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High-level parallel programming is an active research topic aimed at promoting parallel programming
methodologies that provide the programmer with high-level abstractions to develop complex parallel soft-
ware with reduced time to solution. Pattern-based parallel programming is based on a set of composable
and customizable parallel patterns used as basic building blocks in parallel applications. In recent years, a
considerable effort has been made in empowering this programming model with features able to overcome
shortcomings of early approaches concerning flexibility and performance. In this article, we demonstrate
that the approach is flexible and efficient enough by applying it on 12 out of 13 PARSEC applications. Our
analysis, conducted on three different multicore architectures, demonstrates that pattern-based parallel pro-
gramming has reached a good level of maturity, providing comparable results in terms of performance with
respect to both other parallel programming methodologies based on pragma-based annotations (i.e., OpenMP
and OmpSs) and native implementations (i.e., Pthreads). Regarding the programming effort, we also demon-
strate a considerable reduction in lines of code and code churn compared to Pthreads and comparable results
with respect to other existing implementations.
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1 INTRODUCTION

Multicore systems have become commonplace. We can find chip multiprocessors (CMPs) in almost
any device, from wearable smart sensors to high-end servers. Although the advent of CMPs has
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alleviated several problems of single-core processors (e.g., the so-called memory wall [59]), it has
raised the issue of the programmability wall [16] that previously characterized the development of
parallel software targeting traditional HPC platforms.

The standard approach to program CMPs relies on thread-level parallelism where data sharing
is coordinated by synchronization primitives. This approach leaves a large degree of freedom to
the programmer when coding applications, allowing low-level optimizations that may increase the
performance but also the lines of code (LOC), thus reducing code portability and maintainability.

To face these issues, one approach consists of using high-level parallel patterns that the pro-
grammer composes and nests to build parallel applications. Each pattern applies a parallelism
paradigm to solve recurrent problems [48, 49]. Examples of frameworks supporting this vision are
Microsoft PPL [12], FastFlow [22], SkePU [30], and Delite [10]. The main drawback of this
programming model is the potential lower flexibility offered to the application developer. In fact,
parts of the application that could be parallelized might not exactly match any available pattern.
For these reasons, some recent parallel frameworks, such as Intel TBB [49], adopt a sort of hy-
brid approach, where in addition to some predefined patterns (e.g., pipeline, parallel-for, reduce,
scan), they offer support to the execution of generic graphs of tasks by respecting their precedence
relations.

In addition to the programmability advantage, a focal aspect is to precisely assess which is
the flexibility and performance gap observed when using high-level methodologies. An interest-
ing work that tries to provide a first answer for task-based programming models is presented in
Chasapis et al. [17]. The authors showed that the OmpSs porting of a significant subset of the
PARSEC benchmark suite [6] does not provide substantial performance degradation with respect
to native Pthreads implementations while reducing the programming effort measured in terms
of LOCs. Our contribution with this work is to provide a similar and deeper analysis for pattern-
based frameworks, showing that they are at least as expressive in exposing the parallel structure
of the application as the task-based or pragma-based approaches. As far as we know, this is the
first attempt to provide a thorough analysis of the pattern-based methodology. Our contributions
can be summarized as follows:

• We show that 12 out of 13 PARSEC benchmarks can be modeled as composition of parallel
patterns. Our analysis also shows that a relatively small number of parallel patterns are
sufficient to model complex real-world applications, such as the ones in PARSEC.

• We implemented all pattern-based versions of the PARSEC benchmarks using the parallel
patterns offered by the FastFlow framework [22]. A subset of these benchmarks have also
been implemented in SkePU [32].

• We study the programming effort required to implement the parallel versions measured us-
ing two metrics: LOC and code churn [51]. Despite that a shorter code does not necessarily
imply a simpler or better code, evaluating the programming effort in an objective way is
a difficult task and no existing metric is universally accepted. We decided to use LOC and
code churn since they are often used in several research works as proxy metrics to evalu-
ate programmability [17, 51, 58]. The patterned implementations achieve an average LOC
reduction of 26% (in both FastFlow and SkePU) compared to the native Pthreads imple-
mentation (and up to a maximum of 87% for some specific benchmarks). We also compared
such metrics with those of the OpenMP and TBB implementations provided by PARSEC
and with the OmpSs implementations described in Chasapis et al. [17].

• On three different multicore systems we compare performance of the pattern-based imple-
mentations to the one of native Pthreads implementations, with OpenMP and TBB ver-
sions provided by PARSEC (when available) and with OmpSs task-based parallelizations.
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The FastFlow and SkePU implementations obtain an average gain of 14% and 7% with re-
spect to Pthreads (up to a maximum of 42%) and comparable results with respect to the
other implementations.

To create a new benchmark suite for pattern-based frameworks, the source code of all im-
plemented benchmarks is made publicly available under the name P3ARSEC—Parallel Patterns
PARSEC.1

The rest of this article is organized as follows. Section 2 introduces the PARSEC benchmark
suite and the pattern-based methodology. Section 3 presents the used patterns and the pattern-
based implementation of the P3ARSEC benchmarks. Section 4 provides details of the performance
and programmability analysis presenting experimental results. Section 5 provides the related work,
and Section 6 draws the conclusions of this work.

2 BACKGROUND

In this section we introduce the background of this work. First, we describe the PARSEC bench-
mark suite. Then, we will provide a brief review of recent methodologies and frameworks based
on pattern-based parallel programming.

2.1 The PARSEC Benchmark Suite

PARSEC [6] (Princeton Application Repository for Shared-Memory Computers)2 is a collection of
various multithreaded programs with high system requirements that has been used in the past for
stressing shared-memory architectures [54]. One of the most interesting aspects of this benchmark
suite is that it covers a wide set of application domains, such as streaming, scientific computing,
computer vision, and data compression. For this reason, the PARSEC suite has been recently used
to assess the expressive power of emerging parallel programming frameworks [17].

2.1.1 Applications Taxonomy. PARSEC consists of 13 programs from different areas of comput-
ing. Each application is provided with several input sets for each benchmark. Three datasets, with
different sizes, target the execution on simulators (i.e., sim-small, sim-medium, sim-large), whereas
the native dataset is representative of a realistic execution scenario of the application.

From the parallel programming perspective, PARSEC applications are of great interest for testing
frameworks because they have different memory access behaviors, data sharing patterns, amounts
of parallelism, computational granularity, and synchronization frequency. Table 1 reports the of-
ficial name of the benchmarks, their parallelism model, and the computational grain according
to PARSEC documentation. Moreover, we show the official parallel versions released within the
PARSEC suite that we use as reference implementations in this work.

Most of the applications belong to the data parallelism model, where the computation is per-
formed on large data structures logically partitioned among multiple threads. Stream parallelism
characterizes applications where a large sequence of data items are processed by a chain of threads
that execute distinct computation phases on different items in parallel and in a pipeline fashion.
The case of Canneal is an example of applications that do not straightforwardly follow any com-
mon parallelism paradigm (in the table, it is referred to as unstructured).

1The code of P3ARSEC is publicly available at https://github.com/ParaGroup/p3arsec. Release v1.0 is used in this article.
2In this article, we refer to PARSEC version 3.0: http://parsec.cs.princeton.edu/overview.htm.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

https://github.com/ParaGroup/p3arsec
http://parsec.cs.princeton.edu/overview.htm


33:4 D. De Sensi et al.

