARKING RESULTS

A. Fast-Fourier Transforms on HTCondor GPUs

The performance diversity of the GPU landscape can be
noted in Figure 4, with the fastest GPU being an NVIDIA
GTX 970 GPU, released in 2014, and the slowest being an
AMD 5600 GPU, released in 2009. Newer generation GPUs
benefit from higher clock speeds, more internal cores, and
bigger memory buffers.

The average execution duration of the entire benchmark was
50 minutes. The first 40 % of jobs finished within 12 hours,

48

27 210 213 216 219 222 225

0

50

100

150

200

Size of FFT

G
FL

O
PS

GTX 970
AMD 5600

Total Average

Fig. 4. GPU Benchmarking across 700 machines

with the other 60 % taking as long as 24 hours to complete.
This is due to the fact that a job will be preempted when a
real user accesses the machine.

B. Comparison with dedicated GPU cluster

In order to compare the available compute power of the
GPUs inside HTCondor, the system needs to be compared
against an existing GPU cluster. As such, the same benchmark
program was executed on the NVIDIA C2050 GPU compute
module inside VEGA, the dedicated GPU cluster at the UoH.
In Figure 5, it can be seen that the average Condor GPU
equals the performance of the single GPU compute module.
However, the AMD GPUs are significantly slower overall,
whilst some NVIDIA GPUs based on a newer architecture
than the compute module achieve better performance.

27 210 213 216 219 222 225
0

20

40

60

80

100

120

140

Size of FFT

G
FL

O
PS

AMD
NVIDIA
VEGA

POOL AVG

Fig. 5. Average Results by GPU Manufacturer

V. SUMMARY

The successful integration of HTCondor with OpenCL has
revealed a multitude of GPU resources that can be used to
increase overall system performance for parallelizable appli-
cations, while also making GPUs more accessible in terms of
physical usage and programming.

This work has shown that newer generation GPGPUs are
able to match the performance of older dedicated GPU re-
sources. However, due to the opportunistic nature of HTCon-
dor, maximizing performance across such a system is difficult.

The flexibility and ease-of-use of OpenCL make it a promis-
ing framework for developing GPU applications across a
diverse, and constantly evolving, environment.

VI. FUTURE WORK

Further develop the HTCondor implementation to facilitate
access to GPU resources, by using the ClassAd system to
advertise more GPU specific information for each machine,
allowing users to optimise implementations for specific GPUs.
Also, by exploiting the HTCondor ranking system, execution
can be prioritised on machines with better capable GPUs
foremost.

Improve performance of OpenCL applications by automat-
ing optimisations within the host file to increase performance
within the HTCondor environment, whilst also documenting
best-practise approaches and device-specific optimisations.

ACKNOWLEDGMENT

The authors would like to thank the QueensGate Grid at the
University of Huddersfield

REFERENCES

[1] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“Gpus and the future of parallel computing,” IEEE Micro, no. 5, pp. 7–
17, 2011.

[2] M. Livny, J. Basney, R. Raman, and T. Tannenbaum, “Mechanisms for
high throughput computing,” SPEEDUP journal, vol. 11, no. 1, pp. 36–
40, 1997.

[3] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 1-3, pp. 66–73, 2010.

[4] “condor gpu discovery.” http://http://research.cs.wisc.edu/htcondor/
manual/current/condor\ gpu\ discovery.html. Accessed: 2016-01-16.

[5] C. Nvidia, “Programming guide,” 2008.
[6] S. Guba, M. Őry, and I. Szeberényi, “Harnessing wasted computing

power for scientific computing,” in Large-Scale Scientific Computing,
pp. 491–498, Springer, 2013.

[7] D. Gubb, “Implementation of a condor pool at the university of hudder-
sfielod that conforms to a green it policy,” Master’s thesis, University
of Huddersfield, 7 2013.

[8] V. U. Reddy, “On fast fourier transform,” RESONANCE, vol. 3, no. 10,
pp. 79–88, 1998.

[9] “Htcondorwiki: How to manage gpus in series
seven.” https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=
HowToManageGpusInSeriesSeven. Accessed: 2015-12-03.

[10] “clfft: Opencl fast fourier transforms(ffts).” http://clmathlibraries.github.
io/clFFT/. Accessed: 2016-02-11.

[11] “Fft benchmark methodology.” http://www.fftw.org/speed/method.html.
Accessed: 2015-12-13.

[12] C. Cullinan, C. Wyant, T. Frattesi, and X. Huang, “Com-
puting performance benchmarks among cpu, gpu, and fpga,”
Internet: www. wpi. edu/Pubs/E-project/Available/E-project-030212-
123508/unrestricted/Benchmarking Final, 2013.

49

Energy Efficiency Evaluation in Heterogeneous
Computers

Borja Perez
Computer and Electronics Engineering Deptatment

Universidad de Cantabria
Email: perezpavonb@unican.es

Esteban Stafford
Computer and Electronics Engineering Deptatment

Universidad de Cantabria
Email: stafforde@unican.es

Jose Luis Bosque
Computer and Electronics Engineering Deptatment

Universidad de Cantabria
Email: bosquejl@unican.es

Ramón Beivide
Computer and Electronics Engineering Deptatment

Universidad de Cantabria
Email: beividej@unican.es

Abstract—Heterogeneous systems have excellent properties
both for performance and energy efficiency. However, the pro-
gramming of these machines requires some effort to get the
best results in massively data-parallel applications. This article
presents a programming model with a set of load balancing
algorithms that allow for a good workload distribution among all
the devices of the system. In this way, none of the devices is idle,
and all of them contribute computing power to the execution of
the application. This not only reduces execution time, but also
energy consumption, reaching a higher energy efficiency.

I. INTRODUCTION

Current efforts towards increasing the computing power
of modern machines is to include GPUs alongside general
purpose processors. This is a solution adopted by desingers
facing the challenge of the Exa-scale computing milestone,
as the high processing power of GPUs allow these systems
to increase the FLOPs per Watt ratio. Maintaining reasonable
energy demands is a main concern in the Mont-Blanc project
of the European Commision, which attempts to design an Exa-
scale supercomputer based on low-power technologies [1].

The key of the energy efficiency of GPUs is that they
are designed around massively parallel architectures which
provide a staggering amount of computing power. However,
this power can only be exploited through highly parallel
workloads. Hence the need of general purpose processors and
a way to conveniently program these heterogeneous systems.

Harnesing this heterogeniety is a considerable challenge by
itself. The most common programming model, being used by
CUDA and OpenCL, is the host-device model [2]. It dictates
that the host processor starts the execution of an application
and offloads highly parallel parts to the GPU. In general,
the host waits for the completion of these code sections.
Consequently, this model does not exploit the computing
power of the host, as it remains idle while the GPU is in
operation. Interestingly, the CPUs are still consuming a no-
ticeable ammount of power during these periods, significantly
reducing the energy efficiency of the system as a whole.

Maat [3] is an OpenCL library that hides from the develop-
ers all the different computing elements of a heterogeneous

system. The applications can then be programmed using
the host-device model, while Maat conveniently distributes
the workload among all the available computing elements.
It provides several load-balancing strategies to suit different
workload scenarios.

To better understand the implications of the different strate-
gies, this work provides an energy efficiency study of a
heterogenous system with several CPUs and GPUs. The exper-
imental results show that the H-guided strategy achieves very
good results of energy efficiency, in terms of Energy-Delay
Product (EDP), for all the applications analized.

II. LOAD BALANCING ALGORITHMS

Extracting the best performance out of heterogeneous sys-
tems is conditioned by an adequate use of all their resources.
The following considerations are vital to making such an
optimal workload distribution:

• Devices may have significant performance and architec-
tural differences, unknown at design time.

• Accurately modelling the performance of the different
devices is particularly difficult if the workload is irregular.

• Data communication with the devices is performed over
slow interconnects.

The first two issues encourage the use of dynamic algo-
rithms, which distribute the workload to the devices during
runtime. Dynamic algorithms do not require prior information
about the performance of the devices. However, the last
consideration can impose a significant overhead.

For regular workloads, the first two issues are less relevant
so a static algorithm is worth considering. This can give
better results than the dynamic due to a minimzation of the
communicantion overhead.

Trying to balance the above extremes, a third algorithm,
named h-guided, has been implemented.

All three algorithms focus on the balancing of data parallel
workloads, in which every device performs the same com-
putation on a disjoint partition of the data. Thus, data are
themselves the subjects of the distribution.

50

A. Static Balancing

This algorithm is based on dividing the load in as many
portions as devices are available in the system. Then, it assigns
a single portion to each of them. In order to obtain good
performance, the load has to be divided in such a way as
to make every device finish their computation simultaneously.
Otherwise some devices will be idle while the computation is
being completed. This is achieved by assigning each device a
portion of work proportional to its computational power.