Table 1. Classification and Characteristics of the PARSEC v3.0 Applications

Parallelism Parallel Versions

Benchmark Domain Model Grain Pthreads OpenMP Intel TBB

blackscholes Financial analysis Data parallelism Coarse ✓ ✓ ✓

bodytrack Computer vision Data parallelism Medium ✓ ✓ ✓

canneal Engineering Unstructured Fine ✓ ✗ ✗

dedup Enterprise storage Stream Medium ✓ ✗ ✗

facesim Animation Data parallelism Coarse ✓ ✗ ✗

ferret Similarity search Stream Medium ✓ ✗ ✗

fluidanimate Animation Data parallelism Fine ✓ ✗ ✓

freqmine Data mining Data parallelism Medium ✗ ✓ ✗

raytrace Computer vision Data parallelism Medium ✓ ✗ ✗

streamcluster Data mining Data parallelism Medium ✓ ✗ ✓

swaptions Financial Data parallelism Coarse ✓ ✗ ✓

vips Media processing Data parallelism Coarse ✓ ✗ ✗

x264 Media processing Stream Coarse ✓ ✗ ✗

2.2 Parallel Pattern-Based Approaches

Parallel design patterns have been envisioned as a viable solution to improve the quality and effi-
ciency of parallel software development while reducing the complexity of program parallelization
and enhancing performance portability [48].

Parallel patterns are schemes of parallel computations that recur in many real-life algorithms
and applications. Each of them usually has one or more well-known implementations of communi-
cation, synchronization, and computation models. The use of parallel patterns in the development
of applications provides several advantages both concerning time to solution and the automatic or
semiautomatic applicability of different optimization strategies (e.g., like the IBMones proposed in
Chambers et al. [15], Gedik et al. [34], and Navarro et al. [53]). This last aspect is usually manually
enforced in non–pattern-based parallel programming models such as MPI and Pthreads. Further-
more, some research works have recently proposed autonomic management strategies of nonfunc-
tional concerns like performance and energy consumption for pattern-based approaches [23, 47]
by using control knobs like concurrency throttling and dynamic voltage and frequency scaling
(DVFS) [24].

Algorithmic skeletons [18] were developed independently of parallel patterns to support pro-
grammers with the provisioning of standard programming language constructs that model and
implement common, parametric, and reusable parallel schemes. Algorithmic skeletons may be
considered as a practice of implementation of parallel design patterns. Combinations of parallel
design patterns and algorithmic skeletons are used in different parallel programming frameworks
such as Microsoft PPL [12] and Intel TBB [49], as well as in niche pattern-based research frame-
works such as SkePU [32], Muesli [31], FastFlow [22], SkeTO [29], SkelCL [55], Skandium [44],
and OSL [43], just to mention a few of them. Other frameworks such as Google MapReduce [25]
are instead built around a single powerful pattern.

To raise the level of abstraction in parallel software development for specific application
domains, some research works proposed domain-specific languages (DSLs) built on top of
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pattern-based frameworks [10, 41, 56]. Their main aim is to help the domain experts to easily
prototype different parallel variants of their code and to introduce parallel runtime optimizations
in a more selective way. A similar approach, which leverages the new C++1x features, consists
of annotating the sequential code with C++ attributes to introduce parallel patterns in specific
regions of code (usually compute-intensive kernels). Then, a source-to-source compiler is respon-
sible for translating the annotated C++ code into a parallel code linked to the proper pattern-based
runtime library [20, 37].

3 PARALLEL PATTERN-BASED PARSEC

Pattern-based frameworks provide a set of parallel patterns that solve recurrent problems in par-
allel programming. Some notable examples are map, reduce, pipeline, farm, divide-and-conquer,
stencil, and parallel-for. In this section, we review the parallel patterns that we have used in the
development of P3ARSEC. Then we provide some examples of patterned code written in FastFlow
and SkePU to give an idea of the interface and the programming abstractions offered by some of
the existing frameworks. Finally, we describe for each PARSEC application both the original paral-
lel design and our pattern-based one. In some cases, we outline possible alternative compositions
and optimizations of patterns.

3.1 A Small Catalog of Parallel Patterns

Several past works have described parallel patterns by providing a formal semantics that allows
patterns to be composed and nested according to specific rules [2, 13]. Rewriting rules have been
derived to transform a pattern expression into an equivalent one (i.e., a different pattern compo-
sition that preserves the computation correctness), possibly able to achieve better performance.
Such analysis and formalism is outside the scope of this article. In this part, we recall the patterns
that we have used in the implementation of P3ARSEC. To represent the patterns, we use a synthetic
syntax that simplifies the description of alternative implementation schemes.

Sequential (seq). This pattern encapsulates a portion of the “business logic” code of the appli-
cation that can be used in this way as a parameter of other more complex patterns. The implemen-
tation requires wrapping the code in a function f : α → β with input and output (I/O) parameter
types α and β , respectively. For each input x : α , the pattern (seq f ) : α → β applies the function
f on the input by producing the corresponding output y : β such that y = f (x ). The pattern can
also be applied when the input is a stream (i.e., a sequence possibly of unlimited length of items
with the same type). Let α stream be a sequence (x1,x2, . . . , ) where xi : α for any i . The pattern
(seq f ) : α stream→ β stream applies the function f to all items of the input stream, which are
computed in their strict sequential order (i.e., xi before x j if and only if i < j).

Pipeline (pipe). The pattern works on an input stream of typeα stream. It models a composition
of functions f = fn ◦ fn−1 ◦ · · · ◦ f1 where fi : αi−1 → αi for i = 1, 2, . . . ,n. The pipeline pattern is
defined as (pipe Δ1, . . . ,Δn ) : α0 stream→ αn stream. Each Δi is the i-th stage, which is a pattern
instance having input type αi−1 stream and output type αi stream. For each input item x : α0,
the result out of the last pipeline stage is y : αn such that y = fn ( fn−1 (. . . f1 (x ) . . .)). The parallel
semantics is such that stages process in parallel distinct items of the input stream, whereas the
same item is processed in sequence by all the stages.

From an implementation viewpoint, a pipeline of sequential stages is implemented by con-
current activities (e.g., threads) passing items through cooperation mechanisms (e.g., via shared
buffers).

Task-farm (farm). The pattern computes the function f : α → β on an input stream α stream

where the computations on distinct items are independent. The pattern is defined as (farm Δ) :
α stream→ β stream where Δ is any pattern having input typeα stream and output type β stream.
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The semantics is such that all items xi : α are processed and their output items yi : β, where yi =

f (xi ) computed. From the parallel semantics viewpoint, within the farm the pattern Δ is replicated
n ≥ 1 times (n is a nonfunctional parameter of the pattern called parallelism degree), and in general,
the input items may be computed in parallel by the different instances of Δ.

In case of a farm of sequential pattern instances, the runtime system can be implemented by a
pool of identical concurrent entities (worker threads) that execute the function f on their input
items. In some cases, an active entity (the emitter thread in FastFlow [22]) can be designed to
assign each input item to a worker, whereas in other systems, the workers directly pop items from
a shared data structure. Output items can be collected and their order eventually restored by a
dedicated entity (a collector thread) that produces the stream of results.

Master-worker (master-worker). This pattern works on a collection (α collection) of type α—
that is, a set of data items {x1,x2, . . . ,xn } of the same type xi : α for any i . There is an intrinsic
difference between a stream and a collection. Although in a collection all data items are available
to be processed at the same time, in a stream the items are not all immediately available, but they
become ready to be processed spaced by a certain and possibly unknown time interval. The pattern
is defined as (master-worker Δ, p) : α collection→ α collection, where Δ is any pattern working
on an input type α and producing a result of the same type, whereas p is a Boolean predicate. The
semantics is that the master-worker terminates when the predicate is false. Different items can
be computed in parallel within the master-worker.

A master-worker of sequential pattern instances consists of a pool of concurrent workers that
perform the computation on the input items delivered by a master entity. The master also receives
the items back from the workers and, if the predicate p is true, reschedules some items.

Map (map). The pattern is defined as (map f ) : α collection→ β collection and computes a func-
tion f : α → β over all items of an input collection whose elements have type α . The output pro-
duced is a collection of items of type β where each yi : β is yi = f (xi ). The precondition is that all
items of the input collection are independent and can be computed in parallel.

The runtime of the map pattern is similar to the one described for the farm pattern. The difference
lies in the fact that since we work with a collection, the assignment of items to the worker entities
can be performed either statically or dynamically. Depending on the framework, an active entity
can be designed to assign input items to the workers according to a given policy.

Map+reduction (map+reduce). This is defined as (map+reduce f , ⊕) : α collection→ β , where
f : α → β and ⊕ : β × β → β . The semantics is such that the function f is applied on all the items
xi of the input collection (map phase). Then the final result of the pattern y : β is obtained by
composing all items yi of the output collection result of the map phase by using the operator ⊕
(i.e., y = y1 ⊕ y2 ⊕ . . . ⊕ yn).

A typical implementation is the same as the map where the reduction phase can be executed
serially, once all output items have been produced, or in parallel according to a tree topology by
exploiting additional properties on the operator ⊕ (i.e., if it is associative and commutative).

Composition (comp). This pattern is the composition of two pattern instances that work ei-
ther on single items, on streams, or on collections. In case of collections, the composition is
(comp Δ1, Δ2) : α collection→ γ collection, where Δ1 is any pattern (e.g., map or master-worker)
working on input α collection and that produces an output β collection, whereas Δ2 is a pattern
working with input type β collection and transforming it into a type γ collection. The semantics
is that the first pattern is executed, and when its execution has finished (i.e., all items in the input
collection have been computed), the second pattern can be started by processing the collection
produced by the first pattern. In case of streams, the composition semantics is applied on an item-
by-item basis—that is, each item in the input stream is processed first by Δ1 and then by Δ2 before
starting to compute the next item.
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The runtime system of a pattern-based framework must ensure that the two patterns within the
comp instance are executed serially. In the case of collections, a barrier can be added after the call
to the first pattern and before starting the second one.

Iterator (iterator). In its basic form, this pattern iterates a pattern Δ working on a single input
item (seq or comp) or on a collection of items (map, master-worker). In case of collections, the
pattern is defined as (iterator Δ, p) : α collection→ α collection, wherep is a Boolean predicate.
The inner pattern Δ is iterated until the predicate is true.

At the implementation level, the runtime executes the pattern for a certain number of times
determined statically or at runtime. At the end of each iteration there is an implicit barrier, since
the output collection computed at iteration i − 1 may be used as input for the iteration i .

3.2 Examples of Parallel Pattern-Based Code

Over the past 20 years, many parallel programming models and frameworks based on parallel pat-
terns and algorithmic skeletons have been proposed. In Gonzalez-Velez and Leyton [35], a review
of several of them can be found. Some of these frameworks, such as P3L [5], ASSIST [57], and SAC
[36], provide a new language used to introduce pattern abstractions already in the early phases
of the software development process. More recent approaches like FastFlow [22], SkePU [32],
GrPPI [26], SPar [37], and PACXX [38], rely on new features of modern C++ language. Patterns
are introduced by instantiating class objects at any place in the code or by using suitable C++11
attributes as in SPar. In this work, we decided to use FastFlow and SkePU.

FastFlow [22] is a C++11 header-only template library that allows the programmer to build
directed graphs of streaming computations. It provides the application programmer with a va-
riety of ready-to-use stream- and data-parallel patterns than may be freely composed and cus-
tomized to implement complex parallel applications. The patterns provided are pipeline, farm, map,
map+reduce, master-worker, feedback-loop, and sequential. Patterns are implemented with threads
that communicate by using nonblocking lock-free synchronization, enabling efficient processing
in high-throughput streaming scenarios [3]. Parallel patterns can be used by instantiating proper
objects from the FastFlow classes. The framework has been originally designed to target shared
memory multi/many cores with two main goals in mind: performance and programmability.

SkePU [30] provides a multibackend framework for heterogeneous parallel systems. The frame-
work is composed by a source-to-source compiler and a runtime library. Data-parallel patterns are
implemented as C++ objects whose instances with their I/O arguments are called skeletons. As
the SkePU compiler recognizes a C++ construct that represents a data-parallel skeleton, it can
rewrite the source code and generate backend-specific versions of the user functions to execute
the skeleton on the selected backend. SkePU version 2.0 provides backends for sequential C++,
multicore OpenMP, GPU with CUDA, and OpenCL. The following patterns are provided: Map,
Reduce, MapReduce, MapOverlap, and Scan.

The iterator pattern is not natively provided by these frameworks. However, by knowing that
the pattern is iterated, we can still exploit this design information to optimize the code, such as by
keeping the threads alive between two successive iterations of the pattern instead of destroying
and creating them at each iteration.

Overall, we decided to use these frameworks because both of them are well-known and cur-
rently maintained projects. In addition to this, FastFlow offers all required patterns (i.e., stream-
and data-parallel ones), whereas SkePU represents a valid alternative for data-parallel skeletons.
Implementations of the PARSEC benchmarks with other pattern-based frameworks are left as pos-
sible future work.

As examples of parallel pattern–based code, in the following we present the implementation of
two PARSEC benchmarks: (i) Ferret, which is a stream-parallel benchmark, and (ii) Swaptions,
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Fig. 1. General scheme of the Ferret pipeline.

Listing 1. FastFlow implementation of the ferret benchmark.

which is a data-parallel benchmark. The first one is implemented using the FastFlow streaming
patterns, whereas Swaptions has been implemented with the SkePU map pattern.

As sketched in Figure 1, Ferret can be modeled as a single pipeline pattern of six stages where
the first and last one are intrinsically sequential, whereas the other four stages are internally con-
current. Listing 1 shows the FastFlow parallel code. The business logic code of each pipeline stage
is encapsulated in a sequential FastFlow node (ff_node_t) by implementing the svc method (a
pure virtual method of the ff_node_t class). Then each node is added to the ff_Pipe pattern,
respecting the pipeline order (lines 26 through 30). The four middle stages are further parallelized
using the farm pattern created with the utility function make_Farm, which creates n replicas of the
sequential ff_node_t passed as a template parameter.

Listing 2 shows the code of the SkePU version of Swaptions, which has been parallelized with
a single map pattern. In this case, I/O SkePU smart data containers need to be created from the
existing data structures (lines 5 and 6). Then the map object is created by providing the map function
that encapsulates the business logic code for the computation of the single element of the input data
collection (line 8). If needed, a specific backend runtime and a parallelism degree can be selected for
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Listing 2. SkePU implementation of the Swaptions benchmark.

the map pattern (lines 10 through 12). Finally, the data-parallel computation is executed, inserting
in the output data collection the computed results (line 14).

3.3 P3ARSEC Parallel Implementations

Starting from the Pthreads implementations available in the PARSEC suite, we designed and im-
plemented a parallel version of each application by composing and nesting the patterns described
in Section 3.1. To provide an immediate view of the patterned scheme, we use the syntax introduced
in Section 3.1. Although this description exactly matches the structure of the implementation in
most of the applications, for other complex benchmarks the executed patterns depend on condi-
tions evaluated at runtime. In those cases, the description has been simplified by focusing on the
most important computational kernels. The exact structure can be found in the P3ARSEC source
code.

Furthermore, some of the PARSEC applications have a quite complex structure and semantics
that often exploits lock-based synchronizations. To be conservative in the porting of such appli-
cations, in some cases we maintained the lock primitives that cannot be easily eliminated in the
sequential portions of code passed as input parameter to the patterns instantiation.
Blackscholes. This application belongs to the Intel RMS benchmark suite [28] (Recognition,

Mining, and Synthesis). It performs pricing for a portfolio of European options by numerically
solving the Black-Scholes partial differential equations [7]. The Pthreads implementation divides
the portfolio into work units, one for each available thread. Then each thread calculates the prices
for the options in its work unit. This algorithm is iterated multiple times to obtain the final es-
timation of the portfolio. This benchmark is an iterative data-parallel computation. We model it
as an iterator pattern where the internal pattern is a map whose input is the collection of items
composing the portfolio. The pattern scheme is therefore

iterator(map).