Let there be a heterogeneous system H = {D,P}, where
D = {d1, · · · dn} is the set of devices and P = {P1, · · ·Pn}
are the corresponding computational powers. Pi is defined as
the amount of work that each device can complete in a time
unit, including the necessary communication overhead. For
a given application, these depend on the architecture of the
devices, and are parameters that must be given to the model.

In order to perform the data partition, consider a given work-
load, that needs to process W work-items grouped in G work-
groups. In OpenCL, each group can be executed concurrently
as they do not require communication among them. Whereas
threads within a group can synchronize among themselves.
Consequently a work-group should not be split across devices,
and it should be considered as the atomic distribution unit. All
groups have the same size Ls = W

G , called local work size.
The response time of the heterogeneous system will be

that of the last device to finish its work, TH = maxNi=1Tdi .
Therefore, the goal of the static method is to obtain a mapping
of work-groups to devices, so that the workload is best
balanced. This means, to find a tuple {α1, · · ·αn}, where αi
is the number of work-groups assigned to the device di, such
that all the devices finish their work at the same time, and
then the system response time is minimized:

TH = Td1 = · · · = Tdn ⇒
Ls · α1

P1
= · · · = Ls · αn

Pn

Following the optimal algorithm proposed by O. Beaumont
in [4] this can be done with complexity O(n2) in two steps:

• First, αi is calculated so that αi

Pi
is almost constant ∀ i ∈

[1, · · ·n], and α1 + α2 + · · ·+ αn ≤ G:

αi =

⌊
Pi∑n
i=1 Pi

·G
⌋

• Second, if
∑n
i=1 αi < G, then the remaining work-

groups are assigned to the most powerful device. This
amount of work is practically negligible, and does not
disturb the load distribution.

This algorithm guarantees that the number of synchroniza-
tion points is minimized, and performs well when facing
regular loads, provided computational power of the devices
are accurately known. However, it is not adaptable, so perfor-
mance is not so good for irregular loads.

B. Dynamic Balancing

This algorithm divides the load in small, equally-sized
packages, many more than the amount of available devices.

The runtime orcherstation is carried out by a master thread
that follows the next algorithm:

1) The master splits the number of work-groups G, in
a set of p packages, all of them with the same size
Package size =

⌊
G
p

⌋
. If G is not divisible by p, an

extra package will have the remainder of the division.
2) The master launches one package on each device.
3) The master waits for the completion of any package.
4) When device di completes the execution of a package:

a) The master stores results returned by the device.
b) If there are outstanding packages the next package

is assigned to device di.
c) Else, if di is a GPU and there is a busy CPU di

steals the package from the CPU.
d) If none of this conditions is met, the master pro-

ceeds to step 5.
e) The master returns to step 3.

5) The master ends as all the packages have been processed
and their results are stored in the host.

This shows that the dynamic approach can addapt to differ-
ent hardware and workload scenarios where the static can not.
Attending to performance, the communication overhead must
be taken into account. In the static, there is one package per
device, but in the dynamic there are many more. Even if the
data volume transferred to and from the devices is the same,
the dynamic has a greater time dedicated to synchronization
than the static.

C. H-guided Balancing

The h-guided algorithm strives to reduce the amount of
synchronization points inherent to the dynamic scheme. It
can be thought of a refinement of the latter, as it revolves
about the same basic algorithm, only there is a difference
in the size of the packages. These are not equal, but of
diminishing size. On a first approach they can be computed as
Package size =

⌊
Gr

n

⌋
. Where Gr is the number of pending

work-groups and n is the number of available devices. This
way, the packages are moderately big at the beginning of the
execution and small at the end. This results in a reduction in
synchronization points, while maintaining adaptability mostly
at the end of the execution, when a finer-grained load distribu-
tion is needed. The size diminishes down to a minimum size
that the algorithm must be provided with.

This solution has been used already in homogeneous sys-
tems, but when applied to heterogeneous machines it needs
a further refinement. If there is a great difference in the
computational power of the devices, a big package may be
assigned to a slow device, delaying the completion of the
whole program. To avoid this, the h-guided algorithm takes
into account the computational power of the device, in a
similar fashion to the static approach. Then, considering Pi as
the computational power of device di, the size of the packages
is calculated as:

Package size =

⌊
Pi∑n
i=1 Pi

· Gr
n

⌋

51

III. EXPERIMENTAL EVALUATION

The experiments presented in this section have been per-
formed on a system with two GPUs, two CPUs and 64GBs
of DDR3 memory. The CPUs are Intel Xeon E5-2670, with
six cores that can run two threads at 2.0 GHz. The CPUs are
connected via QPI, which results in OpenCL detecting them
as a single device. Threfore, through the rest of this document,
any reference to the CPU includes both Xeon E5-2670. The
GPUs are two NVIDIA K20m, with 13 SIMD lanes and 5
GBytes of VRAM each.

Four applications have been chosen for the experiments.
Two of them are part of the AMD APP SDK[5]. Both, NBody
and MatMul, are regular applications in which different, equal-
sized work units have the same running times. The other two
applications, which are in-house implementations of known
algorithms, are examples of irregular workloads, in which
different, equal-sized work units may have different running
times. First, RAP is an implementation of the Resource
Allocation Problem, based on the one proposed by Acosta
et al. [6]. It must be noted that there is a certain pattern in the
irregularity of RAP, as each successive package represents a
bigger amount of work than the previous. To test Maat using
a truly irregular workload, a raytracing algorithm (RAY) was
implemeted. This computes a realistic rendering of a scene
by following light rays with independent threads. Thus, each
of them represents an unpredictable amount of work, as the
number of ray bounces depends on the objects of the scene.

The performance has been measured as the speedup with
respect to the execution time using OpenCL and a single GPU.
Due to the heterogeneoty of the system, the maximum speedup
is not the number of devices, due to different computational
power of each of them. Note that the CPUs are significantly
less performant than the GPUs for the considered loads and
that the performance difference between CPU and GPUs is
application-dependent. To meassure the energy consumption,
a monitor was developed that samples the power consumption
of each device. This periodically measures the GPU power
sensors through the NVIDIA Management Library (NVML)
[7]. It also reads the Running Average Power Limit (RAPL)
registers of the CPUs [8]. Finally, the energy efficiency is
represented in terms of Energy-Delay-Product (EDP).

Figure 1 presents the speedup of each load balancing
algorithm and benchmark referred to the performance of a
single GPU. The speedup of the regular applications is limited
by both the sensitivity to the number of packages and the
performance differences between devices. The best algorithm
for NBody is the static, although closely followed by the H-
guided. However for MatMul, the poor performance in static
can be blamed on the enormous difference in performance
of GPUs and CPUs, making even the smallest work package
too big for the CPU and so, it is better not to use the CPUs
in this case. In the dynamic and H-guided methods the GPUs
perform all the work, because the packages initially scheduled
to CPUs are stolen. The analysis of the irregular applications,
RAP and Ray, shows that the H-guided method obtains the

 0

 0.5

 1

 1.5

 2

 2.5

 3

MatMul NBody RAP RAY

S
p
e
e
d
u
p

Benchmark

static
dynamic
h-guided

Fig. 1. Speedup for each algorithm relative to a single GPU.

best results. This is because the size of the packages assigned
is proportional to the computing power of the device and
inversely to the number of devices. Which means that more
devices imply a greater amount of smaller packets, enabling
a finer load balancing. This has a second consequence: the
CPUs can contribute processing small and simple packages
while the GPUs acomplish the big complex ones.

Attending to energy considerations, Figure 2 shows the
energy consumption of the system for each benchmark and
load balancing algorithm (less is better). The bars on the
graph are divided to indicate the energy corresponding to
the CPU (12 cores) and the two GPUs. The bar labeled as
”base” corresponds to the results with one GPU. The first
conclusion to highlight is that, despite using two GPUs, the
total energy consumption of the heterogeneous system is less
than the ”base”, except in the RAY benchmark. For all the rest,
there is at least one load balancing algoritm that improves the
”base” energy consumption. This comes as a consequence of
two improvements: the reduction in the execution time of the
benchmarks, and that all the devices are contributing useful
work. Thus, improving the energy efficiency of the system.