Bodytrack. This application is aimed at tracking the body pose of a human subject by analyzing
videos collected by multiple cameras. A frame contains one image from each camera. Bodytrack
has basically two phases that are executed for each frame. In the first phase, three kernels are
executed for each image. After this phase, two additional kernels are applied a number of times
on the frame. Before applying a kernel, we need to ensure that the previous kernel is terminated.
Accordingly, we can exploit parallelism only within each kernel.

The Pthreads version is implemented by using a thread pool, which can execute different ker-
nels. The execution starts in the main thread and, for each frame, when a kernel needs to be
executed, the main thread sends a command to the pool with an identifier corresponding to the
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Fig. 2. General scheme of the Dedup pipeline.

kernel type. The threads in the pool will then start to process chunks of the frame with the speci-
fied kernel. To keep the load balanced, the chunks are not statically partitioned. Each thread, after
the processing of the current chunk, accesses a shared variable (using a lock) to get the identifier
of the next chunk and updates that variable.

In our pattern-based implementation, we remove the thread pool, parallelizing each kernel as a
map. During the execution, every time a kernel is found the corresponding map is executed. Within
the pattern runtime, load balancing is achieved by using a dynamic scheduling policy without any
synchronization among the workers of the map. The structure of the benchmark is the following:

iterator(iterator(map1; map2; map3); iterator(map4; map5)).

To simplify the notation, we use the “;” symbol to represent the comp pattern. As an example,
the syntax map1;map2;map3 is a shortcut to write comp(map1,comp(map2,map3)). Furthermore,
it is possible that between the composition of two patterns, some piece of plain sequential code is
executed after the completion of the first pattern and before starting the second one. In the sequel,
the presence of sequential code regions between the composition of two parallel patterns will be
considered implicit with the “;” symbol.

Canneal. The application minimizes the routing cost of a chip design. The algorithm applies
random swaps between nodes and evaluates the cost of the new configuration. If the new configu-
ration increases the routing cost, the algorithm performs a rollback step by swapping the elements
back. Although the evaluation of the elements to be swapped can be performed in parallel, swaps
are executed atomically through a CAS instruction (compare-and-swap). After each iteration, a
convergence condition is checked and eventually the benchmark is terminated. The workload is
memory intensive because the resulting memory accesses are irregular and not easily cacheable.

The Pthreads version follows an unstructured interaction model among threads that execute
atomic instructions on shared data structures. At the end of each iteration, a barrier is executed
and each thread checks the termination condition.

We model this application as a single master-worker pattern, where the workers are sequential
pattern instances executing the swaps, the evaluation, and eventually the rollback actions. At the
end of each iteration, the workers notify the master, which in turn (i) implements the barrier
between two iterations by waiting all notifications by the workers, (ii) evaluates the termination
condition, and (iii) (re)starts the workers’ computation if the condition is false.
Dedup. Dedup is a streaming application that compresses a data stream with a combination of

global and local compression phases called deduplication.
The Pthreads version implements a pipeline with five stages, where each middle stage is im-

plemented with a thread pool (the first and last stages are single threaded). To lower the contention
on communication channels, cooperation between two consecutive stages is implemented using
multiple queues of fixed size. Each queue is assigned to a subset of threads in the same pool.
Figure 2 shows a representation of the Dedup pipeline. Interestingly, results out of the third stage
may be transmitted directly to the last stage, bypassing the fourth stage. Furthermore, the second
stage can generate more output items per input item.
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The first stage (Fragment) reads the data stream from the disk and then partitions the data at fixed
positions, and then it produces a stream of data chunks in output. Each chunk can be processed
independently from the other chunks. The second stage (Refine) further partitions the input chunk
into smaller fine-grain chunks generating a nested stream. The third stage (Deduplication) checks
if the chunk has already been compressed in the past by accessing a hash table. If so, the chunk
is marked as duplicate. The fourth stage (Compress) compresses all chunks that are not marked as
duplicate and updates the corresponding table entries. To ensure correctness in the access to the
table performed by the Deduplication and the Compress stages, each bucket in the hash table is
protected with a lock. Finally, the Re-order stage writes the final compressed output data into the
output file. If the input chunk was marked as duplicate, it stores a “reference” to the correspond-
ing chunk. This stage reorders the data chunks as they arrive to match the original order of the
uncompressed data, and it represents the main bottleneck of the Dedup pipeline, both due to data
reordering and to I/O.

The Dedup benchmark can be modeled using different nestings of pipe and farm patterns. The
composition is possible even though some of the stages keep an internal state that is accessed
concurrently. Such state is lock protected using the same schema used in the native Pthreads
implementation. The first solution is the one with a structure closest to the original Pthreads
implementation. We model the application as a pipeline, where the first stage and the last stage
are seq patterns, whereas the three middle stages are instances of the farm pattern. We implement
the bypassing mechanism between the Deduplication stage and the Compress stage by adding a flag
to each data element. The flag is set if the data element must be transmitted directly to the last
stage. In that case, the Compress stage only forwards the element to the final stage without any
further processing. The synthetic scheme of this parallelization is the following:

1. pipe(seq1, farm(seq2), farm(seq3), farm(seq4), seq5).

By using well-known rules about farm and pipe pattern compositions that preserve the seman-
tics [2], we can also provide an alternative implementation described as follows:

2. pipe(seq1, farm(pipe(seq2, seq3, seq4)), seq5).

As we can see, all middle stages can be replicated within a farm pattern (i.e., each farm worker is
a nested pipeline of three sequential stages). Alternatively, we can execute the stages of the inner
pipeline sequentially by replacing the pipe with a comp, thus obtaining

3. pipe(seq1, farm(seq2; seq3; seq4), seq5).

Finally, it is possible to derive a fourth version that exploits a specialization of the farm pattern
available in some frameworks (e.g., FastFlow). The ofarm pattern is a farm that preserves I/O
ordering. When available, the use of this pattern allows lightening of the computational burden to
the last stage (denoted by seq5’), which now will just write the already ordered results on disk:

4. pipe(seq1, ofarm(seq2; seq3; seq4), seq5’).

Section 4 will show a comparison among these different versions.
Facesim. Facesim is an Intel RMS application simulating the motion of human faces. It applies

the iterative Newton-Raphson algorithm over a sparse matrix. At every timestep, different kernels
are executed on a mesh (some kernels are executed multiple times within a single timestep).

The Pthreads version uses a thread pool that, at every timestep, executes different kernels on
the mesh. Every time a kernel is found during the execution, it is executed by the thread pool,
where each thread works on a statically assigned portion of the mesh.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.



33:12 D. De Sensi et al.

In our pattern-based design, each kernel is parallelized with a map pattern. We report only a
synthetic view of the overall structure of the application, as there are 19 different map kernels, some
of them repeated multiple times at a single timestep. We focus on the seven most time-consuming
kernels (the remaining 12 map kernels are parallel operations on arrays invoked multiple times
during the execution):

iterator(map1; map2; map1; map3; map4; map2; iterator(map5; map6; map7);
map1; map4; map2).

Ferret. Ferret is based on a toolkit used for content-based similarity search of feature-rich data
such as audio, images, video, and 3D shapes [45]. The toolkit is configured for image similarity
search.

The Pthreads parallel implementation decomposes the application into six pipeline stages.
The first and last stages are single threaded, whereas the other stages are configured with a thread
pool each. Communication channels between pools are implemented using queues of fixed size.
The Ferret pipeline does not have bypassing links as in Dedup (see Figure 1).