Energy saving is more noticeable in regular applications.
In NBody the static algorithm reduces the base consumption
in 22.5%. This is due to the regularity of the applications,
the static algorithm can achieve an almost perfectly balanced
distribution with minimal interaction between the devices. The
H-guided saves up to 20% of the base energy in the MatMul
benchmark. This is caused by regularity of the application and
the small ammount of packages necessary to get a good bal-
ance. RAP, despite having greater speedup than NBody yields
a smaller energy reduction, around 12.5%. This is caused by
the fact that the irregularity of the application requires to work
with a much larger number of work-packets to obtain a good
load balancing. Which causes greater interaction between CPU
and GPU, and increased energy consumption that really does
not contribute to perform useful work. This situation is more
pronounced in Ray Tracing, where no balancing algorithm
makes the heterogeneous system consume less energy than
the base system.

52

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

MatMul NBody RAP RAY

E
n
e
rg

y
 (

J
)

Benchmark

cpu gpu
base
static

dynamic
h-guided

Fig. 2. Energy consumption for each algorithm and benchmark.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

MatMul NBody RAP RAY

E
D

P
 (

J
s
)

Benchmark

base
static

dynamic
h-guided

Fig. 3. Energy Delay Product (EDP) for each algorithm and benchmark.

Finally, Figure 3 shows the results of the energy efficiency
in terms of the Energy-Delay Product. This metric combines
the performance and energy metrics in one value. It can be
seen that NBody with static as well as Matmul and RAP with
the h-guided algorithm, obtain some important improvements
in EDP with respect to the base system. However, the most
interesting result is shown by the RAY benchmark. Despite
showing an energy consumption 27% higher than the base
system, the h-guided algorithm provided the best speedup,
halving the computation time of the application. This also
reduces the EDP for this benchmark, showing a considerable
improvement, around 28% less than the base system.

IV. CONCLUSIONS

Nowadays, heterogeneous systems are commonly built by
combining the computing power of general purpose CPUs with
hardware accelerators (GPUs). This architecture provides very
high performance thanks to the large number of cores available
in the GPU coupled with a very low energy consumption,
which maximizes energy efficiency. However, the exploitation
of these systems pose a number of problems. For instance, the
programming models, such as CUDA or OpenCL, are based
on the Host-Device paradigm in which making a balanced load
distribution is difficult.

By presenting a set of load balancing algorithms for mas-
sively data-parallel applications, this paper fulfills two im-
portant objectives. By harnesing the computing power of the
whole heterogeneous machine, not only better performance is
achieved, but energy efficiency is also improved.

The experimental results presented in this paper show that
for both regular and irregular applications, there is always
a load balancing algorithm that reduces the excution time.
This is a logical consquence of the full system having greater
computing power than a single GPU. Furthermore, the energy
consumption of the machine with these algorithms is also
reduced. In fact three of the four applications analyzed showed
energy reductions. These savings are more notable in regular
applications, because the interaction between CPU and GPU to
obtain a balanced workload is lower. Finally, energy efficiency
results, shown in terms of EDP, show that for all applications
there is at least one load balancing algorithm that achieves
substantial improvements.

The best overall results are obtained with the h-guided
algorithm, yet the dynamic also gives very good results in
irregular applications without prior knowledge of the power
of the computing devices. The static algorithm is appropiate
for homogeneous environments and regular applications.

ACKNOWLEDGMENT

This work has been supported by the Spanish Science and
Technology Commission under contract TIN2013-46957-C2-
2-P, the University of Cantabria, grant CVE-2014-18166, and
the European HiPEAC Network of Excellence. The research
leading to these results has received funding from the Euro-
pean Communitys Seventh Framework Programme (FP7/2007-
2013) under the Mont-Blanc Project (http://www.montblanc-
project.eu), grant agreement n◦ 610402.

REFERENCES

[1] “Mont-Blanc project. Europen approach towards energy efficient
high performance.” last accesed April 2016. [Online]. Available:
https://www.montblanc-project.eu/project/introduction

[2] B. R. Gaster, L. W. Howes, D. R. Kaeli, P. Mistry, and D. Schaa,
Heterogeneous Computing with OpenCL - Revised OpenCL 1.2 Edition.
Morgan Kaufmann, 2013.

[3] B. Pérez, J. L. Bosque, and R. Beivide, “Simplifying programming and
load balancing of data parallel applications on heterogeneous systems,”
in Proc. of the 9th Workshop on General Purpose Processing using GPU,
Barcelona, Spain, March 12, 2016, pp. 42–51.

[4] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, “A
proposal for a heterogeneous cluster ScaLAPACK (dense linear solvers),”
IEEE Trans. Computers, vol. 50, no. 10, pp. 1052–1070, 2001.

[5] “Amd accelerated parallel processing software develop-
ment kit v2.9,” last accesed November 2015. [Online].
Available: http://developer.amd.com/tools-and-sdks/opencl-zone/amd-
accelerated-parallel-processing-app-sdk/

[6] A. Acosta, R. Corujo, V. Blanco, and F. Almeida, “Dynamic load
balancing on heterogeneous multicore/multiGPU systems.” in HPCS,
W. W. Smari and J. P. McIntire, Eds. IEEE, 2010, pp. 467–476.

[7] NVIDIA, “NVIDIA Management Library (NVML),” last accesed
April 2016. [Online]. Available: https://developer.nvidia.com/nvidia-
management-library-nvml

[8] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-
mann, “Power management architecture of the 2nd generation Intel Core
microarchitecture, formerly codenamed Sandy Bridge,” in IEEE Int.
HotChips Symp. on High-Perf. Chips (HotChips˜2011), 2011.

53

INDEX
Adeniyi Jones, C., 19
Anlauf, B., 31
Barba, L., 36
Beivide, R., 41, 50
Bosque, J.L., 41, 50
Calore, A., 24
Casas, M., 41
Castillo, E., 41
Cornelius, H., 35
Dafinoiu, A., 46
Duran, A., 11
Eder, K., 30
Fournier, Y., 31

Furber, S.B., 20
Higgins, J., 46
Holmes, V., 46
Lujan, M., 20
Margetts, L., 7
Mason, L., 15
Meng, J.P., 37
Moreto, M., 41
Moulinec, C., 31
Navaridas, J., 20
Perez, B., 41
Perez, I., 50
Piskin, S., 11

Plana, L.A., 20
Ramirez, A., 28
Sawyer, W., 6
Seaton, M., 15
Siso, S., 15
Stafford, E., 50
Suarez, E., 45
Tuncel, T., 11
Valero, M., 41
Vallejo, M., 41
Vezolle, P., 31
Weiland, M., 29

54

55

	DAY 1: THURSDAY, JUNE 1ST, 2016
	Keynote 1
	The Road To Exascale: It's About The Journey Not The Flops W. Sawyer

	Session 1:
	Parallel finite element analysis using the Intel Xeon Phi Lee Margetts
	Evaluating the Maturity of OpenFOAM Simulations on GPGPU for Bio-fluid Applications Ahmet Duran, Senol Piskin, Mehmet Tuncel
	Code modernization of DL_ MESO LBE to achieve good performance on the Intel Xeon Phi Sergi Siso, Luke Mason, Michael Seaton

	Keynote 2
	Back to the Future? High Performance Computing and ARM Chris Adeniyi Jones

	Session 2:
	Low-Power, Fault-Resilient Communications in a Million-Core Neural Processing Architecture Javier Navaridas, Mikel Lujan, Luis A. Plana, Steve B. Furber
	Energy versus performance on low power processors for HPC applications Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano and Raffaele Tripiccione
	Embedding supercomputing at NVIDIA Alex Ramirez

	DAY 2: FRIDAY, JUNE 3RD, 2016
	Keynote 3
	Efficient HPC: Waste Not Want Not Michele Weiland

	Session 3:
	Whole Systems Energy Transparency Kirsten Eder
	Code_ Saturn on POWER8 clusters: first investigations Charles Moulinec, Yvan Fournier, Pascal Vezolle, Benedikt Anlauf
	Emerging Technologies for the Convergence of Big Data and HPC Herbert Cornelius

	Keynote 4
	Are you getting the wrong answer, but fast? Challenges for reproducible research in HPC Lorena Barba

	Session 4:
	Block structured Lattice Boltzmann simulation using OPS high-level abstraction Jianping Meng
	Analyzing the Impact of Parallel Programming Models in NoCs of Forthcoming CMP Architectures Ivan Perez, Emilio Castillo, Ramon Beivide, Enrique Vallejo, Jose Luis Bosque, Miquel Moreto, Marc Casas, Mateo Valero

	Keynote 5
	Technology emerging from the DEEP and the DEEP-ER projects Estele Suarez

	Session 5:
	Accelerating High-Throughput Computing through OpenCL Andrei Dafinoiu, Joshua Higgins, Violeta Holmes
	Energy Efficiency Evaluation in Heterogeneous Computers Ivan Perez, Esteban Stafford, Ramon Beivide, Jose Luis Bosque