We model the application as a pipe pattern. Differently from Dedup, all stages access only private
data. The four middle stages are instances of the farm pattern, whereas the first and last stage,
in charge of I/O operations, are seq instances. As for Dedup, we identified three possible nested
schemes of patterns:

1. pipe(seq1, farm(seq2), farm(seq3), farm(seq4), farm(seq5), seq6) 2.
pipe(seq1, farm(pipe(seq2, seq3, seq4, seq5)), seq6) 3. pipe(seq1, farm(seq2;

seq3; seq4; seq5), seq6).

Moreover, seq1 is actually composed by two phases: seq1.1, which iterates over the files in the
input folder, and seq1.2, which for each file in the folder loads the image contained in the file in
the main memory. Since seq1.2 can be performed in parallel over different files, we can move it
inside the farm.3 This leads to the following patterns’ composition:

4. pipe(seq1.1, farm(seq1.2; seq2; seq3; seq4; seq5), seq6).

Additionally in this case, in Section 4 we will show a comparison among such patterned schemes.
Fluidanimate. Fluidanimate is another Intel RMS benchmark that uses an extension of the

smoothed particle hydrodynamics method to simulate an incompressible fluid. At every timestep,
the application executes nine kernels to compute the position of the fluid particles at the next
timestep. As in other benchmarks, the sequence of kernels is sequential, and parallelism can be
safely exploited within each kernel region.

In the Pthreads implementation, the 3D space is statically divided among the threads. Each
thread applies each kernel on its space partition. A barrier is executed by all threads between two
successive kernels.

In our pattern-based implementation, we design each kernel as a map pattern. Since the ker-
nel sequence is iterated a number of times (one for each timestep), the overall structure can be
represented as follows:

iterator(map1; map2; ... ; map9).

Freqmine. Freqmine is a data mining program that finds the most frequent items within a trans-
actional dataset. It is based on the frequent pattern tree data structure and executes the frequent
pattern growth algorithm [39]. This data mining application uses a compact tree data structure to

3The same technique can be applied to the other two alternative pattern compositions.
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store information about frequent patterns of the transaction database. Seven kernels are identified
in the application, where the last kernel is executed multiple times.

The Pthreads parallelization is not present in PARSEC, whereas the standard version is an
OpenMP one. Each kernel is parallelized using the OpenMP 2.0 parallel-for construct.

In our version, each kernel corresponds to a map pattern—the last one iterated a number of times:

map1; map2; ... ; map6; iterator(map7).

Raytrace. This application consists of a graphical render aimed at generating animated 3D
scenes by using a hierarchical grid raytracing algorithm. A kernel is executed at each frame.

In the Pthreads version, the kernel is parallelized by partitioning the 3D scene among the
threads. The work is dynamically partitioned, and similarly to the Bodytrack Pthreads imple-
mentation, once a thread finishes to process a partition, it gets another one to keep the load
balanced.

The application can be modeled as a map iterated a fixed number of times. Differently from
Blackscholes, the computation is extremely unbalanced and a good dynamic scheduling of the
partitions is of great importance. Furthermore, the computational weight of each map iteration is
low while the number of iterations is high. The patterned scheme can be expressed as

iterator(map).

Streamcluster. Streamcluster is an application that solves the online clustering problem over
incoming streaming data. The program consists of a sequence of loops whose iterations can be
executed in parallel. Different loops are executed sequentially by using barriers, and they are in-
terleaved by serial regions of code whose length impacts the overall speedup.

The computational kernel consists of two phases. The first iterates a composition of a
map+reduce and a number of map instances (which in turn are iterated multiples times). The second
phase, working on different data, repeats the same steps exactly one time. The simplified patterned
structure can be expressed as follows:

// Phase 1: iterator(map+reduce; map1; iterator(map2; map3; map4);
iterator(map5; map6; map7)); // Phase 2 map+reduce; map1; iterator(map2; map3;

map4); iterator(map5; map6; map7).

Swaptions. This application is based on the Heath-Jarrow-Morton (HJM) method [40] to price
a portfolio of financial options.

The Pthreads parallel version divides the data structures of the program into blocks equal to
the number of threads and assigns one block to each thread. The threads are in charge of applying
the method on the options within their partition.

This benchmark has a simple structure that can be modeled as a single map pattern, where the
input is a collection of items representing the swaptions portfolio.
Vips. Vips is based on the VASARI Image Processing System [46] and includes basic image

processing kernels such as affine transformations and convolutions. This benchmark is a domain-
specific runtime system that can be used for image manipulation.

In the Pthreads version, the user specifies a function to get the next partition. Each thread
executes a loop, where at each iteration (i) it gets a new partition of the image by calling the
function specified by the user, (ii) the partition is processed by using another function specified by
the user, and (iii) the end of the processing on the current partition is notified to the main thread
by using a POSIX semaphore. The main thread calls a user-defined function at each notification.

Although it may look like a data-parallel computation, Vips can also be modeled as a stream-
parallel computation. Indeed, since the function to get the next image partition is specified by the
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user, we cannot access the entire image at once and decide how to partition it. For this reason,
we model this benchmark as a pipe, where the first stage is a farm where each worker retrieves a
partition and processes it by using the functions provided by the user. The last stage of the pipeline
is sequential and calls the progress function specified by the user. The structure is expressed as
follows:

pipe(farm(seq1), seq2).

X264. This application has been considered stream parallel, although it has a complex structure
and interaction among its stages. In Dios et al. [27], the authors have presented this application
as a wavefront algorithm instead of a stream-parallel one. In P3ARSEC, we do not implement this
application, as, due to its complexity, is not possible to easily separate the parallelism manage-
ment from the functional code. Moreover, in addition to requiring domain-specific knowledge,
this application cannot be easily expressed by using the available patterns.

4 EXPERIMENTS

The new suite P3ARSEC is provided as an extension of the original PARSEC suite and can be exe-
cuted with the same tools used to run the native suite (e.g., the parsecmgmt tool). All benchmarks
have been implemented in FastFlow [22], whereas some data-parallel applications also have a
SkePU [32] implementation. We verified the correctness of all implemented benchmarks with the
corresponding original sequential and Pthreads implementations.

In the analysis, we focus both on the programming effort and the performance achieved. The
comparison is made with the parallel versions already available in PARSEC (Table 1) and with the
task-based implementations written in OmpSs and presented in Chasapis et al. [17].4 Their work
covers most of the PARSEC applications, except Raytrace and Vips. For x264, the authors pro-
vided an implementation that maps one to one the Pthreads version (i.e., thread creations are
replaced with task spawns and thread joining with task waiting). Results in terms of performance
and code complexity are the same as the Pthreads version and are not reported in the remaining
part of this section. Furthermore, the authors declared a performance improvement compared to
Pthreads up to 42% in Bodytrack and Dedup. By studying their implementations, we found that
this advantage is mainly due to some optimizations and code rewriting that changed the PARSEC
sequential semantics (i.e., their output is different from the one produced by the original sequential
and Pthreads versions). To be more precise, in their implementation of Bodytrack, consecutive
frames are processed in parallel, whereas according to the algorithm semantics, the parallelism can
be exploited inside a frame but not between frames, as the computation of a frame depends on the
result of the previous one. This produces an output that is different from the original one. In Dedup,
the output produced by the OmpSs version is not deterministic, and the Dedup decompressor (pro-
vided with the original PARSEC benchmark) is not able to decompress it. Since we want to strictly
preserve the original semantics of the applications, we do not consider these implementations.
In our evaluation, we decided to not modify the original reference implementations (Pthreads,
OpenMP, and TBB) since the purpose of this work is not to optimize the PARSEC benchmarks but
to show that they can be parallelized using parallel patterns obtaining similar performance figures
with lower LOC and lower code churn.

In the following, we first evaluate the programming effort and then the performance results.

4We would like to thank the authors for making their source code publicly available at https://pm.bsc.es/gitlab/benchmarks/

parsec-ompss. (At the time of writing this article, commit ea319e57 was the most recent one.)
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Fig. 3. LOC of the different parallel implementations, normalized between 0 and 1 with respect to the

Pthreads version (the lower the better).

4.1 Programming Effort

To analyze the programming effort required to parallelize each benchmark with different parallel
programming approaches, we use LOC and code churn as metrics. Evaluating the programming
effort in an objective way is a difficult task, and no universally accepted metrics exist. We decided
to use the LOC and code churn metrics since they are often used as proxy metrics to evaluate
programmability [17, 51, 58].

Lines of code. This metric is commonly used in software engineering to measure code and pro-
gramming complexity [58]. For each benchmark, we considered only the source files required to
implement the parallelization or those modified during the parallelization (the other files are the
same in all versions). These files include the definition of data structures used for thread com-
munications, synchronization mechanisms, and the files containing calls to the different parallel
programming frameworks. To have a fair comparison, these files have been normalized by for-
matting them according to a fixed programming style (brackets on the same line of the statement,
single-line if, etc.). After that, we removed empty lines, comments, and sections of code that
are not executed due to inactive macros. The measures have been normalized with respect to the
Pthreads version (i.e., Pthreads is always 1, and a value greater than 1 means more LOC and
lower than 1 means fewer LOC).

Code churn. A useful metric to estimate software complexity is the code churn [51, 52], defined
as the number of lines modified and added with respect to a previous version. In our case, we con-
sider the code churn of each parallel version with respect to the original sequential code. Starting
from the sequential code, two different parallel implementations may have a similar number of
code lines. However, if an implementation needs to modify and introduce a higher number of
lines, this means that the effort required is likely higher than the one needed to implement the
other versions. This metric is computed on the files normalized with the same process described
for LOC.5

Discussion. We analyze the two metrics over all benchmarks and over all parallel versions. The
results are shown in Figures 3 and 4. Note that when a bar is missing in the plot, it means that the
implementation with the corresponding framework is not available.

5For reproducibility of results, we provide the script used to compute the metrics in the P3ARSEC repository under the

scripts/ folder.
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Fig. 4. Code churn (i.e., number of modified and added LOC) of the different parallel implementations with

respect to the original sequential implementation (the lower the better).

On Freqmine and Swaptions, there are no particular differences between the implementations.
In Canneal, FastFlow and OmpSs versions have a slightly higher code churn, as Pthreads code
is very similar to the sequential one (the same functional part is executed by n threads).

Concerning Blackscholes, Bodytrack, Facesim, and Raytrace, the Pthreads implementa-
tion has an higher LOC and code churn because of thread pools implementations in the different
benchmarks, which for Blackscholes is simply a wrapping of Pthreads calls to simplify threads
management. In Blackscholes, all other implementations are equivalent, with OmpSs having a
slightly higher code churn. The TBB implementation of Bodytrack has around double the code
churn of FastFlow and OpenMP. This happens because our FastFlow implementation widely
exploits C++ lambda expressions that simplify code development. However, the TBB version avail-
able in the PARSEC suite does not exploit this C++ feature, forcing the programmer of the TBB
version to move and rewrite code, which would not have been necessary if lambda were used. As
discussed earlier, we did not change the code of the reference applications since this is not the
purpose of this work. In Facesim, despite that the LOC of the FastFlow version is slightly higher
than OmpSs, the code churn of OmpSs is much higher, as the FastFlow version modified only a
minimal part of the sequential code.

In the FastFlow versions of Dedup and Ferret, we implemented different pattern composi-
tions. We show the metrics of the version characterized by the best performance (discussed in
Section 4.2). The other alternative FastFlow versions have similar measures. For both Dedup and
Ferret, the FastFlow code has significantly lower LOC and code churn, as the Pthreads version
also needs to implement the threading support and all data structures required to let the threads
communicate and synchronize with each other. Furthermore, in Dedup, the advantage is even more
significant since we were able to remove all code lines related to data reordering, which in our case
is implicit in the ofarm pattern (pattern composition number 4.). The TBB code of Ferret is slightly
longer, and more lines have been modified.

The Pthreads version of Fluidanimate has a higher LOC and code churn because of a hand-
written synchronization primitive (a spin-wait barrier) that has been implemented and used to
separate the different parallel kernels. This is not needed in FastFlow, as this is implicit at the
end of the map pattern. The OmpSs implementation has a higher code churn as well due to a routine
that is used to create a data structure used to enforce nontrivial dependencies between the parallel
tasks. The TBB code has a higher code churn due to the specific parallelization design.

In Streamcluster, the pattern-based implementations (FastFlow and SkePU) have the lowest
LOC and code churn. These metrics are higher for Pthreads since also in this case a spin-wait
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Table 2. Multicore Machines Used in the Performance Evaluation

Name Description Configuration

Intel

Xeon

Dual-socket NUMA machine with two Intel Xeon E5-2695
Ivy Bridge CPUs running at 2.40GHz featuring 24 cores (12
per socket). Each hyperthreaded core has 32KB private L1,
256KB private L2, and 30MB of L3 shared with the cores on
the same socket. The machine has 64GB of DDR3 RAM.

Linux 3.14.49
x86_64 shipped
with CentOS 7.1.
Available compiler
gcc version 4.8.5.

Intel

Xeon Phi

Machine with the Intel Xeon Phi model 7210 (codename
Knights Landing, KNL). The KNL is equipped with 32 tiles
(each with two cores) working at 1.3GHz, interconnected
by an on-chip mesh network. Each core (4-way
hyperthreading) has 32KB L1d private cache and a L2
cache of 1MB shared with the sibling core on the same tile.
The machine is configured with 96GB of DDR4 RAM with
16GB of high-speed on-package MCDRAM configured in
cache mode.

Linux 3.10.0
x86_64 shipped
with Centos 7.2.
Available compiler
gcc version 4.8.5.

IBM

Power 8

Dual-socket IBM server 8247-42L with two Power 8
processors each with 10 cores (total 20 cores) working at
3.69GHz. Each core (8-way SMT) has private L1d and L2
caches of 64KB and 512KB, a shared on-chip L3 cache of
8MB per core. The machine has 64GB of RAM.

Linux 4.4.0-47
ppc64 shipped with
Ubuntu 16.04.
Available compiler
gcc version 5.4.0.

barrier implementation is provided. OmpSs has a higher code churn as well due to the rewriting
of some processing routines but also to the introduction of additional parallelizations of some
sections with respect to Pthreads and FastFlow implementations.

In Vips, the FastFlow version has a slightly higher LOC and code churn (approximately
20 lines). This happens because this benchmark is a framework that can be customized with code
specified by its users. It has been designed to be parallelized with Pthreads and has some strin-
gent constraints and assumptions on the code provided by its users. However, being able to design
a different parallelization by only modifying a few tens of LOC while still preserving the same
design and semantics is an important result.

4.2 Performance Evaluation

In the following, we describe the performance results achieved on three different multicore archi-
tectures. They are described in Table 2.

Experimental settings. In all three architectures, we used FastFlow version 2.1, SkePU ver-
sion 2, and OmpSs version 16.06.3. The source codes of all parallel versions have been compiled
with the -O3 flag.6 For the evaluation, we used the PARSEC native input set to obtain results rep-
resentative of real-world program executions. The parsecmgmt tool has been used for launching
the original PARSEC benchmarks and the FastFlow and SkePU implementations. For the OmpSs
implementations, we used the scripts released by the authors. In the parallel versions of the bench-
marks, we need to specify the concurrency degree n to use, which, with exception of Dedup and
Ferret, corresponds to the number of threads executed. We used different values for n, ranging
from 1 to the number of threads contexts available in the used architecture (i.e., 48 in the Intel

6Other benchmark-specific flags are those specified by default in the Makefiles distributed by PARSEC.
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Xeon server, 256 in the Intel Xeon Phi, and 160 in the IBM Power 8 server). The only exception to
this rule is Swaptions, which cannot be executed with more than 128 threads due to limitations
in the input set provided. The Canneal, Raytrace, and Vips benchmarks cannot be compiled on
the IBM Power architecture due to architecture-specific assembler instructions used in the original
implementations.

Discussion. The time measured is the one spent in the so-called region of interest (ROI), which
includes all parts sensitive to the parallelization. This approach is commonly adopted when com-
paring different parallelizations of the same application [17]. Each program has been run multiple
times, and the average results are shown (the standard deviation is always negligible, and it is not
shown for readability reasons). All benchmarks have been executed with the original parameters
provided by PARSEC. The results are shown in Figure 5, where the best execution times of the
benchmarks for each version, obtained by varying the n parameter, have been normalized to the
PARSEC reference implementation (i.e., OpenMP for Freqmine, Pthreads for all other bench-
marks). Accordingly, values lower than 1 represent cases with execution time lower than the one
of the reference PARSEC implementation. For completeness, Table 4 (shown later) reports the val-
ues of the best execution times of the various versions on the different architectures. Detailed
performance results are available on the GitHub repository.7

Small differences and discrepancies in the results (between different versions of the same bench-
mark and/or between different architectures) are reasonably due to differences in the compiler
and the architecture, and by the intrinsic differences and optimizations in the runtime of the
frameworks used. Concerning architecture differences, the IBM Power 8 implements an eight-
way simultaneous multithreading (SMT), whereas the Intel Xeon Phi and the Intel Xeon server
implement four-way and two-way hyperthreading, respectively. The OmpSs implementations of
Blackscholes, Canneal, and Fluidanimate executed on the Intel Xeon Phi give poor perfor-
mance results. This is due to the fact that currently the OmpSs runtime has not been optimized for
this new kind of platform. In the sequel, we will discuss the most remarkable differences among
the analyzed versions.

For Dedup, we show in Figure 5 only the best FastFlow version (the one with scheme
pipe(seq1, ofarm(seq2, seq3, seq4), seq5’)). This version is significantly faster than the
Pthreads one, as it removes all logic related to data reordering from the seq5 stage, leaving only
the writing of the data on disk. The improvement is less evident in the Intel Xeon Phi architecture
since the writing part of the seq5 stage is slower with respect to the other architectures due to the
much lower clock, thus reducing the impact of this optimization. As shown in Table 3, the perfor-
mance of this patterned version is 26% higher than the one of the other patterned versions that are
more similar to the original Pthreads implementation. This is an interesting case where pattern
composition allows the programmer to prototype alternative versions that are more efficient than
the initial one by changing just few LOC (less than 10).

Although different versions could also be implemented with other programming models, this
would require expressing again from scratch all communications and the data dependencies be-
tween different parts of the parallel application. This is an error-prone task and could significantly
increase the code length. However, in the pattern-based model, dependencies and communications
are implicitly coded in the pattern.

In Facesim, both the FastFlow and the OmpSs versions outperform the Pthreads paralleliza-
tion (up to 40% faster). This is mainly due to implementation choices adopted in the different
versions. In Pthreads, when a parallel kernel is found during the execution, one abstraction of

7Under the results_TACO folder.
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Fig. 5. Best execution times normalized with respect to the PARSEC reference (i.e., OpenMP for Freqmine,

Pthreads for the remaining benchmarks).

Table 3. Best Speedups of Different Parallel Patterns for Dedup and Ferret

Arch. Bench 1. 2. 3. 4.

Intel Xeon
Dedup 9.23 7.36 8.74 9.26

Ferret 25.44 24.48 25.89 25.89

Intel Xeon
Phi

Dedup 6.22 6.54 6.32 6.6

Ferret 51.13 52.9 55.69 92.6

IBM Power 8
Dedup 10.79 12.07 12.61 13.59

Ferret 25.53 23.79 25.32 35.2

Note: Numbers refer to the different pattern compositions described in Section 3.
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Table 4. Best Execution Times (seconds)

A Version BS BD CN DD FC FR FL FQ RT SC SW VP

In
te

l
X

e
o

n
S

e
rv

e
r

Seq 135.2 126.9 82.9 28.6 350.5 368.1 286.9 431.9 145.6 417.3 240.1 97.6

Pthreads 4.6 16.1 7.8 4.2 47.8 14.3 27.1 - 6.1 42.4 9.7 4.4

FastFlow 4.7 15.3 7.4 3.1 32.2 14.2 26.3 34.1 6.1 33.1 10.1 4.4

TBB 5.1 13.8 - - - 14.1 26.3 - - 31.1 10.6 -

OpenMP 4.6 16.3 - - - - - 33.3 - - - -

OmpSs 4.9 - 9.6 - 32.7 14.4 24.6 35.9 - 46.7 10.2 -

SkePU 4.8 - - - - - - - 6.1 34.5 9.7 -

In
te

l
X

e
o

n
P

h
i

Seq 997.7 704.5 311.4 120.0 1653.5 2102.2 1403.7 1835.8 981.8 1251.5 1416.4 691.1

Pthreads 7.6 66.4 10.2 20.7 137.6 39.4 63.2 - 13.2 79.6 16.8 10.7

FastFlow 8.3 58.6 10.1 18.1 80.3 22.7 40.0 102.8 13.2 49.0 16.9 10.7

TBB 8.5 53.7 - - - 40.6 39.7 - - 48.1 18.9 -

OpenMP 8.3 59.1 - - - - - 101.7 - - - -

OmpSs 12.9 - 20.4 - 90.5 26.3 101.4 105.1 - 83.5 17.5 -

SkePU 8.3 - - - - - - - 14.0 43.9 18.7 -

IB
M

P
o

w
e
r

8

Seq 167.1 146.3 - 45.4 376.3 228.2 344.3 541.6 - 545.0 284.6 -

Pthreads 5.3 17.2 - 4.7 58.1 8.3 35.0 - - 100.7 10.1 -

FastFlow 4.2 14.2 - 3.3 34.5 6.5 22.9 45.5 - 66.7 9.1 -

TBB 4.7 16.2 - - - 8.4 31.3 - - 72.7 10.0 -

OpenMP 4.9 16.2 - - - - - 41.7 - - - -

OmpSs 5.2 - - - 36.4 6.5 32.8 50.1 - 96.3 11.2 -

SkePU 4.6 - - - - - - - - 68.8 10.2 -

Note: For the parallel versions, they are obtained by varying the concurrency degree. BS (blackscholes), BD (bodytrack), CN
(canneal), DD (dedup), FC (facesim), FR (ferret), FL (fluidanimate), FQ (freqmine), RT (raytrace), SC (streamcluster),

SW (swaptions), VP (vips). Concerning the missing data, in the OmpSs implementation of the benchmark suite, Raytrace
and Vips are not available. Moreover, the output produced by Dedup and Bodytrack is different from the one produced

by the original PARSEC implementation, and therefore their related results are not shown. Finally, Canneal, Raytrace,

and Vips benchmarks cannot be compiled on the IBM Power architecture due to some architecture-specific assembler

instructions.

a mesh partition is inserted for each thread in a shared queue, accessed by all threads and pro-
tected by locks. Instead, in the other two implementations, a partition is statically assigned to
each thread without any need to access any shared data structure, thus achieving better speedup.
Indeed, as shown in Figure 6, although the different versions are equivalent with low concurrency
levels, the Pthreads version starts to perform poorly when more threads are used due to the high
contention on this shared queue. A parallelization strategy similar to that of FastFlow could prob-
ably be used in the other programming models as well. However, as described earlier, we decided
not to modify the original reference implementations since it is not the purpose of this work.

For the pattern-based implementation of Ferret, in Table 3 we report results of all alterna-
tive pattern implementations. The pipe(seq1.1, farm(seq1.2; seq2; seq3; seq4; seq5),
seq6) version performs 80% better than the first pattern-based implementation, closer to the de-
sign of the Pthreads version, showing again the importance and flexibility of pattern composition
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Fig. 6. Facesim speedup for different versions and on different architectures.

Fig. 7. Fluidanimate speedup for different versions and on different architectures.

to introduce optimizations. The OmpSs and FastFlow versions of Ferret produce the best per-
formance gain over the Intel Xeon Phi and IBM Power 8 server. This happens because, differently
from Pthreads and TBB, both versions parallelize the load of the images from the file (by sepa-
rating seq1.1 from seq1.2). The same effect does not occur on the Intel Xeon server due to the
lower number of cores, as the images loading stage becomes a bottleneck only when using a high
number of threads.

On Fluidanimate, we measured significant improvement in the pattern-based implementation
with respect to the Pthreads one on the Intel Xeon Phi and IBM Power 8 server. This is mainly due
to the different implementation of the barrier provided by the different frameworks. A barrier (im-
plicit in the pattern-based approach) is executed after each parallel kernel. The one implemented in
FastFlow is more efficient than the one used by Pthreads, thus leading to this performance gap.
This performance difference is remarkable only at high concurrency levels, as shown in Figure 7,
and does not occur on the Intel Xeon server, since it uses at most 48 hardware threads.

On Streamcluster, by parallelizing the kernels with map patterns, we greatly simplified the
code. This made it possible to remove some unnecessary synchronizations (e.g., in the pspeedy
function), leading to a performance improvement up to 40% on the Intel Xeon Phi. Such ineffi-
ciencies in the Pthreads implementation occur because of an intricate design, which led to a
nonoptimized implementation. However, the pattern-based design of Streamcluster is simpler
and more effective. Moreover, we did not parallelize some tiny functions that were parallelized
in the Pthreads and OmpSs version. These functions are not worth to be parallelized since the
overhead introduced by the parallelization would only slow down the entire application.

The original TBB implementation of Swaptions produced poor performance results with respect
to other parallel implementations. We were able to reduce this gap by changing the size of the block
scheduled to the different threads.
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4.3 Summary of Results

To summarize the results, we achieved an average reduction of 26% in the LOC (in both FastFlow
and SkePU) compared to the original Pthreads implementation, and an average reduction of 3%
with respect to the OmpSs implementations. In the best case, we reduced the LOC up to 87% with
respect to Pthreads and 14% compared to the OmpSs version. The code churn is an average of 58%
lower than Pthreads and 34% lower than the OmpSs version. Concerning the performance, the
FastFlow implementations obtained an average performance gain of 14%, with a maximum gain
of 42% and a maximum loss of 9% with respect to the Pthreads one. Considering the benchmarks
implemented with SkePU, we obtained an average performance gain of 7% (maximum gain of 45%,
maximum loss of 11%). Finally, OmpSs implementations obtained an average gain of 2% (maximum
gain of 37%, maximum loss of 23%)8 with respect to the Pthreads implementation.

This evaluation confirmed that the pattern-based parallel programming approach reduces the
LOC and code churn without impairing performance. In addition, in several cases, we were able
to improve the performance by rapidly prototyping alternative pattern compositions.

5 RELATED WORK

Pattern-based programming has become a widely used coding practice in software engineering,
both for sequential programming [33] and, with smaller acceptance, in the parallel computing
domain [48]. The main reason around this shift is that parallel patterns simplify coding and main-
tainability and increase software portability, yet provide a good level of performance, often close to
the one obtained with hand-tuned code. Notwithstanding, a comprehensive analysis that demon-
strates the feasibility of using the pattern-based approach for parallelizing real-world applications
is still missing. We tried to fill this gap for multicore platforms by parallelizing the benchmarks
of the PARSEC suite using the pattern-based approach. The PARSEC suite covers a wide range
of working set size, locality patterns, data sharing, synchronizations, and memory bandwidth re-
quirements, which have made it particularly attractive for several research works [14, 23, 42].

In Chasapis et al. [17], the authors propose PARSECSs, a significant subset of the PARSEC
suite (10 benchmarks) implemented using a task-based parallel programming model (OmpSs). They
demonstrated that on average, the task-based approach is able to reduce the LOC needed to develop
the PARSEC applications with respect to the native Pthreads implementations. Furthermore, they
found that the overall performance is not degraded. Our work takes inspiration from PARSECSs
with the aim to prove that a pattern-based parallel programming model is a well-suited candidate
for high-level parallelization of applications. In our study, we also validated the results obtained
in Chasapis et al. [17] by running the PARSECSs benchmarks on different multicore platforms,
finding that in some cases they added optimizations that changed the original PARSEC sequential
semantics, thus improving the original performance.

In Lee et al. [42], the authors studied pipeline parallelism proposing an extension to the Cilk
programming model [8]. Results are validated using three PARSEC benchmarks (Ferret, Dedup,
and x264), and they compared their approach to Pthreads and TBB. Other research works eval-
uated pattern-based programming frameworks by using only microbenchmarks [26, 32, 44]. In a
previous work, we carried out a preliminary evaluation on a small subset of PARSEC applications
[21]. To the best of our knowledge, no previous study has been conducted to thoroughly assess
both the performance and programming effort of the pattern-based approach.

FastFlow has been used to parallelize several applications/algorithms in different application
domains: bioinformatics [1, 9], data mining [4], data streaming processing [50], parallel numerical

8For the sake of fairness, in this comparison, we did not consider the results of OmpSs implementations of Blackscholes,

Canneal, and Fluidanimate on the Intel Xeon Phi.
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kernels [11], and network monitoring [19]. These works mainly focus on performance, and they
can hardly be used to demonstrate general insights into the effectiveness of the pattern-based
parallel programming model. With this work, we tried to provide a first answer in this direction.

6 CONCLUSIONS AND FUTURE WORK

This article presented P3ARSEC, a suite based on PARSEC for benchmarking parallel pattern–
based frameworks. Each application has been described from the pattern perspective as a com-
position and nesting of recurrent parallel patterns. This provided a guideline to parallelize such
applications in different frameworks that offer the patterns we used in our analysis and confirmed
that relatively few parallel patterns are sufficient to model complex real-world applications.

In addition to providing a benchmarking suite for pattern-based parallel programming, which
was missing in the literature, this article also proposed an analysis aimed at evaluating the ef-
fectiveness of the parallel pattern–based programming methodology in terms of programmability
and performance. To evaluate the programming effort, we computed specific metrics for all imple-
mented P3ARSEC benchmarks. The final result is that LOC and code churn using parallel patterns
are reduced with respect to using Pthreads, and it is in most cases comparable to other parallel
programming approaches based on #pragma-based annotations (i.e., OpenMP and OmpSs).

The performance has been accurately evaluated on three different multicore systems, which
represent different classes of general-purpose shared-memory platforms. The analysis showed that
the performance achieved by the patterned versions is generally similar to the one of the other
implementations based on Pthreads and OmpSs. Furthermore, there are some specific cases where
the flexibility of the pattern-based approach allows the programmer to easily prototype variants
of the parallel implementations, which perform better than the initial and simpler versions.

In the future, we will extend the work by including GPUs as target platforms and evaluating the
performance and programmability of the pattern-based programming framework on many-core
systems. Moreover, we would like to evaluate the impact on the performance of using different
C/C++ compilers, such as by using the icc compiler on Intel-based architectures.
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